
Published as a conference paper at ICLR 2025

APPENDIX

A RELATED WORK

Low-Rank Adaptation. LoRA (Low-Rank Adaptation) (Hu et al., 2022) has emerged as a promi-
nent technique for parameter-efficient fine-tuning (PEFT) (Li & Liang, 2021; Lester et al., 2021; Liu
et al., 2021; Qiu et al., 2023; Liu et al., 2024b; 2022). By injecting lightweight, trainable low-rank
decomposition matrices into frozen pre-trained weights, LoRA enables efficient task customization,
especially in resource-constrained settings. Some LoRA variants (Liu et al., 2024a; Ding et al.,
2023; Zi et al., 2023; Zhang et al., 2023b; Kalajdzievski, 2023) have been developed to enhance its
generalization and robustness, while others (Zhou et al., 2024; Zhang et al., 2023a; Kopiczko et al.,
2024; Azizi et al., 2024; Wang et al., 2024) address the increased memory overhead associated with
scaling up model sizes. However, during training, these efficient LoRA variants still struggle with
the substantial memory footprint of the original LLM parameters.

LoRA-related Compression. Model compression techniques like quantization (Han et al., 2015;
Jacob et al., 2018; Nagel et al., 2019; Zhao et al., 2019; Yao et al., 2022; Park et al., 2022; Dettmers
et al., 2022; Xiao et al., 2022; Frantar et al., 2022), sparsification (Molchanov et al., 2016; Liu et al.,
2018; He et al., 2019; Hoefler et al., 2021; Frantar & Alistarh, 2023b; Liu et al., 2023; Bansal et al.,
2022), and distillation (Hinton et al., 2015; Cho & Hariharan, 2019; Tang et al., 2019; Touvron
et al., 2021; Hsieh et al., 2023; Gu et al., 2024b) have proven effective in reducing the memory
footprint of LLM during training and inference. Naturally, the concept of compression has been
adapted to LoRA to alleviate the substantial memory consumption dominated by pre-trained model
parameters. In particular, LoRA-related quantization schemes (Dettmers et al., 2023; Xu et al., 2024;
Li et al., 2024; Guo et al., 2024; Frantar et al., 2023; Chai et al., 2023) have been widely explored,
but they still face the limitations of 1-bit precision, typically quantize weights to 4-bit to balance
training efficiency with performance. Our work aims to push the boundaries of memory-efficient
LoRA training by leveraging sparsification to achieve cost-effective performance improvements.
Notably, existing LoRA-related sparsification works (Chen et al., 2023; Zhang et al., 2024a) focus
on designing pruning algorithms to slim down models and use LoRA to recover the knowledge of
pruned models, thereby producing compact but high-quality models. In contrast, LORAM enables
effective general pruning under high base-model sparsity, whereas (Gu et al., 2024a) focuses on
task-specific LoRA sparsification with limited impact on base model memory reduction.

B EXPERIMENTAL DETAILS

Pre-train Corpus. To align the inconsistent knowledge between the pruned model during training
and the original model during inference, we apply LORAM to continual pre-training LLMs in a
teacher-forcing manner (Bachmann & Nagarajan, 2024) on a mixed corpus of FineWeb (Penedo
et al., 2024) and OpenWebMath (Paster et al., 2023). FineWeb, containing over 15TB of cleaned
and deduplicated English web data from Common Crawl. OpenWebMath, extracted from over
200 billion HTML files on Common Crawl, provides high-quality mathematical text. Mixing these
datasets enhances the pruned model’s capabilities in both general and mathematical domains.

Unless specified otherwise, we randomly sample 102,400 instances from both FineWeb and Open-
WebMath to construct a mixed dataset with a sequence length of 512, yielding approximately 105
million tokens. The default training batch size is 128, allowing up to 1,600 update steps. We train
without data repetition over a sufficiently large corpus to simulate a realistic pre-training scenario.
Notably, this alignment process is a one-time, offline operation that model publishers can execute.

Fine-tuning Data. Following the fine-tuning scenario of LoRA (Hu et al., 2022), we primarily
conduct supervised fine-tuning (SFT) on the OpenHermes-2.5 (Teknium, 2023) (referred to as Open-
Hermes). OpenHermes is a large-scale dataset constructed from synthetically generated instructions
and chat samples, encompassing diverse sources such as Airoboros 2.2 (Wang et al., 2023), Came-
lAI Domain Expert Dataset (Li et al., 2023), ChatBot Arena (GPT-4 Only) (Zheng et al., 2023),
and more. To further demonstrate the general effectiveness of the LORAM alignment process, we
also evaluate LORAM on the OpenOrca (Lian et al., 2023) dataset. OpenOrca is a widely used

18



Published as a conference paper at ICLR 2025

instruction fine-tuning dataset where each data instance represents entries from the FLAN collec-
tion (Longpre et al., 2023), augmented by submitting the listed questions to either GPT-4 or GPT-3.5.

By default, we train SFT on the instruction dataset with a batch size of 128 and a sequence length
of 512 for 400 steps, totaling approximately 26.2 million tokens. To effectively evaluate the overall
fine-tuning performance, we assess the perplexity of the fine-tuned model on an out-of-domain test
set. This out-of-domain test set is constructed by randomly sampling 2,000 instances from the
Alpaca (Taori et al., 2023) test set, truncated to a sequence length of 512.

Downstream Task. We focus on the performance of LORAM in various downstream tasks, in-
cluding mathematical reasoning, common sense reasoning, and code generation. All our down-
stream task evaluations are performed on lm-evaluation-harness5 and code-eval 6 with VLLM 7.

For mathematical reasoning, we benchmark the accuracy of baseline models using greedy decoding
on MathQA (Amini et al., 2019) with a 1-shot setting and GSM8K (Grade School Math 8K) (Cobbe
et al., 2021) with 8-shots, Chain of Thought (CoT) prompting and strict match MathQA is a large-
scale dataset comprising 37k English multiple-choice math word problems, covering diverse math
domains. It extends the AQuA-RAT dataset (Ling et al., 2017) by annotating problems with fully
specified operational programs using a new representation language, building on the questions, op-
tions, rationale, and correct answers provided by AQuA-RAT. The GSM8K is a dataset of 8.5K
high-quality, linguistically diverse grade school math word problems, designed to evaluate multi-
step reasoning in basic arithmetic operations (+-!÷). We conduct evaluations on its 1.3K test set
with strict-match to assess logical and mathematical reasoning in language models.

For commonsense reasoning (CSR), we report the average accuracy across six tasks—Arc Challenge
& Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al., 2021)—under 1-shot and greedy de-
coding settings. These benchmarks comprehensively assess the model’s ability to apply “common-
sense” or world knowledge for reasoning, rather than relying on pattern recognition.

For code generation, we compare two pass rates, PASS@1 and PASS@10 (Kulal et al., 2019), on
HumanEval (Chen et al., 2021) of each baseline in a zero-shot setting with sampling parameters of
TEMPERATURE = {0.0, 0.2, 0.4, 0.6, 0.8}, and TOPP = 0.95. The HumanEval dataset released by
OpenAI consists of 164 handwritten Python programming problems, each with a function signature,
docstring, body, and unit tests. Serving as a benchmark, HumanEval assesses models on a range
of Python coding skills, from basic syntax to complex problem-solving, offering insights into their
programming capabilities alongside language-focused tasks.

Sparsification & Quantization. LORAM incorporates two model compression techniques: spar-
sification, which generates a pruned model for low-rank matrix updates, and quantization, which
forms QLORAM further to reduce the memory footprint of the pruned model. For sparsification,
to validate the general effectiveness of LORAM, we benchmark its performance across various
pruning strategies P(·). Specifically, we first establish a variant using randomly structured pruning
and adapt LORAM to another three variants based on leading approaches: the structured pruning
LLM-Pruner8 (Ma et al., 2023) and the non-structured (semi-structured & unstructured) pruning
SparseGPT9 (Frantar & Alistarh, 2023a). These baselines are summarized below, with the corre-
sponding configurations presented in Tables 4 to 6.

• LORAM-RAND: We adhere to the pruning settings of LORAM-STRU, modifying only by
randomly removing weights instead of the original gradient-based pruning criterion.

• LORAM-STRU: We follow LLM-Pruner and employ a block-wise strategy for local structured
pruning. Attention and MLP layers are treated as separate blocks, with non-critical coupling
weights pruned based on gradient information at a uniform ratio. We retain the first four and
last two layers of both blocks, focusing pruning on the intermediate layers.

5 https://github.com/EleutherAI/lm-evaluation-harness (MIT License).
6 https://github.com/abacaj/code-eval (MIT License).
7 https://github.com/vllm-project/vllm (Apache-2.0 license).
8https://github.com/horseee/LLM-Pruner (Apache-2.0 license)
9https://github.com/IST-DASLab/sparsegpt (Apache-2.0 license)

19

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/abacaj/code-eval
https://github.com/vllm-project/vllm
https://github.com/horseee/LLM-Pruner
https://github.com/IST-DASLab/sparsegpt


Published as a conference paper at ICLR 2025

• LORAM-SEMI: We utilize SparseGPT with a 4:8 semi-structured sparsity pattern to prune
pre-trained weights across all model layers.

• LORAM-UNST: We prune individual weights uniformly across layers using a predefined
pruning ratio based on an unstructured version of SparseGPT.

For quantization Q(·), to further reduce memory usage during training, especially when dealing with
models exceeding 70 billion parameters, we achieve QLORAM by combining LORAM with the
LoRA-tailored quantization algorithm QLoRA (Dettmers et al., 2023). While LORAM is compati-
ble with the quantization of other customized LoRA methods (Xu et al., 2024; Li et al., 2024; Guo
et al., 2024; Frantar et al., 2023; Chai et al., 2023), this falls outside the scope of this article.

Architecture & Hyperparameters. We adopt a LLaMA architecture with RMSNorm (Zhang &
Sennrich, 2019) and SwiGLU activations (Shazeer, 2020; Zhao et al., 2022). We run all experiments
with BF16 format to reduce memory usage. For all configurations, we default to a learning rate of 1e-
3. However, the downstream performance of models fine-tuned on OpenOrca is relatively sensitive
to the learning rate. Therefore, in this evaluation, we tune the learning rates for each baseline within
the range of [1e-5, 1e-3] and report their respective optimal downstream scores. Specifically, we use
1e-5 for the 7B LoRA and 13B & 70B LoRAM models, and 1e-4 for the 13B LoRA model. All
experiments run on NVIDIA A100-80GB GPUs with environments of CUDA 12.2, PyTorch 2.4.0,
and Transformer 4.45.1. For LLaMA-2 herds, we set low-rank matrices B and A of rank r = 8
for Wq, Wk, Wv, and Wo in the attention layer, Wup, Wgate, and Wdown in the MLP layer, and
the head embedding matrix Wlm head; for LLaMA-3 herds, we exclude the injection of the low-rank
matrix of Wlm head.

Table 4: LoRAM configures on LLaMA-2-13B. Comparison of different pruning methods in terms
of parameter reduction ratio (Reduction) and HBM footprint (GB) of pruned parameters (HBM),
ignoring low-rank matrix overhead.

Method #Orig. Params Pruning Ratio #Pruned Params Reduction HBM

LoRAM-Semi 13015864320 0.50 6738415616 1.93→ 12.55
LoRAM-Unst 13015864320 0.55 6037628912 2.16→ 11.25
LoRAM-Rand & Stru 13015864320 0.65 6005662720 2.17→ 11.19

Table 5: LoRAM configures on LLaMA-2-70B and LLaMA-3.1-70B with different pruning ratios.

Method #Orig. Params Pruning Ratio #Pruned Params Reduction HBM

LoRAM-Rand & Stru 68976648192 0.65 28099436544 2.45→ 52.34
LoRAM-Rand & Stru 68976648192 0.75 21488738304 3.21→ 40.03
LoRAM-Rand & Stru 68976648192 0.85 16272924672 4.24→ 30.31
LoRAM-Rand & Stru 68976648192 0.95 9662226432 7.14→ 18.00
LoRAM-Rand & Stru 70553706496 0.85 17849982976 3.95→ 33.25

Table 6: QLoRAM configures on LLaMA-2-70B and LLaMA-3.1-70B with , demonstrating more
aggressive parameter compression.

Method #Orig. Params Pruning Ratio #Pruned Params Reduction HBM

QLoRAM-Rand & Stru 68976648192 0.65 7024859136 9.82→ 13.08
QLoRAM-Rand & Stru 68976648192 0.75 5372184576 12.84→ 10.01
QLoRAM-Rand & Stru 68976648192 0.85 4068231168 16.95→ 7.58
QLoRAM-Rand & Stru 68976648192 0.95 2415556608 28.56→ 4.50
QLoRAM-Rand & Stru 70553706496 0.85 4462495744 15.81→ 8.31

20



Published as a conference paper at ICLR 2025

C VISUALIZATION OF DIMENSION EVOLUTION

To clearly illustrate the evolution of weight matrix dimensions across the multiple stages in the
proposed scheme, we take LLM-Pruner (Ma et al., 2023) as an example in (e.g., LORAM-STRU)
in Fig. 9, visualizing the transformation from W0 ↑ WP

0, W! ↑ WP
!, and WPω

! ↑ WRω

!
under LORAM with structured pruning. For LORAM variants employing non-structured pruning,
the parameter dimensionality remains unchanged during training due to the use of a mask matrix.
Therefore, these visualizations are omitted.

!

Original Full-Rank Weight 
"∗ (∗∈ {q, k, v, up, gate})
"∗" (∗∈ {o, down})

5

!×(8 − :))

<

<

!
5 5

<

5 !×(8 − :)

<

Pruned Full-Rank Weight 
"∗# (∗∈ {q, k, v, up, gate})
"∗#

" (∗∈ {o, down})

(a) !! ⇒ !!
"

$=5 : hidden size 
%=4 : intermediate size
&=2 : matrix rank
'=0.40 : pruning ratio

(b) !# ⇒ !#
"

&

<

!5

<

5 !×(8 − :))

<

(c) !#
"⋆ ⇒ !#

$⋆

Original Low-Rank Matrix 
=∗ (∗∈ {q, k, v, up, gate})
>∗ (∗∈ {o, down})

>∗ (∗∈ {q, k, v, up, gate})
=∗ (∗∈ {o, down})

Pruned Low-Rank Matrix 
=∗# (∗∈ {q, k, v, up, gate})
>∗# (∗∈ {o, down})

>∗# (∗∈ {q, k, v, up, gate})
=∗# (∗∈ {o, down})

Trained Pruned Low-Rank Matrix 
=∗#⋆ (∗∈ {q, k, v, up, gate})
>∗#⋆ (∗∈ {o, down})

>∗#⋆ (∗∈ {q, k, v, up, gate})
=∗#⋆ (∗∈ {o, down})

Trained Recovered Low-Rank Matrix 
=∗(⋆ (∗∈ {q, k, v, up, gate})
>∗(⋆ (∗∈ {o, down})

>∗(⋆ (∗∈ {q, k, v, up, gate})
=∗(⋆ (∗∈ {o, down})

!# !#
"

!#
"⋆ !#

$⋆

Figure 9: Dimensional evolution of the weight matrices: W0 ↑ WP
0 (a), W! ↑ WP

! (b), and
WPω

! ↑ WRω

! (c) during LORAM-STRU training. This includes updates for Wq, Wk, Wv, and
Wo in the attention layer, as well as Wup, Wgate, and Wdown in the MLP layer.

21



Published as a conference paper at ICLR 2025

D VISUALIZATION OF LOW-RANK MATRICES

In this section, we utilize the L2-norm to evaluate variations in low-rank matrices trained with
different LORAM variants. This metric facilitates the visualization of captured features and allows
for an analysis of LORAM’s effectiveness. Specifically, we examine the updated low-rank matrices
in the self-attention and MLP layers of LLaMA-2-13B and LLaMA-2-70B, trained with LORAM
variants on OpenHermes.

D.1 HEAD-WISE NORM OF ATTENTION

For the low-rank matrices in the attention layer, denoted as W!→ where ↓ ↔ {q, k, v, o}, we compute
the L2 norms for each attention head. Let H→ represent the number of heads. The L2 norms for each
head h (where h = 0, 1, . . . ,H→ ↗ 1) are defined as follows:

↘W(h)
!→↘2 =

{
↘W!→ [h, :]↘2 if ↓ ↔ {q, k, v}
↘W!→ [:, h]↘2 if ↓ = o

. (10)

The results are visualized through heatmaps in Figs. 10 and 12, effectively illustrating the distribu-
tion of features captured by different attention heads.

D.2 LAYER-WISE NORM OF MLP

For the low-rank matrices in the MLP layers, denoted as W!→ where !→ ↔ {up, gate, down},
we denote the number of layers as L. The average L2 norm for a specific layer l (where l =
0, 1, . . . ,L ↗ 1) is computed as follows, excluding elements equal to zero using a mask, ensuring
that only active parameters contribute to the average:

↘W(l)
!→↘2 =






1
m

∑m↑1
i=0

∥∥∥W(l)
!→ [i, :]

∥∥∥
2
· I(W(l)

!→ [i, :] ≃= 0) if !→ ↔ {up, gate}
1
n

∑n↑1
j=0

∥∥∥W(l)
!→ [:, j]

∥∥∥
2
· I(W(l)

!→ [:, j] ≃= 0) if !→ = down
. (11)

Here, I(·) denotes the indicator function, which returns 1 only when the corresponding element is
non-zero, effectively excluding zero elements from the average calculation. The average norms for
the MLP layers are visualized in Figs. 11 and 13, clearly depicting the trends in updating amplitudes
across the various projections.

D.3 ATTENTION UPDATE PATTERNS

Layer Update Patterns in LORAM and LoRA. Figs. 10 and 12 reveal that both LoRA and LO-
RAM display similar layer update behaviors. In any low-rank matrix W!→ where ↓ ↔ {q, k, v, o},
deeper colors predominantly concentrate in either shallow or deep layers, while middle layers re-
ceive relatively few updates. This suggests that training primarily focuses on optimizing the shallow
layers to capture semantic information, with deeper layers refining this knowledge, rendering middle
layers somewhat redundant.

More Uniform Projection Updates in LORAM. Figs. 10 and 12 further indicates that updates
in the LoRA-trained low-rank matrices, particularly for W!v , are relatively uniform, exhibiting
substantial deep colors across multiple heads. In contrast, other matrices emphasize specific rows
and heads. For instance, in the 70B model’s W!k , only the heads in the uppermost layers experience
significant updates, while lower layers show minimal changes. This suggests that the unpruned
model retains rich knowledge, requiring only minor adjustments to a few heads in certain layers
for task adaptation. Conversely, LORAM demonstrates a more uniform distribution of deep colors
across each low-rank matrix, indicating that the pruned model must effectively utilize every limited
neuron to capture knowledge, thereby enhancing downstream performance.

22



Published as a conference paper at ICLR 2025

Figure 10: Visualization of low-rank matrices in the attention layers of LLaMA-2-13B.

Figure 11: Average L2 norms of low-rank matrices in the MLP layers of LLaMA-2-70B.

23



Published as a conference paper at ICLR 2025

Figure 12: Visualization of low-rank matrices in the attention layers of LLaMA-2-70B.

Figure 13: Average L2 norms of low-rank matrices in the MLP layers of LLaMA-2-70B.

D.4 MLP UPDATE PATTERNS

LORAM Exhibits Greater Update Amplitude than LoRA. For both the 13B and 70B models,
LORAM consistently exhibits a greater update amplitude across each layer compared to LoRA, as
shown in Figs. 11 and 13. This increased amplitude indicates that LORAM is more effective in
adjusting the weights in all layers, thus enhancing the adaptability and overall performance.

Distinct Update Trends in Layer Amplitudes. The amplitude changes reveal a distinct pattern
in Figs. 11 and 13: first decreasing, then increasing, and finally decreasing again. Shallow layers
(0-3) and deeper layers (25-35 for the 13B model and 50–75 for the 70B model) undergo intensive
updates. This behavior indicates that model prioritizes foundational feature extraction in shallow
layers and the refinement of complex representations in deeper layers. Such a strategic update dis-
tribution optimizes the learning process, ensuring effective capture of basic and advanced features.

D.5 ANALYSIS OF UNCHANGED WEIGHTS

Here, we try to analyze the unchanged weights to support the motivation of LoRAM.

24



Published as a conference paper at ICLR 2025

Fine-Grained Visualizations. As the above visualization, we conducted detailed visualizations
comparing the updated magnitudes of pruned and unpruned weights across layers. The results
demonstrate that unpruned weights in both attention and MLP layers exhibit consistently smaller
updates during fine-tuning as shown in Fig. 12, indicating their critical role in preserving the model’s
capacity for inference.

Theoretical Perspective. The phenomenon can be explained by the gradient-based importance
of these weights, which prioritize parameters with minimal updates but high sensitivity during re-
covery. These weights stabilize inference outputs, making them indispensable despite their limited
fine-tuning updates.

Quantitative Evidence Our analysis reveals a strong correlation between weight update magni-
tudes and downstream performance. Pruning weights with smaller updates significantly degrades
performance, highlighting their importance for inference and validating our intuition.

Impact on Large Models The selective pruning strategy shows notable benefits in larger models
such as LLaMA-2-70B, where it outperforms random pruning by a substantial margin. Retaining
critical parameters ensures effective task adaptation and generalization across diverse domains.

25



Published as a conference paper at ICLR 2025

E PERFORMANCE OF SUB-TASKS IN CSR

We report the performance of six sub-tasks in CSR, with Figs. 14 and 15 showcasing the results
for LORAM-trained LLaMA-2-13B and LLaMA-2-70B, respectively. Our findings indicate that
various LORAM variants outperform core competitive benchmarks: for the 13B model, LORAM
surpasses both the untrained 13B and the LoRA-trained 7B, while for the 70B model, it exceeds the
untrained 70B and the LoRA-trained 13B. This demonstrates that LORAM consistently achieves
performance gains across models of different scales while effectively reducing memory usage. Fur-
thermore, selective weight contributions in the 70B model significantly enhance performance, as
evidenced by LORAM-STRU’s marked improvement, particularly in the challenging Arc Challenge
multi-choice question-answering task. This suggests that LORAM-STRU effectively identifies and
leverages weight differences, focusing on the most trainable weights compared to LORAM-RAND.

Figure 14: Performance of six CSR sub-tasks on the trained LLaMA-2-13B using LORAM.

Figure 15: Performance of six CSR sub-tasks on the trained LLaMA-2-70B using LORAM.

26



Published as a conference paper at ICLR 2025

F ALGORITHM OF LORAM

Here, we present the complete algorithm of LORAM in Algorithm 1.

Algorithm 1 LORAM (Memory-Efficient LoRA Training)

Require: original full-rank pre-trained weight W0, alignment corpus DA, and flags FP,FA, FQ,FR.
1: Offline W→

0 Process Stage:
2: if FP then
3: WP

0 = P(W0) = W0 →MP ω Pruned Full-Rank Weight Generation.
4: if FA then
5: WP,A

0 ↑ argmin LA(DA;W
P
0) ω Pruned Full-Rank Weight Alignment.

6: if FQ then
7: WP,A,Q

0 = Q(WP,A
0 ) ω Pruned Full-Rank Weight Quantization.

8: end if
9: else if FQ then

10: WP,Q
0 = Q(WP

0)
11: end if
12: else if FQ then
13: WQ

0 = Q(W0) ω Standard Quantization for LoRA
14: end if
15: Record the processing result of W0 as W→

0 , ↓ ↔ {NULL, P, Q, (P, Q), (P, A), (P, A, Q)}.
16:
17: Online W→

! Training Stage:
18: if FP then ω Pruned Low-Rank Matrix Generation.
19: WP

! = BPAP = P(W!) = W! →MP = BA →MP

20: while TRAINING do ω Pruned Low-Rank Matrix Training.
21: Update low-rank matrix via objective LSFT with the forward pass h = xW→

0 + xWP
!.

22: Return trained low-rank matrix WPω

! = BPωAPω .
23: end while
24: if FR then ω Recovered Low-Rank Matrix Generation.
25: WRω

! = BRωARω = R(WPω

! ) = WPω

! → (1↗MP) ω Structured LORAM
26: else
27: WRω

! = BRωARω = BPωAPω ω Non-structured LORAM
28: end if
29: else
30: while TRAINING do ω Standard LoRA Training.
31: Update low-rank matrix via objective LSFT with the forward pass h = xW→

0 + xW!.
32: Return trained low-rank matrix Wω

! = BωAω.
33: end while
34: end if
35: Record the trained low-rank matrix as W→

!, ↓ ↔ {Rω, ε}.
36:
37: Online W0,W

→
! Inference Stage:

38: while INFERENCE with ↓ is Rω do ω Recovered Low-Rank Matrix Inference.
39: Perform inference with the forward pass h = x(W0 +WRω

! ) = x(W0 +BRωARω).
40: end while
41: while INFERENCE with ↓ is ε do ω Standard LoRA Inference.
42: Perform Inference with the forward pass h = x(W0 +Wω

!) = x(W0 +BωAω).
43: end while

27



Published as a conference paper at ICLR 2025

G TUNING OF LEARNING RATE

We provide additional details on the learning rate tuning process for full LoRA applied to LLaMA-
2-7B and LLaMA-2-13B models, trained on the OpenHermes dataset. These experiments in Fig. 16
demonstrate that a learning rate of 1e-3 consistently achieves the best perplexity across both in-
domain and out-of-domain datasets, further validating the reliability of our comparison.

Figure 16: Learning rate tuning for LLaMA-2-7B and LLaMA-2-13B on OpenHermes using LoRA.

H PERFORMANCE OF DOMAIN-SPECIFIC TASK

To assess the effectiveness of LoRAM in domain-specific tasks, we conducted experiments on
GSM8K (using the training set for tuning and the test set for evaluation), a mathematical reason-
ing benchmark known for its sensitivity to sparsification. Specifically, we trained LLaMA-3.1-70B
using QLoRAM under various configurations.

The results, summarized in Table 7, highlight that LoRAM achieves excellent performance in this
domain-specific setting. Notably, LoRAM-based models maintain high accuracy with substantial
parameter reduction ratios, showcasing their robustness and efficiency in domain-specific tasks.
These findings emphasize LoRAM’s broad applicability beyond general-purpose instruction fine-
tuning.

Table 7: Evaluation of LoRAM on the GSM8K dataset for domain-specific fine-tuning. Results
show accuracy (%) and parameter reduction ratios for different configurations.

LLaMA-3.1 GSM8K Parameter Reduction Ratio
8B w/o Fine-Tuning 55.27 8.79!
8B LoRA (OpenHermes 400) 55.80 8.79!
70B w/o Fine-Tuning 75.28 1.00!
70B QLoRAM-Stru 400 (OpenHermes 400) 80.36 15.81!
70B QLoRAM-Stru 400 (GSM8K 100) 77.18 15.81!
70B QLoRAM-Stru 400 (GSM8K 200) 79.15 15.81!
70B LoRA (OpenHermes 400) 80.74 1.00!

28



Published as a conference paper at ICLR 2025

I ANALYSIS OF LORAM COST

Identifying the costs of LoRAM is indeed important, which is why we report both the number of
training tokens used during the alignment phase and the parameter reduction ratios in the low-rank
training phase. Below, we clarify the two stages of LoRAM:

Offline Knowledge Alignment Phase. The offline phase is task-agnostic and can be conducted
by the model publisher prior to deployment, making its cost negligible for end users. To quantify
the offline cost, we measured the number of training tokens (as in Xia et al. (2024)) rather than end-
to-end latency, which can vary based on hardware configurations. As shown in Figure 5, LoRAM
achieves significant performance gains using only 13 million tokens, demonstrating the efficiency
of the alignment phase.

Online Low-Rank Matrix Training Phase. For the online phase, the memory and latency costs
are primarily determined by the size of the base model parameters, which dominate resource con-
sumption during training. To avoid redundancy in reporting, we focused on parameter reduction
ratios instead of absolute time or memory usage.

Comparative Metrics for Online Training. Here, we provide additional metrics, including mem-
ory and latency comparisons for the online training phase. We conducted experiments using a work-
load of 1024 samples (batch size 128, micro-batch size 4, sequence length 512) randomly selected
from OpenHermes. The results in Table 8 demonstrate that LoRAM with a structured pruning ratio
of 2.17→ (13B ⇐ 6B) achieves comparable peak memory, latency, and throughput to 7B LoRA,
with only minor trade-offs. These differences arise due to the larger layer count in 13B LoRAM,
introducing more non-GEMM operations, slightly affecting latency and throughput.

These results underscore the advantages of LoRAM’s design in achieving substantial resource effi-
ciency without significant trade-offs in memory or latency.

Table 8: Comparison of peak memory (MiB), latency (s), and throughput (samples/s) during the
online training phase for LoRAM and LoRA models. Results are based on a workload of 1024
samples (batch size 128, micro-batch size 4, sequence length 512).

LLaMA-2 #Model Params Reduction Ratio Memory Latency Throughput
7B LoRA 6.73B 1.93→ 30,517 134.27 7.626
13B LoRA 13.02B 1.00→ 51,661 206.07 4.969
13B LoRAM-Stru 6.01B 2.17→ 29,799 147.86 6.925

29



Published as a conference paper at ICLR 2025

J ANALYSIS OF CHANGES IN PERFORMANCE TRENDS

We analyze performance at two stages: after fine-tuning but before recovery, and after both fine-
tuning and recovery.

After Fine-Tuning but Before Recovery. At this stage, the results of LoRAM align with prior
work (e.g., SparseGPT, Wanda, and LLM-Pruner). Unstructured and semi-structured pruning con-
sistently outperform structured pruning (see Fig. 6, solid lines). This trend holds true across
both aligned and unaligned settings, with the performance order as follows: LORAM-SEMI <
LORAM-UNST < LORAM-STRU < LORAM-RAND The slight advantage of LORAM-SEMI
over LORAM-UNST can be attributed to its smaller pruning ratio, which retains more parameters
and mitigates performance degradation.

After Fine-Tuning and Recovery. Post-recovery results show that structured pruning outperforms
unstructured pruning. This can be explained by two factors:

• Preserved Structure for Recovery: Structured pruning maintains the organization of the
pruned weights into coherent structures (e.g., rows and columns in MLP layers, attention
heads in attention layers), ensuring that activations after recovery are aligned with those of
the original model. This alignment improves the recovery process.

• Pruned Weight Quality: The quality of pruned weights influences the recovery effective-
ness. Structured pruning tends to remove less critical weights, leaving more recoverable
parameters. In contrast, unstructured pruning can remove weights that are more difficult to
recover, which negatively impacts performance post-recovery.

These results highlight the interplay between pruning and recovery, suggesting that structured prun-
ing, despite initial performance disadvantages, facilitates more effective recovery.

30


	Introduction
	Memory-Efficient LoRA Training — LoRAM
	Low-Rank Adaptation
	Memory-Efficient LoRA Training

	Experiments
	Setup
	Fine-tuning Convergence
	Downstream Task Performance
	Adaption to LLaMA-3.1
	Necessity of Recovery & Alignment
	Scaling Laws for Parameter Reduction on LoRAM

	Conclusion
	Related Work
	Experimental Details
	Visualization of Dimension Evolution
	Visualization of Low-rank Matrices
	Head-wise Norm of Attention
	Layer-wise Norm of MLP
	Attention Update Patterns
	MLP Update Patterns
	Analysis of Unchanged Weights

	Performance of Sub-Tasks in CSR
	Algorithm of LoRAM
	Tuning of Learning Rate
	Performance of Domain-Specific Task
	Analysis of LoRAM Cost
	Analysis of Changes in Performance Trends

