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Appendix of “Provable Knowledge Transfer using Successor Feature for Deep
Reinforcement Learning.”

Before moving into the technical details, we provide an overview of the structure of the appendix.

In Appendix A, we define some notations and useful lemmas to simplify the presentation and anal-
ysis. Some important notations for understanding the proof is summarized in Table 3.

In Appendix B, we provide some preliminary lemmas and proof for Theorem 1. A proof sketch
is included as (i) characterization of the local convex region of the objective function in (12) and
(9) (Lemma 6), (ii) Characterization of the difference between the empirical gradient in (15) and the
gradient of the objective function (Lemma 7), (iii) Characterization of the relation of two consecutive
iterations ©(**1) and ©*) in (62), and (iv) Mathematical induction over (t +1) - @) — ©*||5 from
t = 1 to T to obtain the error bound between the learned model weights ©(T) and the optimal ©*.

In Appendix C, we provide the proof for Theorems 3 and 4. A proof sketch is included as follows:
(1) Characterization of (26) by assuming knowledge of the optimal Q-function for previous tasks.
(2) Characterization of the accumulated error resulting from the estimation error of the learned Q-
function in previous tasks. (3) Combining the bounds from (1) and (2) leads to the error bound
between (26) derived from the estimated Q-function of previous tasks and the optimal Q-function
for the new tasks.

In Appendix D, we provide the proof for Theorem 2. The proof sketch is a direct application of the
existing results of the convergence analysis as shown in Appendix B and the error bound between
(26) derived from the estimated Q-function of previous tasks and the optimal Q-function for the new
tasks as shown in Appendix C.

In Appendix E, we provide additional experiments to further support the proposed SF-DQN in Al-
gorithm 1 and our theoretical findings.

In Appendix F, we provide the proofs for the preliminary lemmas in proving Theorems 1 and 2.
In Appendix G, we provide the proofs for the preliminary lemmas in proving Theorems 3 and 4.

In Appendix H, we provide the proof for some additional lemmas.

A NOTATIONS AND PRELIMINARY RESULTS

Population risk function. We define a population risk function as

N 2
fﬂ’* (0) = E(S,G)Nﬂ'* ¢(97 S, a) - Es’\(s,a),a’ww*(s’) (¢(Sa a, SI) +- ’l/}(e ) 3/7 (L/)) ||2 (30)
We can see that 6* is the global minimal to (30) with Assumption 1. For the convenience of presen-
tation, we simplify f« as f in the supplementary materials.

Then, the gradient of (30) is
vfﬂ'* (0)
= E(s,a)w'fr*,s’\(s,a)NP,a’Nﬂ'* (1/’(97 s, (1) - ¢(S, a, S/) - 1/1(9*5 'S/a a/)> : V’(/J(H, S, a)'

€Y

Given f is a smooth function, we have the gradient of f with respect to any 6, at the ground truth
0* equals to zero, namely,

Vef(0%) = Vo, f(6*) =0, Vi€ l[L] (32)

Vectorized Gradient of § and w at iteration ¢. To avoid unnecessary high-dimensional tensor
analysis, the gradient with respect to 6, denoted as V¢ H for some function H, is represented as its
corresponding vectorized version, Vyec(g) H.

Let n denote the dimension of W defined in (1). We denote n; as the dimension of the vectorized
neuron weights in the /-th layer, namely, n, = dim(vec(6y)).
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Then, the gradient in updating 6 as
g(t)(g(t); D,)
= Z <¢(9(t)§ Sms @m) — P(Sm, A,y S;n) -7 ¢(9(t); s;nv a;n)> ) VBw(a(t); Sm, Am) (33)

meD,
with ¢ (0); D;) € R™. Then, we have
e+l — o) _ o, .g(t)(g(t); D,). (34)
Similary to (33), we define the gradient

1O D) = 37 (6(5ms s 8) WO = 1(50, 0, 8) ) < 8, 51,). (35
meD;

In addition, without special descriptions, & = [@{ , @5 ,--- ,aj] " stands for any unit vector that

in REeKe-1 with o € REe-1 (K = d). Therefore, we have

al OH
IVeH]l2 = max [lo” Vo Hl> = max| Y- af 220 |
(o2 (o2 = awK’]

(36)

5 L 0H 2
|VZH ||y = max o'V H a2 :maX(ZajT ) .
[e% [e3 = 8w£7]

Derivation of the gradient of deep neural networks. We use /() () to denote the input in the ¢-th
layer (or the output in the (¢ — 1)-th layer) of deep neural network (), and h(!) = x(s, a), where

h90;s,a) = o0, AV =... = U(GZU(Hg,l e U(QIQ:(S?CL)))). 37)
Then, we denote the dimension of (9 as K ¢. Then, ¥ (6; s, a) can be written as
Tk T (L) 1T T e

Y(0;8,a) = e ;U(QL,kh ) = K7L0<9LU(9L71h ) (38)

where 6, denotes the k-th neuron weights in the /-th layer. Then, we define a group of functions
Je(0) € R" — RE such that

Je(0)
_ [T (0 RENG] o' (0] RG] o (0L RG] i 0> 1 (39)
1 if (=1 '
Then, the gradient of ¢ can be represented as
0 1
o= (0) = 2-Tral0)0' (01,0 (9)RO0), (0)

where J; ;. stands for the k-th component of 7.

Order-wise Analysis. Most constant numbers will be ignored in most steps. In particular, we use
hi(z) Z (or <,~)ha(z) to denote there exists some positive constant C' such that hy (z) > (or <
,=)C - ha(z) when z € R is sufficiently large. In this paper, we consider the case where 8} is
well-conditioned, such that its largest singular value 31 (¢) and the condition number 31 (¢) /o k (¢)
can be viewed as constants and will be hidden in the order-wise analysis.

A.1 USEFUL LEMMAS FOR MATRIX CONCENTRATION

Lemma 1 (Weyl’s inequality, (Bhatia, 2013)). Let B = A + E be a matrix with dimension m x m.
Let \i(B) and X\;(A) be the i-th largest eigenvalues of B and A, respectively. Then, we have

[Ai(B) = Ai(A)[ < | Ell2, Vi€ [m] (41)
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Table 3: Notations for the proofs

d Dimension of the feature mappings of the state-action pair (s,a) € S x A.
K Number of neurons in the hidden layer.
L Number of hidden layers.
T Number of iterations.
'wgt) The estimated value for reward mapping of task ¢ at ¢-th iteration.
@Z(-t) The estimated neuron weights for the successor feature of task ¢ at ¢-th iteration.

g(®)

The value of @ﬁ” to simplify the notation in the analyses without GPIL

gV (0" Dy)

The pseudo-gradient function defined in (33) at point #() with respect to the
dataset D;.

fa+ or f | The population risk function defined in (30).
\2¢ 1 (é) The gradient of a function H with respect to the components of 8, at point 6.
V?H (9) The Hessian matrix of a function H with respect to the components of 6, at point
0.

QT The Q-function of task ¢ for policy 7.

Q7 The Q-function of task 4 for the optimal policy 7*.

q* A constant defined in (80), depending on task relevance ||w; — w,||2.

Nt The step size for updating neuron weights ©; for the successor feature.

Ky The step size for updating the parameter for the weight mapping.

cN A constant in the order of 1/v/N.

n The dimension of 6.

Ny The dimension of vectorized 6.

K, The dimension of the input for the ¢-th layer for the deep neural network. Ky = d.
Jo(W) | A function in R” — R defined in (39).

C; The distribution shift between the optimal policy and behavior policy at iteration

t, defined in Assumption (3).
N The size of the experience replay buffer.
Dmax The upper bound of the transition feature.
01 A constant defined in (84).
P2 The smallest eigenvalue of E¢(s,a)¢(s,a)’ € R¥*4,
Pmax The upper bound of the transition feature.

Lemma 2 ((Tropp, 2012), Theorem 1.6). Consider a finite sequence { Z}.} of independent, random
matrices with dimensions di X ds. Assume that such random matrix satisfies

Define

E(Zy) =0 and | Zy|| <R almost surely.

)

52 = maX{H S E(2:.27)
k

Z]E(Z;;Zk)H}.
k
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Then for all t > 0, we have

Prob{ Z Zy,
k

Lemma 3 (Lemma 5.2, (Vershynin, 2010)). Let B(0,1) € {alllalz = 1,a € R?} denote a
unit ball in RY. Then, a subset S¢ is called a &-net of B(0,1) if every point z € B(0,1) can be
approximated to within § by some point o € B(0,1), i.e, ||z — a2 < & Then the minimal
cardinality of a §-net S¢ satisfies

—t2/2 )
62+ Rt/3/°

> t} < (dl +d2)exp(

[Sel < (1+2/6)7. 42)
Lemma 4 (Lemma 5.3, (Vershynin, 2010)). Let A be an d, x da matrix, and let S¢(d) be a &-net
of B(0,1) in R? for some ¢ € (0,1). Then

Al < (1 =861 ma ol Aas. 43
[All2 < (1-¢) alesg(dl)ées&(@ﬂ 1 Aas| (43)

Lemma 5 (Mean Value Theorem). Let U C R™ be open and f : U — R™ be continuously
differentiable, and x € U, h € R™ vectors such that the line segment x + th, 0 < t < 1 remains
inU. Then we have:

1
Fl@+h) — fx) = (/ Vi@ th)dt) h,
0
where V f denotes the Jacobian matrix of f.

A.2 DEFINTIONS OF SUB-GAUSSIAN AND SUB-EXPONENTIAL.

Definition 1 (Definition 5.7, (Vershynin, 2010)). A random variable X is called a sub-Gaussian
random variable if it satisfies
(EIX]P)YP < e1yp (44)
forall p > 1 and some constant c; > 0. In addition, we have
Ees(X—EX) < o2l X115, 5% (45)
for all s € R and some constant co > 0, where || X||y, is the sub-Gaussian norm of X defined as

Xy, = sup, >, p~ /2 (E[X[P)1/7.

Moreover;, a random vector X € R? belongs to the sub-Gaussian distribution if one-dimensional

marginal o™ X is sub-Gaussian for any a € R?, and the sub-Gaussian norm of X is defined as
_ T

[ X Mg, = supjjay=1 [le” X |l,-

Definition 2 (Definition 5.13, (Vershynin, 2010)). A random variable X is called a sub-exponential
random variable if it satisfies
(E|X|P)'/P < csp (46)
forall p > 1 and some constant c3 > 0. In addition, we have
]Ees(XfEX) < emHXHlesz (47)

for s < 1/||X ||y, and some constant c4 > 0, where || X||y, is the sub-exponential norm of X
defined as || X ||y, = sup,>, p~" (E|X[7)"/7.

B PROOF OF THEOREM 1

Lemma 6 (Local convexity of f;+). Given any 0 € R", let 0 satisfy

CN " OK
0—0%> < (48)
o - 67l 2
for some constant ¢y € (0, 1). Then, for the fr defined in (30), we have
(1 —cn)p1 7

= Vi fr (0) (49)

< —.
K2 - K
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Lemma 7 (Upper bound of the error gradient). Let fr« be the function defined in (30). Let g; be the
function defined in (33). Then, with probability at least 1 — ¢~ 5¢=1, we have

1 Ky_1logg v
<G = 0|y - e L T 198 >
,Sg 0=y [ S -

Rmax
+ 1

| Vetnr (6) = 9069 D1)

(50)

L)

Rmax _ 1

where 7% = min{t | \v' < nr}, and v & X are defined in Assumption 2.

Lemma 8 (Convergence of w'")). With probability at least 1 — g~ %, w enjoys a linear convergence
rate to w* as

— C
Hw(tJrl) _ w*”Q §(1 _ p¢7N) . ||w(t) _ ’lU*||2- (51)

max

Proof of Theorem 1. From Algorithm 1, the update of 6 can be written as

o+ —p®) _ ), .g(t)(g(t);pt)

(52)
=0 =y - VL(O9) - (VI(0) = gD (01 Dy)).
Since V f is a smooth function and 6* is a local (global) optimal to f, then we have
VIOW) =V (YD) -V 1(67)
(53)

1
:/ v2f(9<t> - (00 — 9*))du (00 — g,
0

where the last equality comes from Mean Value Theory in Lemma 5. For notational convenience,
we use A to denote the integration as

1
A® = / v? f(0<t> +u- (0 —9*))du. (54)
0

Then, we have

160+ — 6%]|2 <|IT— n AW 2 - |6 — 6*|2 + ne - [V F(8)) — gV (8 D)5

L
(55)
<L =0 - 69— 0%+ - || Vs (0) — gV (02 D)
=1
From Lemma 6, we have
1—cn)-p
1L AO <1, LX) 08 Kg) - (56)
From Lemma 7, we have
1 Ky_1logq vy
(0D — (0. D H < 10M — g, . [ L0 L T ) g
|Ver (09) = 0:0: )| S5 I/ =5 o
Rmax
o AT e ©7)
L=y
Rinax - 1
: (141 — .0
+ |A] T (1+1log, A +1—1/) Cy

With Assumption 3, we have

Cr < C- (09 = 6%z + w® — w*[|2).
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When we have a sufficiently large number of samples at iteration ¢ as

L
D 2 e ot (D) Kev/Ke1)® - loga,
/=1

(55) can be simplified as

1Y — 6%l < (1 =10~ €) - 0 = 6% [l + e - Ay + 1 - CF [0 — w0

where
C* = |A|- f‘ja; (1 +1log, A\t + %) -C
¢ = (1 _’YI;QCN)PI o
Ay = fiiaj; (L) T e
Let 7, = ﬁ, we have

(t+1) 09D =0 <t [0C =0 [a+ €1 A+ €7 Ol —w .

Next, we have

T-1

(t+1) 10U =02 — - 69 — 6"

-
I
=)

!
-

<D (A O —wa).
t=0

With the definition of A; in (60), we have

T-1 T* T-1
DAY Mty AT A
t=0 t=0

t=1*
T T—1
< T*.Rmax_i_Z.Rmax'(l‘i‘rY).T*. 1
t=0 =y = 1= T—rm+1
2 2
SRmax'log T+Rmax(1+7)1og T
1=~ 1—7

With Lemma 8 that w enjoys a geometric decay, we have
T-1
Y N —wrs S w® —w .
t=0

By multiplying 1/7" on both sides of (62), we have

(24+7) - Rmax - log? T + C*lw® —w*|, 1
(I—~y—cny)pK—2-C* T

[ P~

C PROOFS OF THEOREMS 3 AND 4

Lemma 9. Let Q} be the Q-function for the optimal policy of task i, we have

1+y
Q7 — Q| < ﬁ(bmax lwi —wi.
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Proof of Theorem 3. For any task j € [n], we have

QZTll(s,a) - QZ’;H(S,a) = ?61%3]( inkl(sv a) — QZ{H(& a)

2 Qnil—l(sa a) - Q:rzii-l(s7 a)
* T *
= (1;(07) = v;(6§")) - wi..
According to Theorem 1, we have

(2+7) 'RmaX'IOgQT"‘C*Hw](‘O) _w;HQ 1 Cs

. *\ o). (,T) < =2
||w](®j) 1/’1(@] )”2— (1—7—cN)p1K_2—C’* T T

Then, we have

T 5 Csllwy, |2
T7Q, %1 (s,a) > Q7 (s,a) — - %

Therefore, with the contraction property of the Bellman operator 7™, we have

eril (S’ a) = (Tw)kQZZH (37 a)

lim
k—o0

> lim (77 (@0 (s.0) - o S 2nnnlz)
= Jim (772 77 (s (.0) - 2L 212
= Jim (77 (T7QR (s.0) — 7 81l
= Jim (7@ (s,0) — el o Gl
Qs - 3 Bl
k=1
=Qpka(s,0) = 1 17 C?’ijr}HHz
ZQZil(S,G) - CBij’?HM -7 j,y C3||wj¢fz+1||2
:QZil(S, a) — : i - C3||w7§+1”2

For any policy 77 with j € [n], we have
Q:z+1 (57 a’) - QZZ—JEI (Sv a)

— (Qha(5,0) — Q741 (5,0)) + (QP1(5,0) — Q7 (s,0))

2 Csl|wx
< ﬁ .H;%x|rn+1(s7a) —rj(s,a)l + (31|_7;+)11|,|2
27 * Pmax 03”’11);.1_’_1”2
< S 1 — W, et I
< 7 lwnr —wifz + (A—)T
Since (71) holds for any j, we have
b 27 . (bmax . C3||w*+1||2
¥ (s,a) — Qi (s a)] € ——= min |[wy41 — wj|2 + —————.
Qi) = QU (s, ) < T2 min iy — gl +
From Lemma 9, we know that
w7 i L+~
Qoa(5:0) = Qs (5,0) < T - max|roca (5,0) — 1y(s.0).

(67)

(68)

(69)

(70)

(71)

(72)

(73)
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Similar to (70) to (72), we have

(1 + ’7) i (bmax C3||w7*z+1||2

* 7 _ N)Tn+1 ; < n Ao + ——2-—7, 74
@ha(o0) = QI (s, )] < 0 i s —wfa + S ()

O
Proof of Theorem 4. Let m,, | be generalized policy with DQN via GPI. Similar to (67), we have
Qu (8,0) = Qi (5,a)

’

= maXQn_H(s a) — QZ{H(SW)

i€[n]
> Qn‘;l(s, a) — nﬂ(s, a)
= (0w — (0 )w!” (75)
~ 0 (OF)wh g — (0" )w)
= (O wh 1y — 1 (O )wi iy + 0505wy, — vy (O )wy
> = 0 = O 1041l = T G- 1071 = w5 o
Following similar steps in the proof of Theorem 3, we have
@i 5.0 = QT s <00 i,y -
[ i 01— w3 (76)
< 21' fm;“‘ min [[wn = w; 2 + Cé"f’%ljf.
O

D PROOF OF THEOREM 2

Proof of Theorem 2. For task i, let m; be the policy derived from ¢;(0'")w} with 1 < j < 4,
where @g-T) is the returned neuron weights for the successor feature of task j.

Similar to (74), we have

;i (1 + 7) Gmax 03”’11):”2
Qi(s,a) = Q;’(s,a) < %ij —wil[2 + = (77
Let 7’ be the policy derived from VJ%( )w at iteration ¢ for task 4, we have
Qi(s,0) = QF <110 = O7ll2 - [} |2 78)

Therefore, at iteration ¢ for task 7, we have

a®
Cy =|Q; (s,a) — Q;' |

1 . x C
Smln{( +7) ¢ma ||w] _wz||2+ 3H’LU ||2

-~ 1<]<z (1—~)T ”@ — 7|2 - [lw; ||2}

1 * Pmax * * . .
<min {(—’_1% 1<1r<1 lw; — w2, ||®(f) o7z - |Jw; Hg} (As T is sufficiently large)
-

=min{g,, 1} - |0 — ©7] 2,
(79)
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where
14+ 9)Rmax Mini<icj1 [|w) — w2
qt = ( 17_) = — 7j(t) i 4 (80)
v ||@j - @j ||2
Following similar steps in (59) in the proof of Theorem 1, with C; satisfying (79), we have
-1 . . 2 * ()
||0(T) _ 9*”2 < l Z (2 +7) Rpax - log 7T+ C ||w w ||2 ) l @1)
T~ (1-v—cy)pK?—min{l,¢}-C* T
O

E ADDITIONAL NUMERICAL EXPERIMENTS

In this section we empirically validate the theoretical results obtained in the previous section, using
synthetic and real-world RL benchmarks.

E.1 SYNTHETIC DATA SETTINGS

Here, we define an MDP that contains two tasks with shared state transition dynamics. The MDP
consists of a state space with |S| = 10,000, an action space with |A| = 4. For the first task, its
successor feature is parameterized by a deep neural network with the randomly generated neuron
weights ©7F, and w7 are randomly generated as the corresponding reward mapping. We then gener-
ate ¢ based on (10) with ¥)(©7). Since ¢ is shared across all tasks, for Task 2, we randomly generate
the reward mapping w3 and then calculate )3 accordingly.

E.2 REAL DATA: REACHER ENVIRONMENT

The reacher environment is a robotic arm manipulation task consisting of a robotic arm with two
joint torque controls. The state space is continuous, and the state features consist of angular displace-
ment and angular velocity of the two joints. The actual action space for the robot arm is continuous
that consists of the torques applied to the two joints, and is discretized for 3 values (for each joint
torque). Thus, the total discretized action space consists of 9 actions (|.A| = 9). The discount factor
used is v = 0.9. Multiple tasks in this environment is defined by goal locations, and the objective of
each task is to move the tip of the robotic arm towards the goal location.

The reward of each task is defined by the distance §, measured from the tip of the robotic arm to the
corresponding goal location. Specifically, a reward of 1 — § is given to the agent at each time step.
There are 12 predefined tasks, and ¢ for a given state (common to all 12 tasks) is defined by stacking
the reward for each of the 12 tasks for a given state as a vector. The corresponding reward weights
w? fori = 1,...,12 are defined by one hot vectors, where the i'" element of w} is 1 and other
elements are 0. Thus, the inner product ¢ " w? naturally recovers the reward for the i*" task. For
running experiments with this task, we use the open source code base https://github.com/
mike—-gimelfarb/deep-successor-features-for-transfer.git.

We first provide a comparison of the performance of SF-DQN with GPI, SF-DQN without GPI, and
DQN with GPI, in Figure 3a. Here we consider the average transfer performance for four tasks,
after training on a source task. It can be seen that SFDQN with GPI performs better compared to its
no GPI counterpart. Both of these agents perform significantly better compared to DQN with GPIL.
hence, this result validates our theoretical results for the performance of these three methods.

Next, we investigate the performance of the SFDQN agent when the target task reward mappings
are not known and learned simultaneously with successor features. We consider varying distances
from the initial target task reward mapping to the true target task reward mapping. The results are
shown in Figure 3b. It can be seen that when the reward mappings are initialized far away from the
true reward mappings, the convergence of the SF-DQN agent is slower compared to that is initialized
closer to the true reward mappings. This aligns with our convergence analysis for the SF-DQN agent
with GPL.
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(a) Comparison of DQN (GPI) and SF-DQN (with (b) Comparison of different initializations for target
and without GPI) task reward mapping

Figure 3: Experiments on Reacher environment

E.3 ADDITIONAL EXPERIMENTS ON SYNTHETIC RL BENCHMARKS

Effect of || w} — w3 || on knowledge transfer. We investigate the effect of the distance between w7 to
w3, on the transfer performance of the SFDQN. For this purpose, we assume SF-DQN agents have
access to optimal reward mappings when training on Tasks 1 and 2. After obtaining ¢ as described
earlier, we initialize and train © using ¢ and w3, with GPl. Reward defined by ¢ - w3 is used to
obtain the average reward for Task 2. We repeat the process for different choices of w3, and the
results are shown in Figure 4. It can be seen that, when the task similarity is low (i.e. ||w} — w}]|
is large), the performance of the SF-DQN agent with GPI is poor. On the other hand, when the task
similarity is high, the performance becomes significantly better.
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Figure 4: Effect ||w} — w3]| on the convergence of SF-DQN agent when training on task 2 with GPI

F PROOF OF LEMMAS IN APPENDIX B

F.1 PROOF OF LEMMA 6

Lemma 6 provides the lower and upper bounds for the eigenvalues of the Hessian matrix of popu-
lation risk function in (30). According to Wey!’s inequality in Lemma 1, the eigenvalues of V7 f(-)
at any fixed point € can be bounded in the form of (86). Therefore, we first provide the lower
and upper bounds for V2 [ at the desired ground truth 6*. Then, the bounds for V2 f at any other
point # is bounded through (30) by utilizing the conclusion in Lemma 10. Lemma 10 illustrates
the distance between the Hessian matrix of f at 6 and 6*. Lemma 11 provides the lower bound of
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Ex( Zjil a;r a‘zjf - (9*))2 when x belongs to sub-Gaussian distribution, which is used in proving

the lower bound of the Hessian matrix in (87).

Lemma 10. Ler f(0) be the population risk function defined in (30). If 0 is close to 0* such that

06"l S % (82)
we have
* 1 *
IV2F(0) = V(02 S 7 16 =62 (83)

Lemma 11. Suppose the following assumptions hold:
1. {0; } ¢ | € RE¢ gre linear independent,
2. Let p(h) : RE¢ — [0 1] be the probability density for h such that Ep||h||3 < +occ.

Let o € RE¢Ke=1 pe the unit vector defined in (36), we have

p1:= min /(ZaThgb O )) w(h)-dh >0, (84)

lexll2=1

where R C RE¢ with fR fu(h) > 0. Moreover, if further assuming h belongs to Gaussian distri-
bution, we have p; > 0.091.

Lemma 12. Let h\Y)(0) be the function defined in (37). When 0 is sufficiently close to 0%, i.e
|6 — 6*||2 is smaller than some positive constant ¢ < 1, we have
BO@)2 5 e 55
1R (0) = RO (O]l S 116 = 6%l2 - |22

Proof of Lemma 6. Let Apax () and Ayin (0) denote the largest and smallest eigenvalues of V7 f(6)
at 0, respectively. Then, from Lemma 1, we have
Amax(0) < Amax(07) + V7 (0) = VEf(67) ]2,
Amin(0) = Amin(67) = V2 £(8) = V7£(0%)]2-
Then, we provide the lower bound of the Hessian matrix of the population function at 8*. Let P be

the distribution for h(“)(#) when @ ~ u* with probability density function denoted as py;. For any
a € REK with ||al| = 1, we have

(86)

min a' VZf(60")a

le|l2=1
K
1 * i
~ R e ’M’(Za;h“)%kqﬁ’(@g}h“n)
K
2
T K2 / (- ol RO T (6;2D)) pu(h®) - an® (87)
K HaHQ 1 RKIZ 1 ] 7

2
T (0) *T p (€) (0) %)
a; h 07 ;h RO . dh
K2 Ha\lz 1/’1(2)\7@ 20} Z (b( )) P ( )

> P
~Y K2,

where the last inequality comes from Lemma 11, and Lemma 11 holds since h(*) belongs to sub-
Gaussian distribution and 6, is full rank.
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Next, the upper bound of V f can be bounded as

max o' VZf(0*)a

llexfl2=1
1 K )
=73 Eq Th®). 10xTR(©)
K2 |laly=t (;aﬂ NATACE ))
1 K K
:ﬁ tha)_(l Em Z Z ‘:7[ k('b (05 J1 )) \72 kﬁb (05 ,J2 ))
= J1=1j2=1

K K
1 * *
=2z 2 D Eeo b0 70 (075, 0Y) - o) 0 - 705607 1,0 D)

J1=1j2=1
1 - T 1 (04 1exT g (04 T3 (£)\4 «T p(0)))4 1/4
<oz s, 30 37 [Balaf ) B0, R )" Eaag k)" Ea(6'(07, 1)
Jji=172=1
K K
1 R T4l
SE? el 22 {]E'”'“'(ajlw) Eal(a;,2) }
L=
3 & 6 1
FZZMMMMQZZN%%M@
Ji=1j2=1 j1=1j2=1
6
-5
(88)
Therefore, we have
Amax(0*) = max a' VZf(*;p)a <0 (89)
max loell2=1 ¢ - K
Then, given (82), we have
2
10 —6"1l> < 2+ (90)
Combining (90) and Lemma 10, we have
IV2£(6) = VEF(8") 2 S 25 (O1)
Therefore, from (91) and (86), we have
* * 6 1 7
Amax(g) S Amax(e ) + ||V?f(9) - v%f(g )HQ = ? + ? S ?a (92)
* * P1 P1 P1
Auin(8) = Amin(8%) — [ V3£(6) = V3F(0")]l2 = 22 — L = L
which completes the proof. O

F.2 PROOF OF LEMMA 7

The error bound between ||V,f — g:||2 is divided into bounding I;, I», I3, and I as shown in
(98). I represents the deviation of the gradient of D, to their expectation, which can be bounded
through concentration inequality. I is derived from the distribution shift between the trajectory
and its stationary distribution, which can be bounded with assumption 2. I3 come from the data
distribution shift between the behavior policy and optimal policy. I, comes from the inconsistency
of the "noisy" label and the "ground truth" label in the population risk function (30). To ensure a
smooth presentation, we will defer the proof of I; — I, until we have completed the main proof of
Lemma 7.
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Proof of Lemma 7. From (33), we know that

g(t)(ogl)g; Xon)

ST (60 sy a) ) - 22O )

D, 000 1,
N o(0®; &,
= > (00950, am) = 607 8. @) = - (s}, 3 01)) %
meD; L,k
= Z (w(H(t M 8y Um) — V(O Sy ) + 7 - maxw( ,a's0%)
meD;
n). 93)
— - 1(s! g(t))) . M
m’ m7 89(7]6
().
_ Z (w(g(t)’ Sm;am) B w(e*; Sm,am)) ) 81/}(29 aXm)
meD, Lk
OY(0"; X))
. * (t) 77”
- (s (s),,0'30%) — (sl 00)) - S
= 37 B 09; X)) + ALY (0D X,
meD,
where we have
(M X,
bgz)c(e(t)7Xm) = (¢(9(t);3m,am) - ¢(6*; smaam)> : 1/)(89 ) %94)
0k
and o
oY (6\); X,
B0 ) = (max (98], ) = v(6is),.a,)) % 95)
0.k
Then, let us define 5% as
B (0; ) = By (0165 5,0) = (075 8,0) ) - Voo (0; 5, 0). 96)
From (30), we know that
Ofxr 0t dp(0W): s, a)
E (66D s.a) — o6 LV 55,9) 97
ag[ i (9 ) (s,a)wp, (¢(9 ;S a’) (b(e ;S a‘)) agz’k ( )
Then, from (93) and (97), we have
® M. y O frr (t
g (9€,k7 m) aee & (9 )
() (o0 () ((t) O+ pt)
= by (0% X)) + Aby 3 (05 X)) — W(Q 3 Xm)
meD, Lk
= [0 )~ B, B0 200 |+ B, 005 20) = B0 1)
_ Ofrn
+[B209) — T (00)| 1 B, MO0 2,)
; 90, 1 ,
2:I1 + I2 + I3 + I4.
93)
Therefore, we have
afﬂ'*
o @i ) = 7@ O], < 10l + el + 155 + 1l 99)
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Next, we first provide the bound for || I1 |2, || L2]l2, || I3]|2, and ||I4]|2 as

1 dlogq
Ii|s < — - ]|0 — 0%z -
Il < 10 = 0"l [ 55

Rmax
I < . ].+ T* . LN
ILallo < T2 - (14 9)" - 00,

R 1
2 (1 +1log, AT+ ——) - C,
1—~ ( + log, +1—l/) ts

IEll2 < 2 - 6 ~ 6]

| Ls]|2 < |A]| -

where |.A| is the size of action space. The details for the derivation of I;- I, can be found after the
proof.

Let @ € RE? and aj € R? with o = [a’{v OézTa S 7a£]T, with probability at least 1 — qid’ we
have
2
19 (04:0) = Ve S (0)13 =|a” (9(6) = V 2 (0))]
K
O frr
> ok (0 00 0) — 55-(0))

k=1

IA

‘ 2

(101)
2

-G,

af‘n’*
00y 1,

ok 13

9 (02.:6)

B
Il

1
2

)],

< max Hg(”(ﬁe,k; 0) —

In conclusion, we have

19 (06;0) — Ve fre ()2
8f7r*

B 69M (Q)HQ

<max [Ty (k)| + [L2(F)]l2 + [ (k) |2 + |12 (k)2

1 dlogq  Rmax
<— .16 = 6*l- - (1 LR R
=%, [ ll2 \/ D] Tz 5 (L+)7" - m

Rm'x — 1 *
AL T (o log, A 1) Gt g 00 = 07,

2

< max Hg(t)(ﬁg,k; 0)

(102)

where 7* = min{t | \v! < nr} O

F.2.1 PROOF OF UPPER BOUND OF [;
Proof. We define a random variable

ZO(k) = ((0:5,0) = (0";5,0)) - Toi - RO (0)
with (s,a) ~ Dy and

Z5) (k) = (Q(@m3 0) = Q(@m: 0)) - Tk - " hi(0)
as the realization of Z® form € D;, where « is any fixed unit vector.

According to the definition of I; in (98), we can rewrite I as

1
Il - E[ Z Zr(f)(k) - E(s,a)N’Dt Z(Z) (k’):| N (103)
meD,
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Then, for any p € NT, we have
1 1/p
(B1Z2O)"" = (Exen, [00:5,) = (0% 5.)] - | Teao’ (/)] - | RO

1/p
. _ *. P |ATHE)|P
< (B, [0(6:5,0) = 0(6"; ,0))" - |a RO (104)

1/
S(EXN’Dt 16— 62 - ||ac(s,a)||2‘p . |aTac(S,a)|p) :
Scl0—0%l2-p.

From Definition 2, we know that Z(*) belongs to sub-exponential distribution with [|Z()|,,, <
|0 — 0*||2. Therefore, by Chernoff inequality, for any s € R, we have

1 £) () e_(‘|9_9*|\2)2'|Dt,\~32
— _ o |
P{llDt >z -~z ) <t} =1 AEARD (105)

meD
Lett = |6 —6" 2/ 3 and s = = +# for some large constant ¢ > 0. Then, with probability
atleast 1 — g=%, we have
B 2 200 ~EZO)| S 10— - [ (106
| Dy e, m ~ D

From Lemma 4 and (103), with probability at least 1 — \S% (d)| - ¢~ %, we have

’D Z Z(f) EZ®
‘ |m€'Dt

1 dlogq

I <2. .
[11]l2 < D

||9 0|2 -

(107)

From Lemma 3, we know that [S1 (d)| < 59. Therefore, the probability for (107) holds is at least
1-— (%)_d. Because ¢ >> 5, we denote the probability as 1 — ¢~ for convenience. O
F.2.2 PROOF OF UPPER BOUND OF [,

Proof. I is the bias of the data because the data (s a) at iteration ¢ depends on the neural network
parameters 6(*). Recall the definition of by,)c and bz 1.» we define

Ap = {00 X)) — b (00; X, (108)

It is easy to verify that

1506 Xo) — B8 X 12 < (14+7) - 16 — 6],
1510 (6; Xo) — D (B X |2 < (1 47) - 16— 8], (109)
Rmdx
and |l S 7
Then, we have ~
A(0) = A(0) S (1 +7) - [0 — B2 (110)
Therefore, we have
I
At(e(t)) SAt(e(t ))+ 1_7 Rmax' tz ;- (111)

Then, we need to bound 6, (/7).

Let us define the observed tuple O;(s, a, s) as the collection of the state, action, and the next state
at the ¢-th iteration. Note that

04" 5 5 . — 5 — O (112)
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forms a Markov chain introduced by the policy 7.

Let §(t=70) and @ be independently drawn from the marginal distributions of (=0 and O,
respectively.

With Lemma 9 in Bhandari et al. (2018), we have

EA(0977,00) —E A", 0,) S 2sup|Ay(6,0)] - A- 07 (113)
6,0

By definition, we have E A,,,(§(~™), 0,) = 0 and

2 Rmax
A4(0,0)] < : (114)
Ade.0)] < 5
Therefore, we have
14 t—1
EA(0") SEA(0C™) + 17 - Ruax - 3
i=t—T (115)
<Rmax</\ VT+(1+ ) )
= 1 _ ’y PY T nt—T b
where the last inequality comes from the fact that the step size 7, is non-increasing.
Choose 7* = min {¢t =0,1,2,--- | \v” < nr}. When t < 7*, we choose 7 = ¢ and have
(t) Rmax *
EA(00) < T . (116)
L=~
When n > 7*, we can choose 7 = 7* and obtain
EA, (M) < f“‘“ (L) T e (117)
-
Combining (116) and (117), we have
|1—2‘ < 1 ia; ’ (1 + 7)7—* * Nmax{0,t—7*}5 (118)
where 7* = min{t | \vt < nr}. O
F.2.3 PROOF OF BOUND OF I3
Proof. We have
7 8f7r*
I =by') (69) — 5o (01)
0,k
« 9P(0; s, a)
:E(s,a)Nm (1/)(9; S, a) - 7/)(9 ;S,a)) : TM
. 0Y(0;s,a
~ Elaayoe (00015, = 000" 5,0)) - 200
« oY(0;s,a
B ($055,0) = 1(5,0) = 7 Barnyy | ma(0%5',)) - 22D (g
N o(0;s,a
Bl ($0058,0) = r(5,0) =7 Barnps ma (05 /,)) - 20 20)
op(6; s,a)
= ; — — - g q)) .
=E(s,a)~pss ~p2 (1/1(9,3,(1) r(s,a) — v nta/xw(e 18’ a )) 00r
o(6; s,a)
_Esaw*s’wa 9;7 - ) - 9*; /7/ T
(s, (V058,0) = 7(5,0) =y mas (073 a')) - ==
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Then, we have

/ / *(ds,da)P(ds’|s,a) — pi(ds,da)P(ds'|s, a))‘
(s,a)

»/(sa

7 (da|s)P (ds’|s,a)—Pt(ds)ﬁt(da|ds)73(ds’|s,a))’

(120)
< / (P*(ds) ~ Pu(ds))*(da]s)P(ds'| s, )|
(s,a)
+ / /Pt(ds)(ﬂ't(da|ds)—w*(da|ds))’P(ds’\s,a)‘.
(s,a) Js'
From Theorem 3.1 in Mitrophanov (2005), we know that
1
P*(ds) — P,(ds ‘SAlogy)\_l—l— C
1/(37@( (ds) - Pu(ds)| < Al e o
and  ||m(dalds) — 7*(dalds)| < C.
Therefore, the bound of I3 can be found as
Rmax 1
Msllz < 77— 1Al G- (1+1log, A" +1—)
1 (122)
=[Al- mj-( +log, A7 + ) - Ci.
O
F.2.4 PROOF OF BOUND OF I
Proof. We have
L] =l ABEL(09); 2)]l2
o (0®); x,,,)
_ . * (t) » m
= sy (g (sl '50%) = (s, 00,0 ) - | SRR
(0 X,
gmax'y~(maxw(s;n,a’;9*) maxw( ,a’; Q(f)) Hwi)H
s,a a’ 00 1. 2
5 9) ’ (123)
<v- ﬂaf‘ws%”a';@*)—?#( La'; W) ‘ Hi?ﬁ e m) ‘2
1
Sy 109 = 6%z =
Y o) *
<—1|0'" — 0%||>.
<7116 0"
O
F.3 PROOF OF LEAMMA 8§
Proof of Lemma 8. From the update rule of w in Algorithm 1, we have
wttD — w* =w® — w* — K, - Z (ngnw(t) —Tm) - Om
meD,
=w® —w* — g, - Z (ng;w(t) — pmW*) - O (124)
meD,
:< — kKt Z ¢T¢m) w(t *)'

mMEDy,
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For any unit vector o € dim(w), we have

|aTEDt¢ d)a‘ < anaX‘a ¢‘2 = (bmaxv

(125)
la"Ep,¢" ¢a| > | pmin|® > 0.

Also, it is easy to verify that |a " Ep,# " ¢par| = 0 if only and if ¢,, are all parallel to each other. As

®m does not parallel to each other, let p» > 0 denote the minimal eigenvalue of Ep, o' @

Given ¢ is bounded, ¢ belongs to the sub-Gaussian distribution. Similar to (106), with Chebyshev’s
inequality, we have

dlo
S bmdm —Ep,¢T¢|| < 24 (126)
meD,, |Dt|
with probability at least 1 — d~9. Let N > ¢y 2dlog q, according to Lemma 1, we have
Amin( Y Gpbm) < Amin(Ep, 0" ¢) — en < p2 — . (127)
mED,,
When we choose k; = ﬁ, we have
||w(t+1) _ '11}*”2 S(l _ 1)2(#;761\[) . ||w(t) _ w*H2~ (128)
O
G PROOF OF LEMMAS IN APPENDIX C
Lemma 13. We have
* w} 2
|QZ." (s,a) — Q,’ (s,a)’ < 177 max|rl(s a) —rj(s,a)l. (129)
—v sa

Proof. ]Q:; (s,a) — Q?; (s,a)| can be upper bounded as

QF (s,0) — QF (s,a>|

=|ri+7- Zpss/ 77 (")) *(Tﬁv Zpss’ (s J(S')))‘
=7 ’ Zpg,s’Qii ) T Zps s’ (S/))‘

s/
S7-§:p;y-\foscw:wﬁ)—-Q?(sﬁwﬂsvﬂ

s/

< o ph - [|QF (i) - QF (1,75 '>>| +|QF (.75 () - @F (73 () ]

1 St [ @7 (o) -] (¢ p Lw(s) - Q7 (8w (s)) ]

<Y e _Hg}XIQf;(S’,a’)—Q] (s',a)
s’ )

*

Q7 (%)~ Q] (o) | + mae \@2 (o) - @7 (s )

’ ’
L s’,a

<v- Zp‘;vs/ - | max
s/

Let . )
Is = max Q" (s,0) = Q' (s,0)|

s,a

31



Under review as a conference paper at ICLR 2024

and

*

I = max
s,a

Then, we have

* *

_ a T 1o a T

15—H;75}1X ri+7'§ ps,s’H}lE}XQii(saa)*rjf'Y'E ps,s’rr}f}XQj (s',a")
s/

s’

*
< max|ri(s,a) = ry(s,a)| + ymax Y ps o max |QF (s'.a") ~ Q (s'.)]
s,a s,a ~ ) o
< max 7i(s,a) —r;(s,a)| + - Is.
,a

Therefore, we have )
I5 < 17max|7"z(s a) —r;(s,a)l.
— 77 s.a
Similar to (131), we have

T / T /
Is Sn;%XIH(S,a) —ri(s,a)l +ymax > P e 1QF (8,7 (s) — Q7 (s, 7 ()]
s/

<max]|r;(s,a) —rj(s,a)| + - Is.
s,a
Therefore, we have
1
Iy < EIE%XM(S ,a) —1(s,a)l.
Therefore, we have

T Tr 2
Q7 (s,0) = @F (s,0)] <7 (Js + 1) < 7= -max|ri(s, @) = rj(s,a)l

H ADDITIONAL PROOF OF THE LEMMAS

H.1 PROOF OF LEMMA 10

Q' (5.0) = Q7 (s,0)| = max Q] (5,77 (5)) — Q7 (s,7}(5)) |

(131)

(132)

(133)

(134)

(135)

The distance of the second order derivatives of the population risk function f(-) at point § and 6*
can be converted into bounding P;, P5, which are defined in (137). The major idea in proving P;
is to connect the error bound to the angle between 6 and 6* given h(“) belongs to the sub-Gaussian

distribution.

Proof of Lemma 10. From the definition of f in (30), we have

an * 1 rinxT *p kT
(9)*K2E jéko'( )'jevka(ejzh)-hh ,

82f ]- / * T * ’ T T
and o (0) = g5Be0'Tin(005,h) - Tiko' 015 h) - hRT,
»J1 »J2

where h = h(©) () and h* = h(D)(6*).

Then, we have

L B S W~
00,5, 000 5, 005,000 ,
= B 0 0, h) T (07 R
— Jek0' (04, 0) Tk Teko' (04 ;,h)hAT ]
;2 o [T7k0' (075 ) (Tpo’ (0,5, 0 )R T — Jp ko’ (6] 5, k)RR T)
+ JTox0’ (00, h) (T 0" (075, WP AT — To ko’ (0, h)hhT)]
=2 (P, + Ps).
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For any a € RX¢ with |lal|2 = 1, we have

a" Pia =E,J} 0’ (@hh*)(@ 20! (07 h*)(aTh*)? —Jg,ka’(ezjzh)(a%f). (138)

Then, we have

™ Pia| = (035, 1) (T’ 075, h) (@ )2 = Towo' (0] ,h) (@ h)?)|
<E, ’(0})§2h*)(aTh*)2 ~ Tore' (00, h) (@R
<Eo|J740 (05,0 (@ThY)? = T (07],h%) (@ h)?|

+E.

(03 .0°) (@ h)? — Toso' (07, h) (@Th)?| (139)
"(675,h)(a"h)? —ﬂ,kU/(GZth)(aTh)Q‘

(o' (077,h) = "6 ,h) - (a” h)?|

(o' (073,h) = "B ,h) - (@ h)?).

Utilizing the Gram-Schmidt process, we can demonstrate the existence of a set of normalized or-

SO = 0%z + 110 = 072 + Ex

SO =072 + Eg

thonormal vectors denoted as B = {a, b, c,aj,--- ,adl} € R?. This set forms an orthogonal and
normalized basis for R¢, wherein the subspace spanned by a, b, ¢ includes a, 0, ;,, and 6} j,- Then,
for any € R?, we have a unique z = (21, 20, ---, zq] ' such that

h = zia + 22b+ z3c+ - - - + zga7.

Because (i) a, 0y ;,, and 92‘@ belongs to the subspace spanned by vectors {a,b,c} and (ii)

af, -, aj, - -+ are orthogonal to a, b, and c. Then, we know that

0; ]2h =07 ]2(zla + 29b+ z3¢+ - + zga)
—zlﬁeha—l—zz@] b—}—z;ﬂhzc—i— —|—zd92—;2aﬁ[
—zlﬁema—i—zﬁ[hb—&—zdehzc—f—o (140)
295 o (z1a + 22b + z3¢)
=67 th

where b = z;a + 29b + z3c. Similar to (140), we have Gijh = Qijfz anda’h=a'h.

Then, we define I, as
L =B (o' (07 3,h) = o' (07,,0)) - (" h)|
:/R 0" (00,,h) — o' (675,h)| - la" h[* - frr(h)dh (141)
h

- / 0/ (67,,h) — o' (01| - laTh[2 - f2(2) - | Tn(2)|dz

z

where |Jp,(2z)] is the determinant of the Jacobian matrix 0 . Since z is a representation of h based
on an orthogonal and normalized basis, we have |Jp(z)| = 1. According to (140), I can be
rewritten as

I - / 0/ (8, 1) — o' (G R)| - |aTh[> - f(z)d
R N - - (142)
:/R \0'(92:]«2h) — U’(QZ?Zh)\ la"h|? - fz(21, 20, 23)dz1dzod 23

where in the last equality we abuse fz(z1, 22, z3) to represent the probability density function of
(21, 22, 23) defined in region R ,.
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Next, we show that z is rotational invariant over R,. Let R=[a bc --- a(ﬂ, we have h = Rz.
For any z(1) and 2(?) with |2V |y = ||2(?]||o. We define h() = Rz() and h(? = Rz(?. Since
a is rotational invariant and |[R™V |y = ||[R® |y = |2V ]2 = ||2?|2, then we know A()) and

h(?) has the same distribution density. Then, z(1) and z(?) has the same distribution density as well.
Therefore, z is rotational invariant over R .

Then, we consider spherical coordinates with 2 = Rcosoq, zo =
Rsinoysinos, z3 = Rsinoicosos. Hence, we have
£,52

I :/|a'(02jjz) —o'(0;1h)|-|Rcosa1 - f2(R,01,00) - R¥sinoy - dRdoydos.  (143)

Since z is rotational invariant, we have that
fz<R,0'1,0'2> :fz(R) (144)

Then, we have
4,52
s Y1(R)  p2(R)
:/ R4fZ(R)dR/ / |cosoq|? - sinoy
0 0 0
-|o’ (6, ;,(h/R)) — o’ (6;%,(h/R))|do1dos
o] ™ 2m
g/‘zfﬁuaw;/ / sinoy - |o' (6],,2) — o (67 &) |dorsdors,
0 o Jo

where the first equality holds because o’ (GZT 2 h) only depends on the direction of h, and & :=
h/R = (cos 01, sin o1 sin o9, sin 01 cos 02) in the last inequality.

I = / 0 (6, ,,(h/R)) — o' (0;% (h/R))| - |Rcos o1|? - fz(R)R?sinoydRdoydos

(145)

RrR2
Because z belongs to the sub-Gaussian distribution, we have F,(R) > 1—2e™ »2 for some constant
o > 0. Then, the integration of R can be represented as

/OO R*fz(R)dR = /Oo RY'd(1- F.(R))
0 0

e e} 3 B
g/o 4R*(1— F.(R))dR

o 2
< / 8RS~ dR (146)
0
32 e R2
<——=0o R%*e™%7dR
=
2 [T 1 w2
=320 R e ?dR,

0 V2mo?

where the last inequality comes from the calculation that

S 2
/ 9R% 57 dR = /2103,
o . . (147)
/ 2R3 o7 dR = 404,
0

Then, we define £ € R%¢ belongs to Gaussian distribution as  ~ A(0, 021 ). Therefore, we have

00 1 R2 ™ 2m
2 2 B : 1oT A 1 oxT
Iy <320°- ; R 27m26 o2 dR/O /0 sinoy - |0’ (0, ;,%) — o' (07 j,&) |doydoy

=320 K., .24 ‘a’(é’e’jzi) —o’ (H*T 5)|

anQ
~ Eg‘()’l (Gf,jzfi) —o (02?2%) |’

(148)

where & belongs to Gaussian distribution.
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Therefore, the inequality bound over a sub-Gaussian distribution is bounded by the one over a
Gaussian distribution. In the following contexts, we provide the upper bound of Ez|o” (6, ;,®) —

(GZ »J2 ) |
Define a set A; = {z|(0; ! z)(6, 5, ) <0} Ifz € Ay, then G*T x and HZJ @ have different signs,

4,52
which means the value of o/ (6, ; ) and o’ (6 ], @) are dlfferent “This is equivalent to say that
1,ifze A
T _ ) 1
07,5 o 0L = { s (149
Moreover, if £ € A4, then we have
10;75,® <1075, % — 0, <1167 5, — Ocjol2 - [|1Z]|2- (150)
Let us define a set A5 such that
4 {~ 6;%, 7| - 107 5, —9e,j2||2}
||9p32||2|\90H2 1167 5,112 (150
107, — Oegal2
2{95,9*. |cosbOz0: | < —}
a1 080501, < e T,

Hence, we have that
Ezlo’ (0] ,%) — o' (6;5,2)* =Ezlo’(0/ ;,®) — o' (67, )]
=Prob(z € A;) (152)
<Prob(x € Aj).
Since & ~ N(0, ||a||31), 95,92” belongs to the uniform distribution on [—, ], we have

- "
Prob(Z € Ap) = T - \|0[ 12 I S% tan(m — arccos ||92,T‘|2 2‘_ HIT’; 2
3J2
1 167 j, — Or.ja ll2
== cot(arccos —TFH AL (153)
216, 01l
T (167,02
<[|67 — bell

Hence, (145) and (153) suggest that
Iy S 110 = 0F[l2 - lall3,

(154)
and  ||Pyfl2 < |0 = 0%[|]2+ 14 S |6 — 0|2,
The same bound that is shown in (154) holds for P; as well.
Therefore, we have
IV2£(6%) = V2£(O): —tha;« T (VEf(67) - VE1(0))a
1 K
<z Z NP+ Poflo - [l 2 - e 2
Jj1=1j2=1
1 K K
Ser SN0 =02 lley, llzlle, |12 (155)
J1=1j2=1
K K
1 * ”ajl ||% + Hajz ”%
SN R G ey
Ji1=1j2=1
<z llo ol
K 2,
where a € R¥4 and a; € RE with e = [af , g , -+ ] T 0O
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H.2 PROOF OF LEMMA 11

2
We aim to prove that [ (Z;il a'ho' (szh)) pu(h) - dh is strictly greater than zero for

any «. Therefore, the p; in (6) is strictly greater than zero. The proof is inspired by The-
orem 3.1 in (Du et al., 2019). It is obviously that (25{:1 a'ho'(0/ ;h))? is greater or equal
to zero. Given (Z;il a'ho' ((9Zjh))2 is continuous, we only need to show that « such that
Z;il a'ho'(6/ ;) # 0 for any o, namely, {ho' (6, ;h)}/<, are linear independent.
Proof of Lemma 11. Let H be a Hilbert space on R*¢, and the inner product of # is defined as
(f9) = [ £ g(h) (k) - dh, Vg€ H (156)
R

where the Lebesgue measure of R over RX¢ is non-zero. Instead of directly proving
2
Jr (Zszl aTha’(G,;rh)> fu(h) - dh > 0 for any a, we note that it is sufficient to prove that

{ho' (0] h)}re(x) are linear independent over the Hilbert space H. Namely, if {ho' (0, h)} e[k
are linear independent, we have

a ho' (0] h) #0  almost everywhere. (157)

2
Therefore, we can know that fR (Zf: L aThJ’(GZjh)) pu (k) - dh is strictly greater than zero.

Next, we provide the whole proof for that {zc”’(0;] h)} e[k are linear independent over the Hilbert
space H.

We define a group of functions {1;(h)}/<,, where ¢;(h) = ho’(6] h). From the assumption in

Lemma 11, we can justify that Epp|j(h)]? < Epop|h|? < co.

Let X; = {h | 6] h = 0} for any i € [K]. For any fixed k, we can justify that X} cannot be covered
by other sets { X } 1 as long as 6, does not parallel to any other weights 6; with j # k. Namely,
Xy, ¢ UjxiX;. The idea of proving the claim above is that the intersection of X; and X}, is only
a hyperplane in Xj. The union of finite many hyperplanes is not even a measurable space and thus
cannot cover the original space. Formally, we provide the formal proof for this claim as follows.

Let A be the Lebesgue measure on Ay, then A(X%) > 0. When 6; does not parallel to 8, A3 N X
is only a hyperplane in X}, for j # k. Hence, we have A\(X; N X)) = 0. Next, we have

A(Xk N (UjeeXi)) <D AXe N X)) = 0. (158)
#k
Therefore, we have
)\(Xk/(Uj?gka)) = /\(Xk) — )\(Xk N (u#kz‘\,’k)) = )\(Xk) > 0. (159)
Therefore, we have X}, /(U;j.xX;) is not empty, which means that X}, ¢ U1 X;.

Next, Since Xy /(U5 X;) is not an empty set, there exists a point 2z, € Xy /(U2 A;) and 79 > 0
such that
B(zi,r)ND; =0 with Vr <roandj #k, (160)

where B(zy, r) stands for a ball centered at z;, with a radius of r. Then, we divide B(zy, r') into two
disjoint subsets such that
B = B(z,7) N {h |6 h > 0}, (a6l
B = B(z,7)N{h |6 h <0}.
Because zj, is a boundary point of {h|6;] h = 0}, both B, and B, are non-empty.

Note that ¢;(h) is continuous at any point except for the ones in X;. Then, for any j # k, we know
that o; (H,Ih) is continuous at point zy, since z; ¢ X;. Hence, it is easy to verify that

. o -
T1_1>%1+ W st Yr(h)dh = Tl_lgl_ % st Yr(h)dh = i (2zk). (162)
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While for ¢, we know that ¢, (k) = 0 for h € B;, (ii) ¥ (h) = h for h € B;f. Hence, it is easy
to verify that

. 1
B XET) o V=

) (163)
Yi(h)dh = 0.

T1~1>I(I)1, )\(BT_) B+

Now let us proof that {1, }JKzl are linear independent by contradiction. Suppose {1; }fil are linear
dependent, we have

K
> ajii(h) =0, Vh. (164)
=1

Then, we have

/ S o

7‘]1

(165)
5 hjdh =0
Then, we have
1 K
0 *TL(H i\ B+ /T ;%% Jj& >\(BF)/Bi ;aﬂﬁj(h)dh (166)

=CQkZ

where the last equality comes from (162) and (163).

Note that z;, cannot be 0 because z;, ¢ X;. Therefore, we have ay, = 0. Similarly to (166), we
can obtain that o;; = 0 by define z; following the definition of zj, for any j € [K]. Then, we know

that (164) holds if and only if o = 0, which contradicts the assumption that {1; }le are linear
dependent.

In conclusion, we know that { i JK: 1 are linear independent, and

2
Jr (ZjK:l aThU’(GZjh)) pr (h) - dh is strictly greater than zero. O

H.3 PROOF OF LEMMA 12
Proof of Lemma 12. From the definition of (37), we have

[R{D(8) — A (67)]]2

HO_(eT h(/ 1) 9)) (Q*T h(/ 1) 9*))”2
=[lo (8,1 D(8)) — o (6;1,R1(0)) + o (6; TRV (0)) — o (6,7, RV (67))])2
<|lo(8/_1h“"1(0)) — o (671 R 1) )2 + o (0; 1R 71 (0)) — o (0; 1, RE1(0%)) ||
<001 =071 ]2+ [RD @)z + R (8) — RV (6%)]|2.

(167)
With the assumption in the Lemma 12 such that € is close enough to §*, we have
16:ll2 < 167 [l2 + 116; — 67 ]2 < 1. (168)
Therefore, we have
1BO@) 2 < 16:ll2- 1012 - lzllz < [l (169)
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Then, we have
[RO(8) — LD (6*)]|2
<01 = 07y l2 - [Jl|2 + |RE7D(0) = KD (6%)]2

-1
<Y 110 =672 - llzll2 + [V (8) — RV (67)]
i=1
1 ) (170)
=3 [16; = 0712 - ||z + [l — |2
i=1
-1 4
=> 16 =61l - [PV ()5
i=1
<10 =072 - |||z,
which completes the proof. O
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