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Appendix of “Provable Knowledge Transfer using Successor Feature for Deep
Reinforcement Learning.”

Before moving into the technical details, we provide an overview of the structure of the appendix.

In Appendix A, we define some notations and useful lemmas to simplify the presentation and anal-
ysis. Some important notations for understanding the proof is summarized in Table 3.

In Appendix B, we provide some preliminary lemmas and proof for Theorem 1. A proof sketch
is included as (i) characterization of the local convex region of the objective function in (12) and
(9) (Lemma 6), (ii) Characterization of the difference between the empirical gradient in (15) and the
gradient of the objective function (Lemma 7), (iii) Characterization of the relation of two consecutive
iterations Θ(t+1) and Θ(t) in (62), and (iv) Mathematical induction over (t+1) · ∥Θ(t)−Θ⋆∥2 from
t = 1 to T to obtain the error bound between the learned model weights Θ(T ) and the optimal Θ⋆.

In Appendix C, we provide the proof for Theorems 3 and 4. A proof sketch is included as follows:
(1) Characterization of (26) by assuming knowledge of the optimal Q-function for previous tasks.
(2) Characterization of the accumulated error resulting from the estimation error of the learned Q-
function in previous tasks. (3) Combining the bounds from (1) and (2) leads to the error bound
between (26) derived from the estimated Q-function of previous tasks and the optimal Q-function
for the new tasks.

In Appendix D, we provide the proof for Theorem 2. The proof sketch is a direct application of the
existing results of the convergence analysis as shown in Appendix B and the error bound between
(26) derived from the estimated Q-function of previous tasks and the optimal Q-function for the new
tasks as shown in Appendix C.

In Appendix E, we provide additional experiments to further support the proposed SF-DQN in Al-
gorithm 1 and our theoretical findings.

In Appendix F, we provide the proofs for the preliminary lemmas in proving Theorems 1 and 2.

In Appendix G, we provide the proofs for the preliminary lemmas in proving Theorems 3 and 4.

In Appendix H, we provide the proof for some additional lemmas.

A NOTATIONS AND PRELIMINARY RESULTS

Population risk function. We define a population risk function as

fπ⋆(θ) := E(s,a)∼π⋆
∥∥ψ(θ; s, a)− Es′|(s,a),a′∼π⋆(s′)

(
ϕ(s, a, s′) + γ · ψ(θ⋆; s′, a′)

)∥∥2
2
. (30)

We can see that θ⋆ is the global minimal to (30) with Assumption 1. For the convenience of presen-
tation, we simplify fπ⋆ as f in the supplementary materials.

Then, the gradient of (30) is

∇fπ⋆(θ)
= E(s,a)∼π⋆,s′|(s,a)∼P,a′∼π⋆

(
ψ(θ; s,a)− ϕ(s,a, s′)− γ · ψ(θ⋆; s′, a′)

)
· ∇ψ(θ; s, a).

(31)

Given f is a smooth function, we have the gradient of f with respect to any θℓ at the ground truth
θ⋆ equals to zero, namely,

∇ℓf(θ
⋆) := ∇θℓf(θ

⋆) = 0, ∀ℓ ∈ [L]. (32)

Vectorized Gradient of θ and w at iteration t. To avoid unnecessary high-dimensional tensor
analysis, the gradient with respect to θ, denoted as ∇θH for some function H , is represented as its
corresponding vectorized version, ∇Vec(θ)H .

Let n denote the dimension of W defined in (1). We denote nl as the dimension of the vectorized
neuron weights in the ℓ-th layer, namely, nℓ = dim(vec(θℓ)).
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Then, the gradient in updating θ as

g(t)(θ(t);Dt)

=
∑
m∈Dt

(
ψ(θ(t); sm, am)− ϕ(sm, am, s

′
m)− γ · ψ(θ(t); s′m, a′m)

)
· ∇θψ(θ

(t); sm, am) (33)

with g(t)(θ(t);Dt) ∈ Rn. Then, we have

θ(t+1) = θ(t) − ηt · g(t)(θ(t);Dt). (34)

Similary to (33), we define the gradient

l(t)(w(t);Dt) =
∑
m∈Dt

(
ϕ(sm, am, s

′
m)⊤w(t) − r(sm, am, s

′
m)

)
· ϕ(sm, am, s′m). (35)

In addition, without special descriptions, α = [α⊤
1 ,α

⊤
2 , · · · ,α⊤

K ]⊤ stands for any unit vector that
in RKℓKℓ−1 with αj ∈ RKℓ−1 (K0 = d). Therefore, we have

∥∇ℓH∥2 = max
α

∥α⊤∇ℓH∥2 = max
α

∣∣∣ K∑
j=1

α⊤
j

∂H

∂wℓ,j

∣∣∣,
∥∇2

ℓH∥2 = max
α

∥α⊤∇2
ℓ H α∥2 = max

α

( K∑
j=1

α⊤
j

∂H

∂wℓ,j

)2

.

(36)

Derivation of the gradient of deep neural networks. We use h(ℓ)(θ) to denote the input in the ℓ-th
layer (or the output in the (ℓ− 1)-th layer) of deep neural network ψ(θ), and h(1) = x(s, a), where

h(ℓ)(θ; s, a) = σ(θ⊤ℓ−1h
(ℓ−1)) = · · · = σ

(
θ⊤ℓ σ

(
θℓ−1 · · ·σ(θ⊤1 x(s, a))

))
. (37)

Then, we denote the dimension of h(ℓ) as Kℓ. Then, ψ(θ; s, a) can be written as

ψ(θ; s, a) =
1⊤

KL

KL∑
k=1

σ(θ⊤L,kh
(L)) =

1⊤

KL
σ
(
θ⊤Lσ(θ

⊤
L−1h

(L−1))
)
, (38)

where θℓ,k denotes the k-th neuron weights in the ℓ-th layer. Then, we define a group of functions
Jℓ(θ) ∈ Rn −→ RK such that

Jℓ(θ)

=

{[
1⊤σ′(θ⊤Lh

(L))θ⊤L · σ′(θ⊤L−1h
(L−1))θ⊤L−1 · · ·σ′(θ⊤ℓ+1h

(ℓ+1))θ⊤ℓ+1

]⊤
if ℓ > 1

1 if ℓ = 1
.

(39)

Then, the gradient of ψ can be represented as

∂ψ

∂θℓ,k
(θ) =

1

Kℓ
Jℓ,k(θ)σ′(θ⊤ℓ,kh(ℓ)(θ)

)
h(ℓ)(θ), (40)

where Jℓ,k stands for the k-th component of Jℓ.
Order-wise Analysis. Most constant numbers will be ignored in most steps. In particular, we use
h1(z) ≳ (or ≲,≂)h2(z) to denote there exists some positive constant C such that h1(z) ≥ (or ≤
,=)C · h2(z) when z ∈ R is sufficiently large. In this paper, we consider the case where θ⋆ℓ is
well-conditioned, such that its largest singular value Σ1(ℓ) and the condition number Σ1(ℓ)/σK(ℓ)
can be viewed as constants and will be hidden in the order-wise analysis.

A.1 USEFUL LEMMAS FOR MATRIX CONCENTRATION

Lemma 1 (Weyl’s inequality, (Bhatia, 2013)). Let B = A+E be a matrix with dimension m×m.
Let λi(B) and λi(A) be the i-th largest eigenvalues of B and A, respectively. Then, we have

|λi(B)− λi(A)| ≤ ∥E∥2, ∀ i ∈ [m]. (41)
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Table 3: Notations for the proofs

d Dimension of the feature mappings of the state-action pair (s, a) ∈ S ×A.

K Number of neurons in the hidden layer.

L Number of hidden layers.

T Number of iterations.

w
(t)
i The estimated value for reward mapping of task i at t-th iteration.

Θ
(t)
i The estimated neuron weights for the successor feature of task i at t-th iteration.

θ(t) The value of Θ(t)
1 to simplify the notation in the analyses without GPI.

g(t)(θ(t);Dt) The pseudo-gradient function defined in (33) at point θ(t) with respect to the
dataset Dt.

fπ⋆ or f The population risk function defined in (30).

∇ℓH(θ̂) The gradient of a function H with respect to the components of θℓ at point θ̂.

∇2
ℓH(θ̂) The Hessian matrix of a function H with respect to the components of θℓ at point

θ̂.

Qπi The Q-function of task i for policy π.

Q⋆i The Q-function of task i for the optimal policy π⋆.

q⋆ A constant defined in (80), depending on task relevance ∥wi −wj∥2.

ηt The step size for updating neuron weights Θi for the successor feature.

κt The step size for updating the parameter for the weight mapping.

cN A constant in the order of 1/
√
N .

n The dimension of θ.

nℓ The dimension of vectorized θℓ.

Kℓ The dimension of the input for the ℓ-th layer for the deep neural network. K0 = d.

Jℓ(W ) A function in Rn −→ RK , defined in (39).

Ct The distribution shift between the optimal policy and behavior policy at iteration
t, defined in Assumption (3).

N The size of the experience replay buffer.

ϕmax The upper bound of the transition feature.

ρ1 A constant defined in (84).

ρ2 The smallest eigenvalue of Eϕ(s, a)ϕ(s, a)⊤ ∈ Rd×d.

ϕmax The upper bound of the transition feature.

Lemma 2 ((Tropp, 2012), Theorem 1.6). Consider a finite sequence {Zk} of independent, random
matrices with dimensions d1 × d2. Assume that such random matrix satisfies

E(Zk) = 0 and ∥Zk∥ ≤ R almost surely.

Define

δ2 := max
{∥∥∥∑

k

E(ZkZ∗
k)
∥∥∥,∥∥∥∑

k

E(Z∗
kZk)

∥∥∥}.
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Then for all t ≥ 0, we have

Prob

{∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t

}
≤ (d1 + d2) exp

( −t2/2
δ2 +Rt/3

)
.

Lemma 3 (Lemma 5.2, (Vershynin, 2010)). Let B(0, 1) ∈ {α
∣∣∥α∥2 = 1,α ∈ Rd} denote a

unit ball in Rd. Then, a subset Sξ is called a ξ-net of B(0, 1) if every point z ∈ B(0, 1) can be
approximated to within ξ by some point α ∈ B(0, 1), i.e., ∥z − α∥2 ≤ ξ. Then the minimal
cardinality of a ξ-net Sξ satisfies

|Sξ| ≤ (1 + 2/ξ)d. (42)
Lemma 4 (Lemma 5.3, (Vershynin, 2010)). Let A be an d1 × d2 matrix, and let Sξ(d) be a ξ-net
of B(0, 1) in Rd for some ξ ∈ (0, 1). Then

∥A∥2 ≤ (1− ξ)−1 max
α1∈Sξ(d1),α2∈Sξ(d2)

|αT1 Aα2|. (43)

Lemma 5 (Mean Value Theorem). Let U ⊂ Rn1 be open and f : U −→ Rn2 be continuously
differentiable, and x ∈ U , h ∈ Rn1 vectors such that the line segment x + th, 0 ≤ t ≤ 1 remains
in U . Then we have:

f(x+ h)− f(x) =

(∫ 1

0

∇f(x+ th)dt

)
· h,

where ∇f denotes the Jacobian matrix of f .

A.2 DEFINTIONS OF SUB-GAUSSIAN AND SUB-EXPONENTIAL.

Definition 1 (Definition 5.7, (Vershynin, 2010)). A random variable X is called a sub-Gaussian
random variable if it satisfies

(E|X|p)1/p ≤ c1
√
p (44)

for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2∥X∥2
ψ2
s2 (45)

for all s ∈ R and some constant c2 > 0, where ∥X∥ψ2
is the sub-Gaussian norm of X defined as

∥X∥ψ2 = supp≥1 p
−1/2(E|X|p)1/p.

Moreover, a random vector X ∈ Rd belongs to the sub-Gaussian distribution if one-dimensional
marginal αTX is sub-Gaussian for any α ∈ Rd, and the sub-Gaussian norm of X is defined as
∥X∥ψ2

= sup∥α∥2=1 ∥αTX∥ψ2
.

Definition 2 (Definition 5.13, (Vershynin, 2010)). A random variableX is called a sub-exponential
random variable if it satisfies

(E|X|p)1/p ≤ c3p (46)
for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4∥X∥2
ψ1
s2 (47)

for s ≤ 1/∥X∥ψ1 and some constant c4 > 0, where ∥X∥ψ1 is the sub-exponential norm of X
defined as ∥X∥ψ1

= supp≥1 p
−1(E|X|p)1/p.

B PROOF OF THEOREM 1

Lemma 6 (Local convexity of fπ⋆ ). Given any θ ∈ Rn, let θ satisfy

∥θ − θ⋆∥2 ≲
cN · σK
ρ1 ·K

(48)

for some constant cN ∈ (0, 1). Then, for the fπ⋆ defined in (30), we have

(1− cN )ρ1
K2

⪯ ∇2
ℓfπ⋆(θ) ⪯

7

K
. (49)
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Lemma 7 (Upper bound of the error gradient). Let fπ⋆ be the function defined in (30). Let gt be the
function defined in (33). Then, with probability at least 1− q−Kℓ−1 , we have∥∥∥∇ℓfπ⋆(θ)− gℓ(θ

(t);Dt)
∥∥∥
2
≲

1

Kℓ
· ∥θ − θ⋆∥2 ·

√
Kℓ−1 log q

|Dt|
+

γ

Kℓ
· ∥θ(t) − θ⋆∥2

+
Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆

+ |A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · Ct,

(50)

where τ⋆ = min{t | λνt ≤ ηT }, and ν & λ are defined in Assumption 2.

Lemma 8 (Convergence of w(t)). With probability at least 1− q−d, w enjoys a linear convergence
rate to w⋆ as

∥w(t+1) −w⋆∥2 ≤
(
1− ρ− cN

ϕmax

)
· ∥w(t) −w⋆∥2. (51)

Proof of Theorem 1. From Algorithm 1, the update of θ can be written as

θ(t+1) =θ(t) − ηt · g(t)(θ(t);Dt)
=θ(t) − ηt · ∇f(θ(t)) + ηt ·

(
∇f(θ(t))− g(t)(θ(t);Dt)

)
.

(52)

Since ∇f is a smooth function and θ∗ is a local (global) optimal to f , then we have

∇f(θ(t)) =∇f(θ(t))−∇f(θ⋆)

=

∫ 1

0

∇2f
(
θ(t) + u · (θ(t) − θ⋆)

)
du · (θ(t) − θ⋆),

(53)

where the last equality comes from Mean Value Theory in Lemma 5. For notational convenience,
we use A(t) to denote the integration as

A(t) :=

∫ 1

0

∇2f
(
θ(t) + u · (θ(t) − θ⋆)

)
du. (54)

Then, we have

∥θ(t+1) − θ⋆∥2 ≤∥I − ηtA
(t)∥2 · ∥θ(t) − θ⋆∥2 + ηt · ∥∇f(θ(t))− g(t)(θ(t);Dt)∥2

≤∥I − ηtA
(t)∥2 · ∥θ(t) − θ⋆∥2 + ηt ·

L∑
ℓ=1

∥∥∥∇ℓf(θ
(t))− g(t)(θ

(t)
ℓ ;Dt)

∥∥∥
2
.

(55)

From Lemma 6, we have

∥I − ηtA
(t)∥2 ≤ 1− ηt ·

(1− cN ) · ρ1
K2

. (56)

From Lemma 7, we have∥∥∥∇ℓfπ⋆(θ
(t))− gℓ(θ

(t);Dt)
∥∥∥
2
≲

1

Kℓ
· ∥θ(t) − θ⋆∥2 ·

√
Kℓ−1 log q

|Dt|
+

γ

Kℓ
· ∥θ(t) − θ⋆∥2

+
Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆

+ |A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · Ct.

(57)

With Assumption 3, we have

Ct ≤ C ·
(
∥θ(t) − θ⋆∥2 + ∥w(t) −w⋆∥2

)
.
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When we have a sufficiently large number of samples at iteration t as

|Dt| ≳ c−2
N · ρ−1

1 ·
( L∑
ℓ=1

Kℓ

√
Kℓ−1

)2 · log q, (58)

(55) can be simplified as

∥θ(t+1) − θ⋆∥2 ≤ (1− ηt · ξ) · ∥θ(t) − θ⋆∥2 + ηt ·∆t + ηt · C⋆∥w(t) −w⋆∥2. (59)

where

C⋆ = |A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · C

ξ =
(1− γ − cN )ρ1

K2
− C⋆

∆t =
Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆ .

(60)

Let ηt = 1
ξ·(t+1) , we have

(t+ 1) · ∥θ(t+1) − θ⋆∥2 ≤ t · ∥θ(t) − θ⋆∥2 + ξ−1 ·∆t + ξ−1 · C⋆∥w(t) −w⋆∥2. (61)

Next, we have

T−1∑
t=0

(t+ 1) · ∥θ(t+1) − θ⋆∥2 − t · ∥θ(t) − θ⋆∥2

≤
T−1∑
t=0

ξ−1 · (∆t + C⋆∥w(t) −w⋆∥2).

(62)

With the definition of ∆t in (60), we have

T−1∑
t=0

∆t ≤
τ⋆∑
t=0

∆t +

T−1∑
t=τ⋆

λ−1 ·∆t

≤
τ⋆∑
t=0

τ⋆ · Rmax

1− γ
+

T−1∑
t=τ⋆

·Rmax · (1 + γ)

1− γ
· τ⋆ · 1

T − τ⋆ + 1

≲
Rmax · log2 T

1− γ
+
Rmax · (1 + γ) · log2 T

1− γ
.

(63)

With Lemma 8 that w enjoys a geometric decay, we have

T−1∑
t=0

∥w(t) −w⋆∥2 ≲ ∥w(0) −w⋆∥2. (64)

By multiplying 1/T on both sides of (62), we have

∥θ(T ) − θ⋆∥2 ≤ (2 + γ) ·Rmax · log2 T + C⋆∥w(0) −w⋆∥2
(1− γ − cN )ρ1K−2 − C⋆

· 1
T
. (65)

C PROOFS OF THEOREMS 3 AND 4

Lemma 9. Let Q⋆i be the Q-function for the optimal policy of task i, we have

|Q⋆i −Q⋆j | ≤
1 + γ

1− γ
ϕmax · ∥w⋆

i −w⋆
j ∥2. (66)
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Proof of Theorem 3. For any task j ∈ [n], we have

Q
πn+1

n+1 (s, a)−Q
πj
n+1(s, a) = max

i∈[n]
Q
π⋆i
n+1(s, a)−Q

πj
n+1(s, a)

≥ Q
π⋆j
n+1(s, a)−Q

πj
n+1(s, a)

=
(
ψj(Θ

⋆
j )− ψj(Θ

(T )
j )

)
·w⋆

n+1.

(67)

According to Theorem 1, we have

∥ψj(Θ⋆j )− ψj(Θ
(T )
j )∥2 ≤

(2 + γ) ·Rmax · log2 T + C⋆∥w(0)
j −w⋆

j ∥2
(1− γ − cN )ρ1K−2 − C⋆

· 1
T

:=
C3

T
(68)

Then, we have

T πQ
πj
n+1(s, a) ≥ Q

πj
n+1(s, a)− γ ·

C3∥w⋆
n+1∥2
T

. (69)

Therefore, with the contraction property of the Bellman operator T π , we have

Q
πn+1

n+1 (s, a) = lim
k→∞

(T π)kQ
πj
n+1(s, a)

≥ lim
k→∞

(T π)k−1
(
Q
πj
n+1(s, a)− γ

C3∥w⋆
n+1∥2
T

)
= lim
k→∞

(T π)k−2 · T π
(
Q
πj
n+1(s, a)− γ

C3∥w⋆
n+1∥2
T

)
= lim
k→∞

(T π)k−2 ·
(
T πQ

πj
n+1(s, a)− γ2

C3∥w⋆
n+1∥2
T

)
= lim
k→∞

(T π)k−2
(
Q
πj
n+1(s, a)− γ

C3∥w⋆
n+1∥2
T

− γ2
C3∥w⋆

n+1∥2
T

)
=Q

πj
n+1(s, a)−

∞∑
k=1

γk
C3∥w⋆

n+1∥2
T

=Q
πj
n+1(s, a)−

γ

1− γ

C3∥w⋆
n+1∥2
T

≥Qπ
⋆
j

n+1(s, a)−
C3∥w⋆

n+1∥2
T

− γ

1− γ

C3∥w⋆
n+1∥2
T

=Q
π⋆j
n+1(s, a)−

1

1− γ

C3∥w⋆
n+1∥2
T

(70)

For any policy π⋆j with j ∈ [n], we have

Q⋆n+1(s, a)−Q
πn+1

n+1 (s, a)

=
(
Q⋆n+1(s, a)−Q

π⋆j
n+1(s, a)

)
+

(
Q
π⋆j
n+1(s, a)−Q

πj
n+1(s, a)

)
≤ 2γ

1− γ
·max
s,a

|rn+1(s, a)− rj(s, a)|+
C3∥w⋆

n+1∥2
(1− γ)T

≤ 2γ · ϕmax

1− γ
∥wn+1 −wj∥2 +

C3∥w⋆
n+1∥2

(1− γ)T
.

(71)

Since (71) holds for any j, we have

|Q⋆n+1(s, a)−Q
πn+1

n+1 (s, a)| ≤ 2γ · ϕmax

1− γ
min
j∈[n]

∥wn+1 −wj∥2 +
C3∥w⋆

n+1∥2
(1− γ)T

. (72)

From Lemma 9, we know that

Q
π⋆j
n+1(s, a)−Q

πj
n+1(s, a) ≤

1 + γ

1− γ
·max
s,a

|rn+1(s, a)− rj(s, a)|. (73)
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Similar to (70) to (72), we have

|Q⋆n+1(s, a)−Q
πn+1

n+1 (s, a)| ≤ (1 + γ) · ϕmax

1− γ
min
j∈[n]

∥wn+1 −wj∥2 +
C3∥w⋆

n+1∥2
(1− γ)T

. (74)

Proof of Theorem 4. Let π′
n+1 be generalized policy with DQN via GPI. Similar to (67), we have

Q
π′
n+1

n+1 (s, a)−Q
π′
j

n+1(s, a)

= max
i∈[n]

Q
π⋆i
n+1(s, a)−Q

π′
j

n+1(s, a)

≥ Q
π⋆j
n+1(s, a)−Q

π′
j

n+1(s, a)

= ψj(Θ
⋆
j )w

⋆
n+1 − ψj(Θ

(T )
j )w

(t)
j

≈ ψj(Θ
⋆
j )w

⋆
n+1 − ψj(Θ

(T )
j )w⋆

j

= ψj(Θ
⋆
j )w

⋆
n+1 − ψj(Θ

(T )
j )w⋆

n+1 + ψj(Θ
(T )
j )w⋆

n+1 − ψj(Θ
(T )
j )w⋆

j

≥− ∥Θ⋆j −Θ
(T )
j ∥ · ∥w⋆

n+1∥2 −
1

1− γ
ϕmax · ∥w⋆

n+1 −w⋆
j ∥2.

(75)

Following similar steps in the proof of Theorem 3, we have

|Q⋆n+1(s, a)−Q
π′
n+1

n+1 (s, a)| ≤ (1 + γ) · ϕmax

1− γ
min
j∈[n]

∥wn+1 −wj∥2 +
C3∥w⋆

n+1∥2
(1− γ)T

+
1

1− γ
ϕmax · min

j∈[n]
∥w⋆

n+1 −w⋆
j ∥2

≤2 · ϕmax

1− γ
min
j∈[n]

∥wn+1 −wj∥2 +
C3∥w⋆

n+1∥2
(1− γ)T

.

(76)

D PROOF OF THEOREM 2

Proof of Theorem 2. For task i, let πj be the policy derived from ψj(Θ
(T )
j )w⋆

i with 1 ≤ j ≤ i,

where Θ
(T )
j is the returned neuron weights for the successor feature of task j.

Similar to (74), we have

Q⋆i (s, a)−Q
πj
i (s, a) ≤ (1 + γ) · ϕmax

1− γ
∥wj −wi∥2 +

C3∥w⋆
i ∥2

(1− γ)T
. (77)

Let π′ be the policy derived from ψi(Θ
(t)
i )w⋆

i at iteration t for task i, we have

Q⋆i (s, a)−Qπ
′

i ≤ ∥Θ(t)
i −Θ⋆i ∥2 · ∥w⋆

i ∥2. (78)

Therefore, at iteration t for task i, we have

Ct =|Q⋆i (s, a)−Q
π
(t)
i
i |

≤min
{ (1 + γ) · ϕmax

1− γ
min
1≤j≤i

∥wj −wi∥2 +
C3∥w⋆

i ∥2
(1− γ)T

, ∥Θ(t)
i −Θ⋆i ∥2 · ∥w⋆

i ∥2
}

≲min
{ (1 + γ) · ϕmax

1− γ
min
1≤j≤i

∥wj −wi∥2, ∥Θ(t)
i −Θ⋆i ∥2 · ∥w⋆

i ∥2
}
(As T is sufficiently large)

=min{qt, 1} · ∥Θ(t)
i −Θ⋆i ∥2,

(79)
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where

qt =
(1 + γ)Rmax

1− γ
·
min1≤i≤j−1 ∥w⋆

i −w⋆
j ∥2

∥Θ(t)
j −Θ⋆j∥2

(80)

Following similar steps in (59) in the proof of Theorem 1, with Ct satisfying (79), we have

∥θ(T ) − θ⋆∥2 ≤ 1

T

T−1∑
t=1

(2 + γ) ·Rmax · log2 T + C⋆∥w(0) −w⋆∥2
(1− γ − cN )ρ1K−2 −min{1, qt} · C⋆

· 1
T
. (81)

E ADDITIONAL NUMERICAL EXPERIMENTS

In this section we empirically validate the theoretical results obtained in the previous section, using
synthetic and real-world RL benchmarks.

E.1 SYNTHETIC DATA SETTINGS

Here, we define an MDP that contains two tasks with shared state transition dynamics. The MDP
consists of a state space with |S| = 10, 000, an action space with |A| = 4. For the first task, its
successor feature is parameterized by a deep neural network with the randomly generated neuron
weights Θ⋆1, and w⋆

1 are randomly generated as the corresponding reward mapping. We then gener-
ate ϕ based on (10) with ψ(Θ⋆1). Since ϕ is shared across all tasks, for Task 2, we randomly generate
the reward mapping w⋆

2 and then calculate ψ⋆2 accordingly.

E.2 REAL DATA: REACHER ENVIRONMENT

The reacher environment is a robotic arm manipulation task consisting of a robotic arm with two
joint torque controls. The state space is continuous, and the state features consist of angular displace-
ment and angular velocity of the two joints. The actual action space for the robot arm is continuous
that consists of the torques applied to the two joints, and is discretized for 3 values (for each joint
torque). Thus, the total discretized action space consists of 9 actions (|A| = 9). The discount factor
used is γ = 0.9. Multiple tasks in this environment is defined by goal locations, and the objective of
each task is to move the tip of the robotic arm towards the goal location.

The reward of each task is defined by the distance δ, measured from the tip of the robotic arm to the
corresponding goal location. Specifically, a reward of 1 − δ is given to the agent at each time step.
There are 12 predefined tasks, and ϕ for a given state (common to all 12 tasks) is defined by stacking
the reward for each of the 12 tasks for a given state as a vector. The corresponding reward weights
w⋆
i for i = 1, . . . , 12 are defined by one hot vectors, where the ith element of w⋆

i is 1 and other
elements are 0. Thus, the inner product ϕ⊤w⋆

i naturally recovers the reward for the ith task. For
running experiments with this task, we use the open source code base https://github.com/
mike-gimelfarb/deep-successor-features-for-transfer.git.

We first provide a comparison of the performance of SF-DQN with GPI, SF-DQN without GPI, and
DQN with GPI, in Figure 3a. Here we consider the average transfer performance for four tasks,
after training on a source task. It can be seen that SFDQN with GPI performs better compared to its
no GPI counterpart. Both of these agents perform significantly better compared to DQN with GPI.
hence, this result validates our theoretical results for the performance of these three methods.

Next, we investigate the performance of the SFDQN agent when the target task reward mappings
are not known and learned simultaneously with successor features. We consider varying distances
from the initial target task reward mapping to the true target task reward mapping. The results are
shown in Figure 3b. It can be seen that when the reward mappings are initialized far away from the
true reward mappings, the convergence of the SF-DQN agent is slower compared to that is initialized
closer to the true reward mappings. This aligns with our convergence analysis for the SF-DQN agent
with GPI.
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Figure 3: Experiments on Reacher environment

E.3 ADDITIONAL EXPERIMENTS ON SYNTHETIC RL BENCHMARKS

Effect of ∥w⋆1−w⋆2∥ on knowledge transfer. We investigate the effect of the distance between w⋆
1 to

w⋆
2 , on the transfer performance of the SFDQN. For this purpose, we assume SF-DQN agents have

access to optimal reward mappings when training on Tasks 1 and 2. After obtaining ϕ as described
earlier, we initialize and train Θ2 using ϕ and w⋆

2 , with GPI. Reward defined by ϕ · w⋆2 is used to
obtain the average reward for Task 2. We repeat the process for different choices of w⋆

2 , and the
results are shown in Figure 4. It can be seen that, when the task similarity is low (i.e. ∥w⋆1 − w⋆2∥
is large), the performance of the SF-DQN agent with GPI is poor. On the other hand, when the task
similarity is high, the performance becomes significantly better.
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Figure 4: Effect ∥w⋆1 −w⋆2∥ on the convergence of SF-DQN agent when training on task 2 with GPI

F PROOF OF LEMMAS IN APPENDIX B

F.1 PROOF OF LEMMA 6

Lemma 6 provides the lower and upper bounds for the eigenvalues of the Hessian matrix of popu-
lation risk function in (30). According to Weyl’s inequality in Lemma 1, the eigenvalues of ∇2

ℓf(·)
at any fixed point θ can be bounded in the form of (86). Therefore, we first provide the lower
and upper bounds for ∇2

ℓf at the desired ground truth θ⋆. Then, the bounds for ∇2
ℓf at any other

point θ is bounded through (30) by utilizing the conclusion in Lemma 10. Lemma 10 illustrates
the distance between the Hessian matrix of f at θ and θ∗. Lemma 11 provides the lower bound of
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Ex
(∑K

j=1 α
⊤
j

∂ψ
∂θℓ,k

(θ⋆)
)2

when x belongs to sub-Gaussian distribution, which is used in proving
the lower bound of the Hessian matrix in (87).

Lemma 10. Let f(θ) be the population risk function defined in (30). If θ is close to θ⋆ such that

∥θ − θ⋆∥2 ≲
ρ1
K

(82)

we have

∥∇2
ℓf(θ)−∇2

ℓf(θ
⋆)∥2 ≲

1

K
· ∥θ − θ⋆∥2. (83)

Lemma 11. Suppose the following assumptions hold:

1. {θj}Kj=1 ∈ RKℓ are linear independent,

2. Let p(h) : RKℓ −→ [ 0 1 ] be the probability density for h such that Eh∥h∥22 ≤ +∞.

Let α ∈ RKℓKℓ−1 be the unit vector defined in (36), we have

ρ1 := min
∥α∥2=1

∫
R

( K∑
j=1

α⊤hϕ′(θ⊤ℓ,jh)
)2

pH(h) · dh > 0, (84)

where R ⊂ RKℓ with
∫
R fH(h) > 0. Moreover, if further assuming h belongs to Gaussian distri-

bution, we have ρ1 > 0.091.

Lemma 12. Let h(ℓ)(θ) be the function defined in (37). When θ is sufficiently close to θ⋆, i.e.,
∥θ − θ⋆∥2 is smaller than some positive constant c < 1, we have

∥h(ℓ)(θ)∥2 ≲ ∥x∥2,
∥h(ℓ)(θ)− h(ℓ)(θ⋆)∥2 ≲ ∥θ − θ⋆∥2 · ∥x∥2.

(85)

Proof of Lemma 6. Let λmax(θ) and λmin(θ) denote the largest and smallest eigenvalues of ∇2
ℓf(θ)

at θ, respectively. Then, from Lemma 1, we have

λmax(θ) ≤ λmax(θ
⋆) + ∥∇2

ℓf(θ)−∇2
ℓf(θ

⋆)∥2,
λmin(θ) ≥ λmin(θ

⋆)− ∥∇2
ℓf(θ)−∇2

ℓf(θ
⋆)∥2.

(86)

Then, we provide the lower bound of the Hessian matrix of the population function at θ⋆. Let P be
the distribution for h(ℓ)(θ) when x ∼ µ⋆ with probability density function denoted as pH . For any
α ∈ RKℓK with ∥α∥2 = 1, we have

min
∥α∥2=1

α⊤∇2
ℓf(θ

⋆)α

=
1

K2
min

∥α∥2=1
Eh∼P

( K∑
j=1

α⊤
j h

(ℓ)Jℓ,kϕ′(θ⋆⊤ℓ,j h(ℓ))
)2

=
1

K2
min

∥α∥2=1

∫
RKℓ−1

( K∑
j=1

α⊤
j h

(ℓ)Jℓ,kϕ′(θ⋆⊤ℓ,j h(ℓ))
)2

pH(h(ℓ)) · dh(ℓ)

=
1

K2
min

∥α∥2=1

∫
{h(ℓ)|Jℓ,k ̸=0}

( K∑
j=1

α⊤
j h

(ℓ)ϕ′(θ⋆⊤ℓ,j h
(ℓ))

)2

pH(h(ℓ)) · dh(ℓ)

≳
ρ1
K2

,

(87)

where the last inequality comes from Lemma 11, and Lemma 11 holds since h(ℓ) belongs to sub-
Gaussian distribution and θℓ is full rank.
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Next, the upper bound of ∇2
ℓf can be bounded as

max
∥α∥2=1

α⊤∇2
ℓf(θ

⋆)α

=
1

K2
max

∥α∥2=1
Ex

( K∑
j=1

α⊤
j h

(ℓ) · Jℓ,kϕ′(θ⋆⊤ℓ,j h(ℓ))
)2

=
1

K2
max

∥α∥2=1
Ex

K∑
j1=1

K∑
j2=1

α⊤
j1h

(ℓ) · Jℓ,kϕ′(θ⋆⊤ℓ,j1h
(ℓ)) ·α⊤

j2h
(ℓ) · Jℓ,kϕ′(θ⋆⊤ℓ,j2h

(ℓ))

=
1

K2

K∑
j1=1

K∑
j2=1

Exα⊤
j1h

(ℓ) · Jℓ,kϕ′(θ⋆Tℓ,j1h
(ℓ)) ·α⊤

j2h
(ℓ) · Jℓ,kϕ′(θ⋆⊤ℓ,j2h

(ℓ))

≤ 1

K2
max

∥α∥2=1

K∑
j1=1

K∑
j2=1

[
Ex(α⊤

j1h
(ℓ))4 · E(ϕ′(θ⋆⊤ℓ,j1h

(ℓ)))4 · Ex(α⊤
j2h

(ℓ))4 · Ex(ϕ′(θ⋆⊤ℓ,j2h
(ℓ)))4

]1/4
≤ 1

K2
max

∥α∥2=1

K∑
j1=1

K∑
j2=1

[
Ex(α⊤

j1x)
4 · Ex(α⊤

j2x)
4
]1/4

≤ 3

K2

K∑
j1=1

K∑
j2=1

∥αj1∥2 · ∥αj2∥2 ≤ 6

K2

K∑
j1=1

K∑
j2=1

1

2

(
∥αj1∥22 + ∥αj2∥22

)
=

6

K
.

(88)

Therefore, we have

λmax(θ
⋆) = max

∥α∥2=1
α⊤∇2

ℓf(θ
⋆; p)α ≤ 6

K
. (89)

Then, given (82), we have

∥θ − θ⋆∥2 ≲
2ρ1
K

. (90)

Combining (90) and Lemma 10, we have

∥∇2
ℓf(θ)−∇2

ℓf(θ
⋆)∥2 ≲

ρ1
K2

. (91)

Therefore, from (91) and (86), we have

λmax(θ) ≤ λmax(θ
⋆) + ∥∇2

ℓf(θ)−∇2
ℓf(θ

⋆)∥2 ≤ 6

K
+

ρ1
2K2

≤ 7

K
,

λmin(θ) ≥ λmin(θ
⋆)− ∥∇2

ℓf(θ)−∇2
ℓf(θ

⋆)∥2 ≥ ρ1
K2

− ρ1
2K2

=
ρ1
2K2

,
(92)

which completes the proof.

F.2 PROOF OF LEMMA 7

The error bound between ∥∇ℓf − gt∥2 is divided into bounding I1, I2, I3, and I4 as shown in
(98). I1 represents the deviation of the gradient of Dt to their expectation, which can be bounded
through concentration inequality. I2 is derived from the distribution shift between the trajectory
and its stationary distribution, which can be bounded with assumption 2. I3 come from the data
distribution shift between the behavior policy and optimal policy. I4 comes from the inconsistency
of the "noisy" label and the "ground truth" label in the population risk function (30). To ensure a
smooth presentation, we will defer the proof of I1 − I4 until we have completed the main proof of
Lemma 7.
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Proof of Lemma 7. From (33), we know that

g(t)(θ
(t)
ℓ,k;Xm)

=
∑
m∈Dt

(
ψ(θ(t); sm, am)− y(t)m

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k

=
∑
m∈Dt

(
ψ(θ(t); sm, am)− ϕ(θ⋆; sm, am)− γ · ψ(s′m, a′m; θ(t))

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k

=
∑
m∈Dt

(
ψ(θ(t,n); sm, am)− ψ(θ⋆; sm, am) + γ ·max

a′
ψ(s′m, a

′; θ⋆)

− γ · ψ(s′m, a′m; θ(t))
)
· ∂ψ(θ

(t,n);Xm)

∂θℓ,k

=
∑
m∈Dt

(
ψ(θ(t); sm, am)− ψ(θ⋆; sm, am)

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k

+ γ ·
(
max
a′

ψ(s′m, a
′; θ⋆)− ψ(s′m, a

′
m; θ(t))

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k

:=
∑
m∈Dt

b
(t)
ℓ,k(θ

(t);Xm) + ∆b
(t)
ℓ,k(θ

(t);Xm),

(93)

where we have

b
(t)
ℓ,k(θ

(t);Xm) =
(
ψ(θ(t); sm, am)− ψ(θ⋆; sm, am)

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k
(94)

and

∆b
(t)
ℓ,k(θ

(t);Xm) =
(
max
a′

ψ(θ⋆; s′m, a
′)− ψ(θ(t−1); s′m, a

′
m)

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k
. (95)

Then, let us define b̄(t)ℓ,k as

b̄
(t)
ℓ,k(θ;X ) = E(s,a)∼µt

(
ψ(θ; s, a)− ψ(θ⋆; s, a)

)
· ∇θψ(θ; s, a). (96)

From (30), we know that

∂fπ⋆

∂θℓ,k
(θ(t)) = E(s,a)∼µ⋆

(
ϕ(θ(t); s, a)− ϕ(θ⋆; s, a)

)
· ∂ϕ(θ

(t); s, a)

∂θℓ,k
. (97)

Then, from (93) and (97), we have

g(t)(θ
(t)
ℓ,k;Xm)− ∂fπ⋆

∂θℓ,k
(θ(t);Xm)

=
∑
m∈Dt

b
(t)
ℓ,k(θ

(t);Xm) + ∆b
(t)
ℓ,k(θ

(t);Xm)− ∂fπ⋆

∂θℓ,k
(θ(t);Xm)

=

[
b
(t)
ℓ,k(θ

(t)
ℓ,k;Xm)− EXm∼Dt b

(t)
ℓ,k(θ

(t)
ℓ,k;Xm)

]
+

[
EXm∼Dt b

(t)
ℓ,k(θ

(t);Xm)− b̄
(t)
ℓ,k(θ

(t);Xm)

]
+

[
b̄
(t)
ℓ,k(θ

(t))− ∂fπ⋆

∂θℓ,k
(θ(t))

]
+ EXm∼Dt∆b

(t)
ℓ,k(θ

(t);Xm)

:=I1 + I2 + I3 + I4.
(98)

Therefore, we have∥∥∥g(t)(θ(t)ℓ,k;Xm)− ∂fπ⋆

∂θℓ,k
(θ(t))

∥∥∥
2
≤ ∥I1∥2 + ∥I2∥2 + ∥I3∥2 + ∥I4∥2. (99)
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Next, we first provide the bound for ∥I1∥2, ∥I2∥2, ∥I3∥2, and ∥I4∥2 as

∥I1∥2 ≤ 1

Kℓ
· ∥θ − θ⋆∥2 ·

√
d log q

|Dt|
,

∥I2∥2 ≤ Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆ ,

∥I3∥2 ≤ |A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · Ct,

∥I4∥2 ≤ γ

Kℓ
· ∥θ(t − θ⋆∥2,

(100)

where |A| is the size of action space. The details for the derivation of I1- I4 can be found after the
proof.

Let α ∈ RKd and αj ∈ Rd with α = [αT1 ,α
T
2 , · · · ,αTK ]T , with probability at least 1 − q−d, we

have

∥g(t)(θℓ; θ)−∇ℓfπ⋆(θ)∥22 =
∣∣∣αT (g(t)(θ)−∇fπ⋆(θ)

)∣∣∣2
≤

K∑
k=1

∣∣∣αTk (g(t)(θℓ,k; θ)− ∂fπ⋆

∂θℓ,k
(θ)

)∣∣∣2
≤

K∑
k=1

∥∥∥g(t)(θℓ,k; θ)− ∂fπ⋆

∂θℓ,k
(θ)

∥∥∥2
2
· ∥αk∥22

≤max
k

∥∥∥g(t)(θℓ,k; θ)− ∂fπ⋆

∂θℓ,k
(θ)

∥∥∥2
2
.

(101)

In conclusion, we have

∥g(t)(θℓ; θ)−∇ℓfπ⋆(θ)∥2

≤max
k

∥∥∥g(t)(θℓ,k; θ)− ∂fπ⋆

∂θℓ,k
(θ)

∥∥∥2
2

≤max
k

∥I1(k)∥2 + ∥I2(k)∥2 + ∥I3(k)∥2 + ∥I4(k)∥2

≤ 1

Kℓ
· ∥θ − θ⋆∥2 ·

√
d log q

|Dt|
+
Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆

+ |A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · Ct +

γ

Kℓ
· ∥θ(t) − θ⋆∥2,

(102)

where τ⋆ = min{t | λνt ≤ ηT }

F.2.1 PROOF OF UPPER BOUND OF I1

Proof. We define a random variable

Z(ℓ)(k) =
(
ψ(θ; s, a)− ψ(θ⋆; s, a)

)
· Jℓ,k ·αTh(ℓ)(θ)

with (s, a) ∼ Dt and

Z(ℓ)
m (k) =

(
Q(xm; θ)−Q(xm; θ⋆)

)
· Jℓ,k ·αTh(ℓ)

n (θ)

as the realization of Z(ℓ) for m ∈ Dt, where α is any fixed unit vector.

According to the definition of I1 in (98), we can rewrite I1 as

I1 =
1

Kℓ

[ ∑
m∈Dt

Z(ℓ)
m (k)− E(s,a)∼DtZ

(ℓ)(k)
]
. (103)
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Then, for any p ∈ N+, we have(
E|Z(ℓ)|p

)1/p
=
(
EX∼Dt |ψ(θ; s, a)− ψ(θ⋆; s, a)|p · |Jℓ,kσ′(w⊤

ℓ,kx)| · |αTh(ℓ)|p
)1/p

≤
(
EX∼Dt,1 |ψ(θ; s, a)− ψ(θ⋆; s, a)|p · |αTh(ℓ)|p

)1/p

≤
(
EX∼Dt

∣∣∣∥θ − θ⋆∥2 · ∥x(s, a)∥2
∣∣∣p · ∣∣αTx(s, a)∣∣p)1/p

≲ · ∥θ − θ⋆∥2 · p.

(104)

From Definition 2, we know that Z(ℓ) belongs to sub-exponential distribution with ∥Z(ℓ)∥ψ1
≲

∥θ − θ⋆∥2. Therefore, by Chernoff inequality, for any s ∈ R, we have

P
{∣∣∣ 1

|Dt|
∑
m∈Dt

Z(ℓ)
m (k)− EZ(ℓ)(k)

∣∣∣ < t

}
≤ 1− e−(∥θ−θ⋆∥2)

2·|Dt|·s2

e|Dt|·st
. (105)

Let t = ∥θ−θ⋆∥2
√

d log q
N and s = 2

∥θ−θ⋆∥2
·t for some large constant q > 0. Then, with probability

at least 1− q−d, we have∣∣∣ 1

|Dt|
∑
m∈Dt

Z(ℓ)
m (k)− EZ(ℓ)(k)

∣∣∣ ≲ ∥θ − θ⋆∥2 ·

√
d log q

|Dt|
. (106)

From Lemma 4 and (103), with probability at least 1− |S 1
2
(d)| · q−d, we have

∥I1∥2 ≤ 2 · 1

Kℓ

∣∣∣∣∣ 1

|Dt|
∑
m∈Dt

Z(ℓ)
m − EZ(ℓ)

∣∣∣∣∣ ≲ 1

Kℓ
∥θ − θ⋆∥2 ·

√
d log q

|Dt|
. (107)

From Lemma 3, we know that |S 1
2
(d)| ≤ 5d. Therefore, the probability for (107) holds is at least

1−
(
q
5

)−d
. Because q ≫ 5, we denote the probability as 1− q−d for convenience.

F.2.2 PROOF OF UPPER BOUND OF I2

Proof. I2 is the bias of the data because the data (s, a) at iteration t depends on the neural network
parameters θ(t). Recall the definition of b(t)ℓ,k and b̄(t)ℓ,k, we define

∆t = b
(t)
ℓ,k(θ

(t);Xm)− b̄
(t)
ℓ,k(θ

(t);Xm). (108)

It is easy to verify that

∥b(t)ℓ,k(θ;Xm)− b
(t)
ℓ,k(θ̃;Xm)∥2 ≤ (1 + γ) · ∥θ − θ̃∥2,

∥b̄(t)ℓ,k(θ;Xm)− b̄
(t)
ℓ,k(θ̃;Xm)∥2 ≤ (1 + γ) · ∥θ − θ̃∥2,

and ∥b(t)ℓ,k∥ ≲
Rmax

1− γ
.

(109)

Then, we have
∆t(θ)−∆t(θ̃) ≲ (1 + γ) · ∥θ − θ̃∥2. (110)

Therefore, we have

∆t(θ
(t)) ≤ ∆t(θ

(t−τ)) +
1 + γ

1− γ
·Rmax ·

t−1∑
i=t−τ

ηi. (111)

Then, we need to bound δt(θ(t−τ)).

Let us define the observed tuple Ot(s, a, s′) as the collection of the state, action, and the next state
at the t-th iteration. Note that

θ(t−τ) −→ st−τ −→ st −→ Ot (112)
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forms a Markov chain introduced by the policy πt.

Let θ̃(t−τ,0) and Õt be independently drawn from the marginal distributions of θ(t−τ,0) and Ot,
respectively.

With Lemma 9 in Bhandari et al. (2018), we have

E ∆t(θ
(t−τ), Ot)− E ∆t(θ̃

(t−τ), Õt) ≲ 2 sup
θ,O

|∆t(θ,O)| · λ · ντ . (113)

By definition, we have E ∆m(θ̃(t−τ), Õt) = 0 and

|∆t(θ,O)| ≤ 2 Rmax

1− γ
. (114)

Therefore, we have

E∆t(θ
(t)) ≤E∆t(θ

(t−τ)) +
1 + γ

1− γ
·Rmax ·

t−1∑
i=t−τ

ηi

≤Rmax

1− γ

(
λ · ντ + (1 + γ) · τ · ηt−τ

)
,

(115)

where the last inequality comes from the fact that the step size ηm is non-increasing.

Choose τ⋆ = min
{
t = 0, 1, 2, · · · | λντ ≤ ηT

}
. When t ≤ τ⋆, we choose τ = t and have

E∆t(θ
(t)) ≤ Rmax

1− γ
· τ⋆ · η0. (116)

When n > τ⋆, we can choose τ = τ⋆ and obtain

E∆t(θ
(t)) ≤ Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆ . (117)

Combining (116) and (117), we have

|I2| ≤
Rmax

1− γ
· (1 + γ)τ⋆ · ηmax{0,t−τ⋆}, (118)

where τ⋆ = min{t | λνt ≤ ηT }.

F.2.3 PROOF OF BOUND OF I3

Proof. We have

I3 =b̄
(t)
ℓ,k(θ

(t))− ∂fπ⋆

∂θℓ,k
(θ(t))

=E(s,a)∼µt

(
ψ(θ; s, a)− ψ(θ⋆; s, a)

)
· ∂ψ(θ; s, a)

∂θℓ,k

− E(s,a)∼µ⋆
(
ψ(θ; s, a)− ψ(θ⋆; s, a)

)
· ∂ψ(θ; s, a)

∂θℓ,k

=E(s,a)∼µt

(
ψ(θ; s, a)− r(s, a)− γ · Es′∼pa

s,s′
max
a′

ψ(θ⋆; s′, a′)
)
· ∂ψ(θ; s, a)

∂θℓ,k

− E(s,a)∼µ⋆
(
ψ(θ; s, a)− r(s, a)− γ · Es′∼pa

s,s′
max
a′

ψ(θ⋆; s′, a′)
)
· ∂ψ(θ; s, a)

∂θℓ,k

=E(s,a)∼µt,s′∼pas,s′

(
ψ(θ; s, a)− r(s, a)− γ ·max

a′
ψ(θ⋆; s′, a′)

)
· ∂ψ(θ; s, a)

∂θℓ,k

− E(s,a)∼µ⋆,s′∼pa
s,s′

(
ψ(θ; s, a)− r(s, a)− γ ·max

a′
ψ(θ⋆; s′, a′)

)
· ∂ψ(θ; s, a)

∂θℓ,k

(119)
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Then, we have∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt(ds, da)P(ds′|s, a)

)∣∣∣
=
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)π⋆(da|s)P(ds′|s, a)− Pt(ds)πt(da|ds)P(ds′|s, a)

)∣∣∣
≤
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)− Pt(ds)

)
π⋆(da|s)P(ds′|s, a)

∣∣∣
+
∣∣∣ ∫

(s,a)

∫
s′
Pt(ds)

(
πt(da|ds)− π⋆(da|ds)

)
P(ds′|s, a)

∣∣∣.
(120)

From Theorem 3.1 in Mitrophanov (2005), we know that∣∣∣ ∫
(s,a)

(
P⋆(ds)− Pt(ds)

)∣∣∣ ≤ |A|(logν λ−1 +
1

1− ν
)Ct

and
∥∥πt(da|ds)− π⋆(da|ds)

∥∥ ≤ Ct.

(121)

Therefore, the bound of I3 can be found as

∥I3∥2 ≤ Rmax

1− γ
· |A| · Ct · (1 + logν λ

−1 +
1

1− ν
)

=|A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · Ct.

(122)

F.2.4 PROOF OF BOUND OF I4

Proof. We have

∥I4∥ =∥∆b(t)ℓ,k(θ
(t);Xm)∥2

=max
s,a

γ ·
(
max
a′

ψ(s′m, a
′; θ⋆)− ψ(s′m, a

′
m; θ(t))

)
·
∥∥∥∂ψ(θ(t);Xm)

∂θℓ,k

∥∥∥
2

≤max
s,a

γ ·
(
max
a′

ψ(s′m, a
′; θ⋆)−max

a′
ψ(s′m, a

′; θ(t))
)
·
∥∥∥∂ψ(θ(t);Xm)

∂θℓ,k

∥∥∥
2

≤γ · max
s,a,a′

∣∣∣ψ(s′m, a′; θ⋆)− ψ(s′m, a
′; θ(t))

∣∣∣ · ∥∥∥∂ψ(θ(t);Xm)

∂θℓ,k

∥∥∥
2

≲γ · ∥θ(t) − θ⋆∥2 ·
1

Kℓ

≤ γ

Kℓ
∥θ(t) − θ⋆∥2.

(123)

F.3 PROOF OF LEAMMA 8

Proof of Lemma 8. From the update rule of w in Algorithm 1, we have

w(t+1) −w⋆ =w(t) −w⋆ − κt ·
∑
m∈Dt

(ϕ⊤mw(t) − rm) · ϕm

=w(t) −w⋆ − κt ·
∑
m∈Dt

(ϕ⊤mw(t) − ϕmw⋆) · ϕm

=
(
I − κt

∑
m∈Dm

ϕ⊤mϕm

)
· (w(t) −w⋆).

(124)
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For any unit vector α ∈ dim(w), we have

|α⊤EDtϕ
⊤ϕα| ≤ max

∥ϕ∥2

|α⊤ϕ|2 ≤ ϕ2max,

|α⊤EDtϕ
⊤ϕα| ≥ |α⊤ϕmin|2 ≥ 0.

(125)

Also, it is easy to verify that |α⊤EDtϕ
⊤ϕα| = 0 if only and if ϕm are all parallel to each other. As

ϕm does not parallel to each other, let ρ2 > 0 denote the minimal eigenvalue of EDtϕ
⊤ϕ.

Given ϕ is bounded, ϕ belongs to the sub-Gaussian distribution. Similar to (106), with Chebyshev’s
inequality, we have ∥∥∥∥∥ ∑

m∈Dm

ϕ⊤mϕm − EDtϕ
⊤ϕ

∥∥∥∥∥
2

≤

√
d log q

|Dt|
(126)

with probability at least 1− d−q . Let N ≥ c−2
N d log q, according to Lemma 1, we have

λmin(
∑

m∈Dm

ϕ⊤mϕm) ≤ λmin(EDtϕ
⊤ϕ)− cN ≤ ρ2 − cN . (127)

When we choose κt = 1
ϕmax

, we have

∥w(t+1) −w⋆∥2 ≤
(
1− ρ2 − cN

ϕmax

)
· ∥w(t) −w⋆∥2. (128)

G PROOF OF LEMMAS IN APPENDIX C

Lemma 13. We have∣∣Qπ⋆ii (s, a)−Q
π⋆j
i (s, a)

∣∣ ≤ 2γ

1− γ
·max
s,a

|ri(s, a)− rj(s, a)|. (129)

Proof.
∣∣Qπ⋆ii (s, a)−Q

π⋆j
i (s, a)

∣∣ can be upper bounded as∣∣Qπ⋆ii (s, a)−Q
π⋆j
i (s, a)

∣∣
=
∣∣∣ri + γ ·

∑
s′

pas,s′Q
π⋆i
i

(
s′, π⋆i (s

′)
)
−

(
ri + γ ·

∑
s′

pas,s′Q
π⋆j
i

(
s′, π⋆j (s

′)
))∣∣∣

=γ ·
∣∣∣∑
s′

pas,s′Q
π⋆i
i

(
s′, π⋆i (s

′)
)
−
∑
s′

pas,s′Q
π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣

≤γ ·
∑
s′

pas,s′ ·
∣∣∣Qπ⋆ii (

s′, π⋆i (s
′)
)
−Q

π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣

≤γ ·
∑
s′

pas,s′ ·
[∣∣∣Qπ⋆ii (

s′, π⋆i (s
′)
)
−Q

π⋆j
j

(
s′, π⋆j (s

′)
)∣∣∣+ ∣∣∣Qπ⋆jj (

s′, π⋆j (s
′)
)
−Q

π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣]

=γ ·
∑
s′

pas,s′ ·
[∣∣∣max

a′
Q
π⋆i
i

(
s′, a′

)
−max

a′
Q
π⋆j
j

(
s′, a′

)∣∣∣+ ∣∣∣Qπ⋆jj (
s′, π⋆j (s

′)
)
−Q

π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣]

≤γ ·
∑
s′

pas,s′ ·
[
max
a′

∣∣∣Qπ⋆ii (
s′, a′

)
−Q

π⋆j
j

(
s′, a′

)∣∣∣+ ∣∣∣Qπ⋆jj (
s′, π⋆j (s

′)
)
−Q

π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣]

≤γ ·
∑
s′

pas,s′ ·
[
max
s′,a′

∣∣∣Qπ⋆ii (
s′, a′

)
−Q

π⋆j
j

(
s′, a′

)∣∣∣+max
s′

∣∣∣Qπ⋆jj (
s′, π⋆j (s

′)
)
−Q

π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣]

(130)

Let
I5 = max

s,a

∣∣∣Qπ⋆ii (
s, a

)
−Q

π⋆j
j

(
s, a

)∣∣∣
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and
I6 = max

s,a

∣∣∣Qπ⋆jj (
s, a

)
−Q

π⋆j
i

(
s, a

)∣∣∣ ≥ max
s

∣∣∣Qπ⋆jj (
s, π⋆j (s)

)
−Q

π⋆j
i

(
s, π⋆j (s)

)∣∣∣.
Then, we have

I5 =max
s,a

∣∣∣ri + γ ·
∑
s′

pas,s′ max
a′

Q
π⋆i
i (s′, a′)− rj − γ ·

∑
s′

pas,s′ max
a′

Q
π⋆j
j (s′, a′)

∣∣∣
≤max

s,a
|ri(s, a)− rj(s, a)|+ γmax

s,a

∑
s′

pas,s′ ·max
a′

|Qπ
⋆
i
i (s′, a′)−Q

π⋆j
j (s′, a′)|

≤max
s,a

|ri(s, a)− rj(s, a)|+ γ · I5.

(131)

Therefore, we have

I5 ≤ 1

1− γ
max
s,a

|ri(s, a)− rj(s, a)|. (132)

Similar to (131), we have

I6 ≤max
s,a

|ri(s, a)− rj(s, a)|+ γmax
s,a

∑
s′

pas,s′ · |Q
π⋆j
j (s′, π⋆j (s

′))−Q
π⋆j
i (s′, π⋆j (s

′))|

≤max
s,a

|ri(s, a)− rj(s, a)|+ γ · I6.
(133)

Therefore, we have

I6 ≤ 1

1− γ
max
s,a

|ri(s, a)− rj(s, a)|. (134)

Therefore, we have∣∣Qπ⋆ii (s, a)−Q
π⋆i
j (s, a)

∣∣ ≤ γ(I5 + I6) ≤
2γ

1− γ
·max
s,a

|ri(s, a)− rj(s, a)|. (135)

H ADDITIONAL PROOF OF THE LEMMAS

H.1 PROOF OF LEMMA 10

The distance of the second order derivatives of the population risk function f(·) at point θ and θ⋆
can be converted into bounding P1, P2, which are defined in (137). The major idea in proving P1

is to connect the error bound to the angle between θ and θ⋆ given h(ℓ) belongs to the sub-Gaussian
distribution.

Proof of Lemma 10. From the definition of f in (30), we have
∂2f

∂θℓ,j1∂θℓ,j2
(θ⋆) =

1

K2
ExJℓ,kσ′(θ⋆⊤j1 h) · Jℓ,kσ′(θ⋆⊤j2 h) · h⋆h⋆⊤,

and
∂2f

∂θℓ,j1∂θℓ,j2
(θ) =

1

K2
Exσ′J ⋆

ℓ,k(θ
⊤
ℓ,j1h) · J

⋆
ℓ,kσ

′(θ⊤ℓ,j2h) · hh
⊤,

(136)

where h = h(ℓ)(θ) and h⋆ = h(ℓ)(θ⋆).

Then, we have
∂2f

∂θℓ,j1∂θℓ,j2
(θ∗)− ∂2f

∂θℓ,j1∂θℓ,j2
(θ)

=
1

K2
Ex

[
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j1h
⋆)J ⋆

ℓ,kσ
′(θ⋆Tℓ,j2h

⋆)h⋆h⋆⊤

− Jℓ,kσ′(θ⊤ℓ,j1h)Jℓ,kJℓ,kσ
′(θ⊤ℓ,j2h)hh

⊤]
=

1

K2
Ex

[
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j1h
⋆)
(
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j2h
⋆)h⋆h⋆⊤ − Jℓ,kσ′(θ⊤ℓ,j2h)hh

⊤)
+ Jℓ,kσ′(θ⊤ℓ,j2h)

(
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j1h)h
⋆h⋆⊤ − Jℓ,kσ′(θ⊤ℓ,j1h)hh

⊤)]
:=

1

K2
(P1 + P2).

(137)
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For any a ∈ RKℓ with ∥a∥2 = 1, we have

a⊤P1a =ExJ ⋆
ℓ,kσ

′(θ⋆Tℓ,j1h
⋆)
(
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j2h
⋆)(a⊤h⋆)2 − Jℓ,kσ′(θ⊤ℓ,j2h)(a

⊤h)2
)
. (138)

Then, we have

|a⊤P1a| =
∣∣∣ExJ ⋆

ℓ,kσ
′(θ⋆Tℓ,j1h

⋆)
(
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j2h
⋆)(a⊤h⋆)2 − Jℓ,kσ′(θ⊤ℓ,j2h)(a

⊤h)2
)∣∣∣

≤Ex
∣∣∣J ⋆
ℓ,kσ

′(θ⋆Tℓ,j2h
⋆)(a⊤h⋆)2 − Jℓ,kσ′(θ⊤ℓ,j2h)(a

⊤h)2
∣∣∣

≤Ex
∣∣∣J ⋆
ℓ,kσ

′(θ⋆Tℓ,j2h
⋆)(a⊤h⋆)2 − J ⋆

ℓ,kσ
′(θ⋆⊤ℓ,j2h

⋆)(a⊤h)2
∣∣∣

+ Ex
∣∣∣J ⋆
ℓ,kσ

′(θ⋆⊤ℓ,j2h
⋆)(a⊤h)2 − Jℓ,kσ′(θ⋆⊤ℓ,j2h)(a

⊤h)2
∣∣∣

+ Ex
∣∣∣Jℓ,kσ′(θ⋆⊤ℓ,j2h)(a

⊤h)2 − Jℓ,kσ′(θ⊤ℓ,j2h)(a
⊤h)2

∣∣∣
≲∥θ − θ⋆∥2 + ∥θ − θ⋆∥2 + Ex

∣∣∣(σ′(θ⋆⊤ℓ,j2h)− σ′(θ⋆⊤ℓ,j2h)
)
· (a⊤h)2

∣∣∣
≲∥θ − θ⋆∥2 + Ex

∣∣∣(σ′(θ⋆⊤ℓ,j2h)− σ′(θ⋆⊤ℓ,j2h)
)
· (a⊤h)2

∣∣∣.

(139)

Utilizing the Gram-Schmidt process, we can demonstrate the existence of a set of normalized or-
thonormal vectors denoted as B = {a, b, c,a⊥

4 , · · · ,a⊥
d } ∈ Rd. This set forms an orthogonal and

normalized basis for Rd, wherein the subspace spanned by a, b, c includes a, θℓ,j2 , and θ∗ℓ,j2 . Then,
for any x ∈ Rd, we have a unique z = [z1, z2, · · · , zd]⊤ such that

h = z1a+ z2b+ z3c+ · · ·+ zda
⊥
d .

Because (i) a, θℓ,j2 , and θ∗ℓ,j2 belongs to the subspace spanned by vectors {a, b, c} and (ii)
a⊥
4 , · · · ,a⊥

d , · · · are orthogonal to a, b, and c. Then, we know that

θ⋆⊤ℓ,j2h =θ⋆⊤ℓ,j2(z1a+ z2b+ z3c+ · · ·+ zda
⊥
d )

=z1θ
⋆⊤
ℓ,j2a+ z2θ

⋆⊤
ℓ,j2b+ z3θ

⋆⊤
ℓ,j2c+ · · ·+ zdθ

⋆⊤
ℓ,j2a

⊥
d

=z1θ
⋆⊤
ℓ,j2a+ z2θ

⋆⊤
ℓ,j2b+ z3θ

⋆⊤
ℓ,j2c+ 0

=θ⋆⊤ℓ,j2(z1a+ z2b+ z3c)

:=θ⋆⊤ℓ,j2h̃.

(140)

where h̃ = z1a+ z2b+ z3c. Similar to (140), we have θ⊤ℓ,j2h = θ⊤ℓ,j2h̃ and a⊤h = a⊤h̃.

Then, we define I4 as

I4 :=Eh
∣∣∣(σ′(θ⋆⊤ℓ,j2h)− σ′(θ⊤ℓ,j2h)

)
·
(
a⊤h

)∣∣∣
=

∫
Rh

|σ′(θ⊤ℓ,j2h)− σ′(θ⋆Tℓ,j2h)| · |a⊤h|2 · fH(h)dh

=

∫
Rz

|σ′(θ⊤ℓ,j2h)− σ′(θ⋆Tℓ,j2h)| · |a⊤h|2 · fZ(z) · |Jh(z)|dz

(141)

where |Jh(z)| is the determinant of the Jacobian matrix ∂h
∂z . Since z is a representation of h based

on an orthogonal and normalized basis, we have |Jh(z)| = 1. According to (140), I4 can be
rewritten as

I4 =

∫
Rz

|σ′(θ⊤ℓ,j2h̃)− σ′(θ⋆Tℓ,j2h̃)| · |a⊤h̃|2 · fZ(z)dz

=

∫
Rz

|σ′(θ⊤ℓ,j2h̃)− σ′(θ⋆Tℓ,j2h̃)| · |a⊤h̃|2 · fZ(z1, z2, z3)dz1dz2dz3
(142)

where in the last equality we abuse fZ(z1, z2, z3) to represent the probability density function of
(z1, z2, z3) defined in region Rz .
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Next, we show that z is rotational invariant over Rz . Let R = [a b c · · · a⊥
d ], we have h = Rz.

For any z(1) and z(2) with ∥z(1)∥2 = ∥z(2)∥2. We define h(1) = Rz(1) and h(2) = Rz(2). Since
x is rotational invariant and ∥h(1)∥2 = ∥h(2)∥2 = ∥z(1)∥2 = ∥z(2)∥2, then we know h(1) and
h(2) has the same distribution density. Then, z(1) and z(2) has the same distribution density as well.
Therefore, z is rotational invariant over Rz .

Then, we consider spherical coordinates with z1 = Rcosσ1, z2 =
Rsinσ1sinσ2, z3 = Rsinσ1cosσ2. Hence, we have

I4 =

∫
|σ′(θ⊤ℓ,j2h̃)− σ′(θ⋆⊤ℓ,j2h̃)| · |R cosσ1|2 · fZ(R, σ1, σ2) ·R2 sinσ1 · dRdσ1dσ2. (143)

Since z is rotational invariant, we have that

fZ(R, σ1, σ2) = fZ(R). (144)

Then, we have

I4 =

∫
|σ′(θ⊤ℓ,j2(h̃/R))− σ′(θ⋆Tℓ,j2(h̃/R))| · |R cosσ1|2 · fZ(R)R2 sinσ1dRdσ1dσ2

=

∫ ∞

0

R4fz(R)dR

∫ ψ1(R)

0

∫ ψ2(R)

0

| cosσ1|2 · sinσ1

· |σ′(θ⊤ℓ,j2(h̃/R))− σ′(θ⋆Tℓ,j2(h̃/R))|dσ1dσ2
≤
∫ ∞

0

R4fz(R)dR

∫ π

0

∫ 2π

0

sinσ1 · |σ′(θ⊤ℓ,j2 x̄)− σ′(θ⋆Tℓ,j2 x̄)|dσ1dσ2,
(145)

where the first equality holds because σ′(θ⊤i,,j2h) only depends on the direction of h, and x̄ :=
h/R = (cosσ1, sinσ1 sinσ2, sinσ1 cosσ2) in the last inequality.

Because z belongs to the sub-Gaussian distribution, we have Fz(R) ≥ 1−2e−
R2

σ2 for some constant
σ > 0. Then, the integration of R can be represented as∫ ∞

0

R4fZ(R)dR =

∫ ∞

0

R4d
(
1− Fz(R)

)
≤
∫ ∞

0

4R3
(
1− Fz(R)

)
dR

≤
∫ ∞

0

8R3e−
R2

σ2 dR

≤ 32√
2π
σ

∫ ∞

0

R2e−
R2

σ2 dR

=32σ2

∫ ∞

0

R2 1√
2πσ2

e−
R2

σ2 dR,

(146)

where the last inequality comes from the calculation that∫ ∞

0

2R2e−
R2

σ2 dR =
√
2πσ3,∫ ∞

0

2R3e−
R2

σ2 dR = 4σ4.

(147)

Then, we define x̃ ∈ RKℓ belongs to Gaussian distribution as x̃ ∼ N (0, σ2I). Therefore, we have

I4 ≤ 32σ2 ·
∫ ∞

0

R2 1√
2πσ2

e−
R2

σ2 dR

∫ π

0

∫ 2π

0

sinσ1 · |σ′(θ⊤ℓ,j2 x̄)− σ′(θ⋆⊤ℓ,j2 x̄)|dσ1dσ2
= 32σ2 · Ez1,z2,z3

∣∣σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆⊤ℓ,j2 x̃)|
≂ Ex̃

∣∣σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆Tℓ,j2 x̃)|,
(148)

where x̃ belongs to Gaussian distribution.
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Therefore, the inequality bound over a sub-Gaussian distribution is bounded by the one over a
Gaussian distribution. In the following contexts, we provide the upper bound of Ex̃

∣∣σ′(θ⊤ℓ,j2 x̃) −
σ′(θ⋆Tℓ,j2 x̃)|.
Define a set A1 = {x|(θ⋆⊤ℓ,j2 x̃)(θ

⊤
ℓ,j2

x̃) < 0}. If x̃ ∈ A1, then θ⋆⊤ℓ,j2 x̃ and θ⊤ℓ,j2 x̃ have different signs,
which means the value of σ′(θ⊤ℓ,j2 x̃) and σ′(θ⋆⊤ℓ,j2 x̃) are different. This is equivalent to say that

|σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆⊤ℓ,j2 x̃)| =
{

1, if x̃ ∈ A1

0, if x̃ ∈ Ac
1

. (149)

Moreover, if x̃ ∈ A1, then we have

|θ⋆Tℓ,j2 x̃| ≤|θ⋆Tℓ,j2 x̃− θ⊤ℓ,j2 x̃| ≤ ∥θ⋆ℓ,j2 − θℓ,j2∥2 · ∥x̃∥2. (150)

Let us define a set A2 such that

A2 =
{
x̃
∣∣∣ |θ⋆Tℓ,j2 x̃|
∥θ∗ℓ,j2∥2∥x̃∥2

≤
∥θ∗ℓ,j2 − θℓ,j2∥2

∥θ∗ℓ,j2∥2

}
=
{
θx̃,θ∗ℓ,j2

∣∣∣| cos θx̃,θ⋆ℓ,j2 | ≤ ∥θ⋆ℓ,j2 − θℓ,j2∥2
∥θ⋆ℓ,j2∥2

}
.

(151)

Hence, we have that
Ex̃|σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆Tℓ,j2 x̃)|

2 =Ex̃|σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆Tℓ,j2 x̃)|
=Prob(x̃ ∈ A1)

≤Prob(x̃ ∈ A2).

(152)

Since x̃ ∼ N (0, ∥a∥22I), θx̃,θ⋆ℓ,j2 belongs to the uniform distribution on [−π, π], we have

Prob(x̃ ∈ A2) =
π − arccos

∥θ⋆ℓ,j2−θℓ,j2∥2

∥θ⋆ℓ,j2∥2

π
≤ 1

π
tan(π − arccos

∥θ⋆ℓ,j2 − θℓ,j2∥2
∥θ⋆ℓ,j2∥2

)

=
1

π
cot(arccos

∥θ⋆ℓ,j2 − θℓ,j2∥2
∥θ⋆ℓ,j2∥2

)

≤ 2

π

∥θ⋆ℓ,j2 − θℓ,j2∥2
∥θ⋆ℓ,j2∥2

≤∥θ⋆ℓ − θℓ∥2

(153)

Hence, (145) and (153) suggest that
I4 ≲ ∥θi − θ⋆i ∥2 · ∥a∥22,

and ∥P1∥2 ≤ ∥θ − θ⋆∥2 + I4 ≲ ∥θ − θ⋆∥2,
(154)

The same bound that is shown in (154) holds for P2 as well.

Therefore, we have

∥∇2
ℓf(θ

⋆)−∇2
ℓf(θ)∥2 = max

∥α∥2≤1

∣∣∣α⊤
(
∇2
ℓf(θ

⋆)−∇2
ℓf(θ)

)
α
∣∣∣

≤ 1

K2

K∑
j1=1

K∑
j2=1

∥P1 + P2∥2 · ∥αj1∥2 · ∥αj2∥2

≲
1

K2
·
K∑
j1=1

K∑
j2=1

∥θ − θ⋆∥2 · ∥αj1∥2∥αj2∥2

≲
1

K2
·
K∑
j1=1

K∑
j2=1

∥θ − θ⋆∥2 ·
(∥αj1∥22 + ∥αj2∥22

2

)
≲

1

K
· ∥θ⋆ − θ∥2,

(155)

where α ∈ RKd and αj ∈ RKℓ with α = [α⊤
1 ,α

⊤
2 , · · · ,α⊤

K ]⊤.
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H.2 PROOF OF LEMMA 11

We aim to prove that
∫
R

(∑K
j=1 α

⊤hσ′(θ⊤ℓ,jh)
)2

pH(h) · dh is strictly greater than zero for
any α. Therefore, the ρ1 in (6) is strictly greater than zero. The proof is inspired by The-
orem 3.1 in (Du et al., 2019). It is obviously that (

∑K
j=1 α

⊤hσ′(θ⊤ℓ,jh))
2 is greater or equal

to zero. Given (
∑K
j=1 α

⊤hσ′(θ⊤ℓ,jh))
2 is continuous, we only need to show that α such that∑K

j=1 α
⊤hσ′(θ⊤ℓ,jh) ̸= 0 for any α, namely, {hσ′(θ⊤ℓ,jh)}Kj=1 are linear independent.

Proof of Lemma 11. Let H be a Hilbert space on RKℓ , and the inner product of H is defined as

⟨f, g⟩ =
∫
R
f(h)⊤g(h)fH(h) · dh, ∀f, g ∈ H, (156)

where the Lebesgue measure of R over RKℓ is non-zero. Instead of directly proving∫
R

(∑K
k=1 α

⊤hσ′(θ⊤k h)
)2

fH(h) · dh > 0 for any α, we note that it is sufficient to prove that

{hσ′(θ⊤k h)}k∈[K] are linear independent over the Hilbert space H. Namely, if {hσ′(θ⊤k h)}k∈[K]

are linear independent, we have

α⊤hσ′(θ⊤k h) ̸= 0 almost everywhere. (157)

Therefore, we can know that
∫
R

(∑K
j=1 α

⊤hσ′(θ⊤ℓ,jh)
)2

pH(h) · dh is strictly greater than zero.

Next, we provide the whole proof for that {xσ′(θ⊤k h)}k∈[K] are linear independent over the Hilbert
space H.

We define a group of functions {ψj(h)}Kj=1, where ψj(h) = hσ′(θ⊤j h). From the assumption in
Lemma 11, we can justify that Eh∼D|ψj(h)|2 ≤ Eh∼D|h|2 <∞.

Let Xi = {h | θ⊤i h = 0} for any i ∈ [K]. For any fixed k, we can justify that Xk cannot be covered
by other sets {Xk}j ̸=k as long as θk does not parallel to any other weights θj with j ̸= k. Namely,
Xk ̸⊂ ∪j ̸=kXj . The idea of proving the claim above is that the intersection of Xj and Xk is only
a hyperplane in Xk. The union of finite many hyperplanes is not even a measurable space and thus
cannot cover the original space. Formally, we provide the formal proof for this claim as follows.

Let λ be the Lebesgue measure on Xk, then λ(Xk) > 0. When θj does not parallel to θk, Xk ∩ Xj
is only a hyperplane in Xk for j ̸= k. Hence, we have λ(Xj ∩ Xk) = 0. Next, we have

λ
(
Xk ∩ (∪j ̸=kXk)

)
≤

∑
j ̸=k

λ(Xk ∩ Xj) = 0. (158)

Therefore, we have

λ
(
Xk/(∪j ̸=kXk)

)
= λ(Xk)− λ

(
Xk ∩ (∪j ̸=kXk)

)
= λ(Xk) > 0. (159)

Therefore, we have Xk/(∪j ̸=kXj) is not empty, which means that Xk ̸⊂ ∪j ̸=kXj .
Next, Since Xk/(∪j ̸=kXj) is not an empty set, there exists a point zk ∈ Xk/(∪j ̸=kXj) and r0 > 0
such that

B(zk, r) ∩ Dj = ∅ with ∀r ≤ r0 and j ̸= k, (160)
where B(zk, r) stands for a ball centered at zk with a radius of r. Then, we divide B(zk, r) into two
disjoint subsets such that

B+
r = B(zk, r) ∩ {h | θ⊤k h > 0},

B−
r = B(zk, r) ∩ {h | θ⊤k h < 0}.

(161)

Because zk is a boundary point of {h|θ⊤k h = 0}, both B+
r and B−

r are non-empty.

Note that ψj(h) is continuous at any point except for the ones in Xj . Then, for any j ̸= k, we know
that σj(θ⊤k h) is continuous at point zk since zk ̸∈ Xj . Hence, it is easy to verify that

lim
r→0+

1

λ(B+
r )

∫
B+
r

ψk(h)dh = lim
r→0−

1

λ(B−
r )

∫
B+
r

ψk(h)dh = ψk(zk). (162)
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While for ψk, we know that ψk(h) ≡ 0 for h ∈ B−
r , (ii) ψk(h) = h for h ∈ B+

r . Hence, it is easy
to verify that

lim
r→0+

1

λ(B+
r )

∫
B+
r

ψk(h)dh = zk

lim
r→0−

1

λ(B−
r )

∫
B+
r

ψk(h)dh = 0.

(163)

Now let us proof that {ψj}Kj=1 are linear independent by contradiction. Suppose {ψj}Kj=1 are linear
dependent, we have

K∑
j=1

αjψj(h) ≡ 0, ∀h. (164)

Then, we have

lim
r→0+

1

λ(B+
r )

∫
B+
r

K∑
j=1

αjψj(h)dh = 0

lim
r→0+

1

λ(B−
r )

∫
B+
r

K∑
j=1

αjψj(h)dh = 0

(165)

Then, we have

0 = lim
r→0+

1

λ(B+
r )

∫
B+
r

K∑
j=1

αjψj(h)dh− lim
r→0+

1

λ(B−
r )

∫
B+
r

K∑
j=1

αjψj(h)dh

=αkzk

(166)

where the last equality comes from (162) and (163).

Note that zk cannot be 0 because zk ̸∈ Xj . Therefore, we have αk = 0. Similarly to (166), we
can obtain that αj = 0 by define zj following the definition of zk for any j ∈ [K]. Then, we know
that (164) holds if and only if α = 0, which contradicts the assumption that {ψj}Kj=1 are linear
dependent.

In conclusion, we know that {ψj}Kj=1 are linear independent, and∫
R

(∑K
j=1 α

⊤hσ′(θ⊤ℓ,jh)
)2

pH(h) · dh is strictly greater than zero.

H.3 PROOF OF LEMMA 12

Proof of Lemma 12. From the definition of (37), we have

∥h(ℓ)(θ)− h(ℓ)(θ⋆)∥2
=∥σ

(
θ⊤ℓ−1h

(ℓ−1)(θ)
)
− σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ⋆)
)
∥2

=∥σ
(
θ⊤ℓ−1h

(ℓ−1)(θ)
)
− σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ)
)
+ σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ)
)
− σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ⋆)
)
∥2

≤∥σ
(
θ⊤ℓ−1h

(ℓ−1)(θ)
)
− σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ)
)
∥2 + ∥σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ)
)
− σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ⋆)
)
∥2

≤∥θℓ−1 − θ⋆ℓ−1∥2 · ∥h(ℓ−1)(θ)∥2 + ∥h(ℓ−1)(θ)− h(ℓ−1)(θ⋆)∥2.
(167)

With the assumption in the Lemma 12 such that θ is close enough to θ⋆, we have

∥θi∥2 ≤ ∥θ⋆i ∥2 + ∥θi − θ⋆i ∥2 ≲ 1. (168)

Therefore, we have
∥h(i)(θ)∥2 ≤ ∥θi∥2 · · · ∥θ1∥2 · ∥x∥2 ≲ ∥x∥2. (169)
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Then, we have

∥h(ℓ)(θ)− h(ℓ)(θ⋆)∥2
≤∥θℓ−1 − θ⋆ℓ−1∥2 · ∥x∥2 + ∥h(ℓ−1)(θ)− h(ℓ−1)(θ⋆)∥2

≤
ℓ−1∑
i=1

∥θi − θ⋆i ∥2 · ∥x∥2 + ∥h(1)(θ)− h(1)(θ⋆)∥2

=

ℓ−1∑
i=1

∥θi − θ⋆i ∥2 · ∥x∥2 + ∥x− x∥2

=

ℓ−1∑
i=1

∥θi − θ⋆i ∥2 · ∥h(i−1)(θ)∥2

≤∥θ − θ⋆∥2 · ∥x∥2,

(170)

which completes the proof.
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