
A Boosting Robustness with Unlabeled Data

Prior work has shown that unlabeled data can improve adversarially robust generalization in practice
[2, 5], and there is also theoretical work quantifying the benefit of unlabeled data for robust general-
ization [3]. In this section, we highlight yet another benefit of unlabeled data for adversarially robust
learning. Specifically, we show that it is possible to boost robustness by relying only on unlabeled

data.

We will start with some intuition first. For an unknown distribution Dc, imagine having access to a
non-robust classifier h that makes no mistakes on natural examples, i.e., Prx⇠D [h(x) 6= c(x)] = 0
but Prx⇠D [9z 2 U(x) : h(z) 6= h(x)] = 1. Now, in order to learn a robust classifier, we can use
�-RoBoost where in each round of boosting we sample unlabeled data from D (label it with h) and
call a barely robust learner A on this pseudo-labeled dataset.

This highlights that perhaps robustness can be boosted using only unlabeled data if we have access
to a good pseudo-labeler h that makes few mistakes on natural examples from D. But in case that
Prx⇠D [h(x) 6= c(x)] = ✏ for some small ✏ > 0, it no longer suffices to use a barely robust learner A
for c, but rather we need a more powerful learner that is tolerant to the noise in the labels introduced
by h. Formally, we introduce the following noise-tolerant barely robust learner:
Definition 3 (Noise-Tolerant Barely Robust Learner). Learner A (⌘,�, ✏, �)-barely-robustly-learns
a concept c : X ! Y w.r.t. U�1(U) if there exists m(⌘,�, ✏, �) 2 N such that for any distri-
bution D over X satisfying Prx⇠D [9z 2 U(x) : c(z) 6= c(x)] = 0 and any h : X ! Y where
Prx⇠D [h(x) 6= c(x)]  ⌘, w.p. at least 1 � � over S ⇠ D

m
h , A outputs a predictor ĥ = A(S)

satisfying:

Pr
x⇠D

h
x 2 RobU�1(U)(ĥ)

i
� � and Pr

x⇠D

h
ĥ(x) 6= c(x)

i
 Pr

x⇠D
[h(x) 6= c(x)] + ✏  ⌘ + ✏.

In Theorem 7, we show that given a noise-tolerant barely robust learner A for some unknown target
concept c (according to Definition 3), it is possible to strongly robustly learn c with �-URoBoost by
making black-box oracle calls to A.

Algorithm 2: �-URoBoost — Boosting Robustness with Unlabeled Data
Input: Sampling oracle for distribution Dc, black-box noise-tolerant barely-robust learner A.

1 Draw m = mA(⌘,�,
�✏
4 ,

�
2) labeled samples S = {(x1, y1), . . . , (xm, ym)} ⇠ Dc.

2 Call learner A on S and let predictor ĥ = A(S) be its output.
3 Call �-RoBoost with access to labeled samples from Dĥ (i.e., (x, ĥ(x)) ⇠ Dĥ), and

black-box (⌘,�, ✏�
4 ,

�
2T)-noise-tolerant-barely-robust-learner A.

Output: The cascade predictor CAS(h1, . . . , hT).

Theorem 7. For any perturbation set U , �-URoBoost (✏, �)-robustly-learns any target concept c

w.r.t. U using T + 1  ln(2/✏)
� + 1 black-box oracle calls to any (⌘,�, �✏

4 ,
�
2T)-barely-robust learner

A for c w.r.t. U�1(U), with labeled sample complexity of mA(⌘,�,
�✏
4 ,

�
2) and unlabeled sample

complexity of at most

4T max
n
mA(⌘,�,

�✏
4 ,

�
4T), 4 ln

�
4T
�

�o

✏
.

Proof. Let U be an arbitrary perturbation set, and A a (⌘,�, ✏, �)-barely-robust learner for some
unknown target concept c : X ! Y with respect to U�1(U). We will show that �-URoBoost
(✏, �)-robustly-learns c with respect to U . Let D be some unknown distribution over X such that
Prx⇠D [9z 2 U(x) : c(z) 6= c(x)] = 0.

By Step 1 and Step 2 and the guarantee of learner A (see Definition 3), with probability at least 1� �
2

over Sm ⇠ Dc, it holds that

Pr
x⇠D

h
ĥ(x) 6= c(x)

i
 �✏

4
.

That is, with high probability, ĥ is a predictor with low error on natural examples.

14

Pseudo labeling. In Step 3, �-URoBoost essentially runs �-RoBoost using unlabeled samples from
D that are labeled with the predictor ĥ. Thus, we can view this as robustly learning the concept ĥ
which is only an approximation of the true concept c that we care about. Since the noise tolerance
⌘ � �✏

4 , it follows by the guarantees of learner A (see Definition 3) and Equation 11, that

Pr
x⇠D

[9z 2 U(x) : CAS(h1:T)(z) 6= c(x)] 
Prx⇠D

h
ĥ(x) 6= c(x)

i

�
+
�✏

4�
+(1��)T  ✏

4
+
✏

4
+
✏

2
 ✏.

B Auxiliary Lemmas and Proofs for Corollary 2

Algorithm 3: ↵-Boost — Boosting weakly robust learners
Input: Training dataset S = {(x1, y1), . . . , (xm, ym)}, black-box weak robust learner B.

1 Set m0 = mB(1/3, 1/3).
2 Initialize D1 to be uniform over S, and set T = O(logm).
3 for 1  t  T do
4 Sample St ⇠ D

m0
t , call learner B on St, and denote by ht its output predictor. Repeat

this step until RU (ht;Dt)  1/3.
5 Compute a new distribution Dt+1 by applying the following update for each (x, y) 2 S:

Dt+1({(x, y)}) =
Dt({(x, y)})

Zt
⇥
⇢
e
�2↵

, if [8z 2 U(x) : ht�1(z) = y] = 1;
1, otherwise,

where Zt is a normalization factor and ↵ = 1/8.
Output: A majority-vote classifier MAJ(h1, . . . , hT).

Before proceeding with the proof of Corollary 2, we state the following guarantee that ↵-Boost pro-
vides for boosting weakly robust learners.
Lemma 8 ([15]). For any perturbation set U , ↵-Boost (✏, �)-robustly-learns any target concept c

w.r.t. U using T black-box oracle calls to any (13 ,
1
3)-robust-learner B for c w.r.t. U , with total sample

complexity

m(✏, �) = O

✓
mB (1/3, 1/3)

✏
log2

✓
mB (1/3, 1/3)

✏

◆
+

log(1/�)

✏

◆
,

and oracle calls T = O(log(m) (log(1/�) + log logm)).

Lemma 9 (Sample Compression Robust Generalization Guarantee – [15]). For any k 2 N and

fixed function � : (X ⇥ Y)k ! YX
, for any distribution P over X ⇥ Y and any m 2 N, for

S = {(x1, y1), . . . , (xm, ym)} i.i.d. P -distributed random variables, with probability at least 1� �,

if 9i1, . . . , ik 2 {1, . . . ,m} s.t. R̂U (�((xi1 , yi1), . . . , (xik , yik));S) = 0, then

RU (�((xi1 , yi1), . . . , (xik , yik));P)  1

m� k
(k ln(m) + ln(1/�)).

Proof of Lemma 8. Let B be a weak robust learner with fixed parameters (✏0, �0) = (1/3, 1/3) for
some unknown target concept c with respect to U . Let D be some unknown distribution over X
such that Prx⇠D [9z 2 U(x) : c(z) 6= c(x)] = 0. By Definition 2, with fixed sample complexity
m0 = mB(1/3, 1/3), for any distribution D̃ over X such that Prx⇠D̃ [9z 2 U(x) : c(z) 6= c(x)] = 0,
with probability at least 1/3 over S ⇠ D̃

m0
c , RU (B(S); D̃c)  1/3.

We will now boost the confidence and robust error guarantee of the weak robust learner B by running
boosting with respect to the robust loss (rather than the standard 0-1 loss). Specifically, fix (✏, �) 2
(0, 1) and a sample size m(✏, �) that will be determined later. Let S = {(x1, y1), . . . , (xm, ym)} be
an i.i.d. sample from Dc. Run the ↵-Boost algorithm on dataset S using B as the weak robust learner

15

for a number of rounds T that will be determined below. On each round t, ↵-Boost computes an
empirical distribution Dt over S by applying the following update for each (x, y) 2 S:

Dt({(x, y)}) =
Dt�1({(x, y)})

Zt�1
⇥

⇢
e
�2↵

, if [8z 2 U(x) : ht�1(z) = y] = 1;
1, otherwise,

where Zt�1 is a normalization factor, ↵ is a parameter that will be determined below, and ht�1 is
the weak robust predictor outputted by B on round t� 1 that satisfies RU (ht�1;Dt�1)  1/3. Once
Dt is computed, we sample m0 examples from Dt and run weak robust learner B on these examples
to produce a hypothesis ht with robust error guarantee RU (ht;Dt)  1/3. This step has failure
probability at most �0 = 1/3. We will repeat it for at most dlog(2T/�)e times, until B succeeds
in finding ht with robust error guarantee RU (ht;Dt)  1/3. By a union bound argument, we are
guaranteed that with probability at least 1� �/2, for each 1  t  T , RU (ht;Dt)  1/3. Following
the argument from [18, Section 6.4.2], after T rounds we are guaranteed

min
(x,y)2S

1

T

TX

t=1

[8z 2 U(x) : ht(z) = y] � 2

3
� 2

3
↵� ln(|S|)

2↵T
,

so we will plan on running until round T = 1 + 48 ln(|S|) with value ↵ = 1/8 to guarantee

min
(x,y)2S

1

T

TX

t=1

[8z 2 U(x) : ht(z) = y] >
1

2
,

so that the majority-vote classifier MAJ(h1, . . . , hT) achieves zero robust loss on the empirical
dataset S, RU (MAJ(h1, . . . , hL);S) = 0.

Note that each of these classifiers ht is equal to B(S0
t) for some S

0
t ✓ S with |S0

t| = m0. Thus,
the classifier MAJ(h1, . . . , hT) is representable as the value of an (order-dependent) reconstruction
function � with a compression set size m0T = m0O(logm). Now, invoking Lemma 9, with
probability at least 1� �/2,

RU (MAJ(h1, . . . , hT);D)  O

✓
m0 log

2
m

m
+

log(2/�)

m

◆
,

and setting this less than ✏ and solving for a sufficient size of m yields the stated sample complexity
bound.

We are now ready to proceed with the proof of Corollary 2.

Proof of Corollary 2. The main idea is to perform two layers of boosting. In the first layer, we use �-
RoBoost to get a weak robust learner for c w.r.t. U from a barely robust learner A for c w.r.t. U�1(U).
Then, in the second layer, we use ↵-Boost to boost �-RoBoost from a weak robust learner to a strong

robust learner for c w.r.t. U .

Let A be a (�, �
6 ,

�
6 ln(6))-barely-robust-learner A for c w.r.t. U�1(U). Let (✏0, �0, T0) = (13 ,

1
3 ,

ln(6)
�),

and observe that A is a (�, �✏0
2 ,

�0
2T0

)-barely-robust-learner for c w.r.t. U�1(U). By Theorem 1,
�-RoBoost (✏0, �0)-robustly-learns c w.r.t. U using T0 black-box oracle calls to A, with sample

complexity m0 = O

✓
max{mA,4 ln(6 ln(6)

�)}
�

◆
. Finally, by Lemma 8, ↵-Boost (✏, �)-robustly-learns c

w.r.t. U using m(✏, �) = O

⇣
m0
✏ log

�
m0
✏

�
+ log(1/�)

✏

⌘
samples, and O(logm) black-box oracle calls

to �-RoBoost.

C Proof of Theorem 4

Proof of Lemma 5. Without loss of generality, let y = +1. Let x 2 supp(D) such that x 2 RobU (ĥ).
In case ĥ(x) = +1, then by definition of g+, since x 2 U�1(U(x)), it holds that g+(x) = +1. In
case ĥ(x) = �1, then ¬9x̃ 2 RobU (ĥ) such that ĥ(x̃) = +1 and U(x̃) \ U(x) 6= ;, which
implies that x /2

S
U�1(U(x̃))

x̃2RobU (ĥ)^ĥ(x̃)=+1

, and therefore, g+(x) = �1. This establishes that in the

16

robust region of ĥ, RobU (ĥ), the predictions of g+ on natural examples x ⇠ D are equal to the
predictions of ĥ. We will use this observation, in addition to the fact that the robust risk of ĥ is small
(Prx⇠D

h
9z 2 U(x) : ĥ(z) 6= c(x)

i
 ✏) to show that the error of g+ on natural examples is small.

Specifically, by law of total probability,

Pr
x⇠D

[g+(x) 6= c(x)]= Pr
x⇠D

h
g+(x) 6= c(x) ^ x 2 RobU (ĥ)

i
+ Pr

x⇠D

h
g+(x) 6= c(x) ^ x /2 RobU (ĥ)

i

= Pr
x⇠D

h
ĥ(x) 6= c(x) ^ x 2 RobU (ĥ)

i
+ Pr

x⇠D

h
g+(x) 6= c(x) ^ x /2 RobU (ĥ)

i

 Pr
x⇠D

h
ĥ(x) 6= c(x) ^ x 2 RobU (ĥ)

i
+ Pr

x⇠D

h
x /2 RobU (ĥ)

i
 ✏+ ✏ = 2✏.

Finally, observe that for any x 2 RobU (ĥ) such that ĥ(x) = +1, by definition of g+, it holds that
x 2 RobU�1(U)(g+), thus

Pr
x⇠D

⇥
x 2 RobU�1(U)(g+)

⇤
� Pr

x⇠D

h
x 2 RobU (ĥ) ^ ĥ(x) = +1

i

= Pr
x⇠D

h
x 2 RobU (ĥ)

i
Pr
x⇠D

h
ĥ(x) = +1

��x 2 RobU (ĥ)
i

� (1� ✏) Pr
x⇠D

h
ĥ(x) = +1

��x 2 RobU (ĥ)
i
.

Proof of Theorem 4. Let U be an arbitrary perturbation set, and B an (✏, �)-robust learner for some
unknown target concept c : X ! Y with respect to U . We will construct another learner B̃ that
(�, 2✏, 2�)-barely-robustly-learns c with respect to U�1(U), with � = (1 � ✏)/2. Let D be some
unknown distribution over X that is robustly realizable: Prx⇠D [9z 2 U(x) : c(z) 6= c(x)] = 0.

Description of B̃. Sample S ⇠ D
mB(✏,�)
c , and run learner B on S. Let ĥ = B(S) be the predictor

returned by B. Let m̃ � 64
9 ln(1/�). For each 1  i  m̃, consider the following process:

draw an example (x, y) ⇠ Dc. If x 2 RobU (ĥ) terminate, otherwise repeat the process again.
Let S̃ = {(x1, y1), . . . , (xm̃, ym̃)} be the sample resulting from this process. Calculate M+ =
1

|S̃|
P

x2S̃ [ĥ(x) = +1]. If M+ � 1/2, output g+, otherwise, output g� (as defined in Lemma 5).

Analysis. With probability at least 1� � over S ⇠ D
m
c , ĥ has small robust risk: RU (ĥ;Dc)  ✏.

Lemma 5 implies then that for each y 2 {±1}, gy satisfies:

Pr
x⇠D

[gy(x) 6= c(x)]  2✏ and Pr
x⇠D

⇥
x 2 RobU�1(U)(gy)

⇤
� (1�✏) Pr

x⇠D

h
ĥ(x) = y

��x 2 RobU (ĥ)
i
.

It remains to show that with probability at least 1� � over S̃ ⇠ D
m̃, for gŷ returned by B̃:

Pr
x⇠D

h
ĥ(x) = ŷ

��x 2 RobU (ĥ)
i
� 1

2
.

Observe that by the rejection sampling mechanism of B̃, S̃ is a sample from the region of distribution
D where ĥ is robust. Furthermore, we know that

max
n

Pr
x⇠D

h
ĥ(x) = +1

��x 2 RobU (ĥ)
i
, Pr
x⇠D

h
ĥ(x) = �1

��x 2 RobU (ĥ)
io

� 1

2
.

Without loss of generality, suppose that p = Prx⇠D

h
ĥ(x) = +1

��x 2 RobU (ĥ)
i
� 1/2. Then, the

failure event is that B̃ outputs g�, i.e. the event that M+ <
1
2 . By a standard application of the

Chernoff bound, we get that

Pr
S̃


M+ <

1

2

�
 e

�m̃p 1
4 (1

2
� 1

p)
2

2  e
� 9m̃

64  �,

17

where the last inequality follows from the choice of m̃ in the description of B̃.

Finally, to conclude, observe that the sample complexity of learner B̃ is equal to mB(✏, �) plus the
number of samples drawn from D to construct S̃. For each 1  i  m̃, let Xi be the number of
samples drawn from D until a sample from the robust region RobU (ĥ) was observed. Note that Xi

is a geometric random variable with mean at most 1/(1� ✏). By a standard concentration inequality
for the sums of i.i.d. geometric random variables [4],

Pr

"
m̃X

i=1

Xi > 2
m̃

1� ✏

#
 e

� m̃
4  �,

where the last inequality follows from the choice of m̃ in the description of B̃. Thus, with probability
at least 1��, the total sample complexity is mB(✏, �)+ 2m̃

1�✏ . This concludes that learner B̃ (�, 2✏, 2�)-
barely-robustly-learns c w.r.t. U�1(U), where � = (1� ✏)/2.

D Proof of Theorem 6

Definition 4 (Robust Shattering Dimension). A sequence z1, . . . , zk 2 X is said to be U-robustly

shattered by C if 9x+
1 , x

�
1 , . . . , x

+
k , x

�
k 2 X such that 8i 2 [k], zi 2 U(x+

i) \ U(x�
i) and

8y1, . . . , yk 2 {±1} : 9h 2 C such that h(z0) = yi8z0 2 U(xyi
i), 81  i  k. The U-robust

shattering dimension dimU (C) is defined as the largest k for which there exist k points U-robustly
shattered by C.

The following lemma due to [15] states that finite robust shattering dimension dimU (C) is necessary

for strongly robustly learning C with respect to U .
Lemma 10 ([15]). For any class C and any perturbation set U , C is (✏, �)-robustly-learnable with

respect to U only if dimU (C) is finite.

We are now ready to proceed with the proof of Theorem 6.

Proof of Theorem 6. Pick three infinite unique sequences (x+
n)n2N, (x�

n)n2N, and (zn)n2N from
R2 such that for each n 2 N : x

+
n = (n, 1), x�

n = (n,�1), zn = (n, 0), and let X =
[n2N {x+

n , x
�
n , zn}. We now describe the construction of the perturbation set U . For each n 2 N, let

U(x+
n) = {x+

n , zn} ,U(x�
n) = {x�

n , zn} , and U(zn) = {zn, x+
n , x

�
n }.

We now describe the construction of the concept class C. For each y 2 {±1}N define hy : X ! Y
to be:

8n 2 N : hy(zn) = yn ^ hy(x
+
n) = +1 ^ hy(x

�
n) = �1. (12)

Let C =
n
hy : y 2 {±1}N

o
. Observe that by construction of U and C, C robustly shatters the

sequence (zn)n2N with respect to U (see Definition 4), and therefore, the robust shattering dimension
of C with respect to U , dimU (C), is infinite. Thus, Lemma 10 implies that C is not (✏, �)-strongly-
robustly-learnable with respect to U .

We will now show that there is a simple learner A that (�, ✏, �)-barely-robustly-learns C with respect
to U , with robustness parameter � = 1

2 and natural error ✏ = 0. Specifically, A samples a bitstring
ỹ 2 {±1}N uniformly at random, and outputs the classifier hỹ . Learner A will not require any data
as input.

We now proceed with analyzing the performance of learner A. Let hy 2 C be some un-
known target concept and D be some unknown distribution over X that is robustly realizable:
Prx⇠D [9z 2 U(x) : hy(z) 6= y] = 0. Since D is robustly realizable, by construction of U and C,
this implies that

8n 2 N : D(zn) = 0 and D(x�yn
n) = 0. (13)

This is because U(zn) = {zn, x+
n , x

�
n } and Equation 12 implies that hy is not robust on zn since

hy(x+
n) 6= hy(x�

n), also U(x+
n) \ U(x�

n) = {zn} and since hy(zn) = yn this implies that hy

is not robust on x
�yn
n . Equation 13 and Equation 12 together imply that the random classifier

hỹ 2 C selected by learner A has zero error on natural examples: with probability 1 over ỹ,
Prx⇠D [hỹ(x) 6= hy(x)] = 0.

18

We now turn to analyzing the robust risk of learner A,

Ẽ
y

h
E

x⇠D
[{9z 2 U(x) : hỹ(z) 6= hy(x)}]

i
= E

x⇠D


Ẽ
y
[{9z 2 U(x) : hỹ(z) 6= hy(x)}]

�

=
X

n2N
D(xyn

n) Ẽ
y
[{9z 2 U(xyn

n) : hỹ(z) 6= hy(x
yn
n)}]

=
X

n2N
D(xyn

n) Ẽ
y
[{hỹ(zn) 6= hy(x

yn
n)}]

=
X

n2N
D(xyn

n) Ẽ
y
[{ỹn 6= yn}] =

X

n2N
D(xyn

n)
1

2
=

1

2
.

This implies that in expectation over randomness of learner A, it will be robust on half the mass of
distribution D: Eỹ Ex⇠D [x 2 RobU (hỹ)] =

1
2 .

E Robustness at Different Levels of Granularity

For concreteness, throughout the rest of this section, we consider robustness with respect to metric
balls B�(x) = {z 2 X : ⇢(x, z)  �} where ⇢ is some metric on X (e.g., `1 metric), and � > 0
is the perturbation radius. Achieving small robust risk with respect to a fixed perturbation set
B� is the common goal studied in adversarially robust learning. What we studied so far in this
work is learning a predictor ĥ robust to U = B� perturbations as measured by the robust risk:
Pr(x,y)⇠D

h
9z 2 B�(x) : ĥ(z) 6= y

i
, when given access to a learner A barely robust with respect to

U�1(U) = B2� .

Our original approach to boosting robustness naturally leads us to an alternate interesting idea:
learning a cascade of robust predictors with different levels of granularity. This might be desirable
in situations where it is difficult to robustly learn a distribution Dc over X ⇥ Y with robustness
granularity � everywhere, and thus, we settle for a weaker goal which is first learning a robust
predictor h1 with granularity � on say � mass of D, and then recursing on the conditional distribution
of D where h1 is not �-robust and learning a robust predictor h2 with granularity �/2, and so on.
That is, we are adaptively learning a sequence of predictors h1, . . . , hT where each predictor ht is
robust with granularity �

2t . Furthermore, if we are guaranteed that in each round we make progress
on some � mass then it follows that

Pr
⇥
[T
t=1Rob�/2t�1(ht)

⇤
= 1� Pr

⇥
\T
t=1Rob�/2t�1(ht)

⇤
� 1� (1� �)T ,

and the cascade predictor CAS(h1:T) has the following robust risk guarantee

TX

t=1

Pr
⇥
R̄1:t�1^

�
9z 2 B�/2t(x) : 8t0<tGht0 (z) =? ^Ght(z)=1�c(x)

�⇤
+Pr

⇥
R̄1:T

⇤
 ✏

�
+(1��)T .

In words, the cascade predictor CAS(h1:T) offers robustness at different granularities. That is, for
x ⇠ D such that x 2 R1, CAS(h1:T) is guaranteed to be robust on x with granularity �, and for
x ⇠ D such that x 2 R̄1 \R2, CAS(h1:T) is guaranteed to be robust on x with granularity �/2, and
so on.

Applications. We give a few examples where this can be useful. Consider using SVMs as barely
robust learners. SVMs are known to be margin maximizing learning algorithms, which is equivalent
to learning linear predictors robust to `2 perturbations. In our context, by combining SVMs with our
boosting algorithm, we can learn a cascade of linear predictors each with a maximal margin on the
conditional distribution.

19

F Python Code

MNIST odd vs. even
from torchvision import datasets , transforms
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.svm import LinearSVC

def flatten(X):
return X.reshape(X.shape [0], -1)

train_set = datasets.MNIST(’./’, train=True , download=True , transform
= transforms.Compose ([transforms.ToTensor ()]))

test_set = datasets.MNIST(’./’, train=False , download=True , transform
= transforms.Compose ([transforms.ToTensor ()]))

X_train = train_set.train_data.numpy()
y_train = train_set.train_labels.numpy()
X_test = test_set.test_data.numpy()
y_test = test_set.test_labels.numpy()
Convert to binary labels
y_train_binary = 2*np.array([y % 2 for y in y_train]) -1
y_test_binary = 2*np.array([y % 2 for y in y_test]) -1

#flatten data
f_X_tr = flatten(X_train) / 255.0
f_X_te = flatten(X_test) / 255.0

sample size , and robustness radius
m, gamma , T = 10000 , 1.0, 2

fit a linear classifier
print(’=== ’)
print(’Baseline Linear Classifier:’)
base_clf = LinearSVC(C=10e-7, fit_intercept=False , loss=’hinge’, tol=1

e-5)
base_clf.fit(f_X_tr , y_train_binary)
print("0-1 Accuracy - Testing:", 100* base_clf.score(f_X_te ,

y_test_binary))

robust accuracy
y_margin = y_test_binary *(base_clf.decision_function(f_X_te) / np.

linalg.norm(base_clf.coef_))
robust_accuracy = len(y_margin[y_margin >= gamma]) / len(y_margin)
print(’Robust Accuracy - Test:’, 100* robust_accuracy)

y_margin = y_train_binary *(base_clf.decision_function(f_X_tr) / np.
linalg.norm(base_clf.coef_))

robust_accuracy = len(y_margin[y_margin >= gamma]) / len(y_margin)
print(’=== ’)

boosting rounds
print(’\nBoosting Robustness ’)
clf = []
for t in range(1,T+1):

print("round ", t)
SVM
lin_clf = LinearSVC(C=10e-7, fit_intercept=False , loss=’hinge ’,

tol=1e-5)
lin_clf.fit(f_X_tr , y_train_binary)
clf.append(lin_clf)

if t < T:
Compute margin on fresh sample

20

margin = lin_clf.decision_function(f_X_tr) / np.linalg.norm(
lin_clf.coef_)

amargin = abs(margin)
print("Fraction of Training Data with Robustness at least 2

gamma: ", 100* float(len(amargin[amargin >= 2*gamma])/len(
amargin)))

print(len(amargin[amargin < 2*gamma]), " samples with small
margin")

Update / Filter training data
f_X_tr = f_X_tr[amargin < 2* gamma]
y_train_binary = y_train_binary[amargin < 2*gamma]

Evaluation
print(’\nEvaluation - Test’)
print(’number of test samples ’, len(y_test_binary))
adv_mistake = 0
total = len(y_test_binary)
for t in range(0,T):

print(’round ’, t)
amargin = abs(clf[t]. decision_function(f_X_te) / np.linalg.norm(

clf[t].coef_))
y_margin = y_test_binary *(clf[t]. decision_function(f_X_te) / np.

linalg.norm(clf[t]. coef_))
adv_mistake += len(y_test_binary[y_margin < -1*gamma])
print(’adversarial mistakes ’, len(y_test_binary[y_margin < -1*

gamma]))

f_X_te = f_X_te [(y_margin < 2* gamma) & (y_margin >= -1*gamma)]
y_test_binary = y_test_binary [(y_margin < 2*gamma) & (y_margin >=

-1*gamma)]
print(’abstained on data’, len(y_test_binary), len(f_X_te))

last round
if t == T-1 and len(f_X_te) >0:

y_margin = y_test_binary *(clf[t]. decision_function(f_X_te) /
np.linalg.norm(clf[t].coef_))

print(’classifications in final round’, len(y_margin))
ee = len(y_test_binary [(y_margin < gamma)])
print(’extra mistakes ’, ee)
adv_mistake += ee

print(’total number of adv. mistakes ’, adv_mistake)
print(’=== ’)
print(’Cascade Robust Accuracy:’, 100* float((total - adv_mistake)/

total))
print(’=== ’)

21

	1 Introduction
	1.1 Main contributions
	1.2 Related work

	2 Preliminaries
	3 Boosting a barely robust Learner to a strongly robust learner
	4 The Necessity of barely robust learning
	5 Discussion
	6 Simple Experiments
	A Boosting Robustness with Unlabeled Data
	B Auxiliary Lemmas and Proofs for Corollary 2
	C Proof of Theorem 4
	D Proof of Theorem 6
	E Robustness at Different Levels of Granularity
	F Python Code

