
Published as a conference paper at ICLR 2025

DYNAMIC-SUPERB PHASE-2: A COLLABORATIVELY
EXPANDING BENCHMARK FOR MEASURING THE CA-
PABILITIES OF SPOKEN LANGUAGE MODELS WITH
180 TASKS

Chien-yu Huang1, Wei-Chih Chen1, Shu-wen Yang1, Andy T. Liu1, Chen-An Li1,
Yu-Xiang Lin1, Wei-Cheng Tseng2, Anuj Diwan2, Yi-Jen Shih2, Jiatong Shi3, William Chen3,
Chih-Kai Yang1, Xuanjun Chen1, Chi-Yuan Hsiao1, Puyuan Peng2, Shih-Heng Wang1,
Chun-Yi Kuan1, Ke-Han Lu1, Kai-Wei Chang1, Fabian Ritter-Gutierrez4, Kuan-Po Huang1,
Siddhant Arora3, You-Kuan Lin1, Ming To Chuang1, Eunjung Yeo3, Kalvin Chang3,
Chung-Ming Chien5, Kwanghee Choi3, Cheng-Hsiu Hsieh1, Yi-Cheng Lin1, Chee-En Yu1,
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ABSTRACT

Multimodal foundation models, such as Gemini and ChatGPT, have revolution-
ized human-machine interactions by seamlessly integrating various forms of data.
Developing a universal spoken language model that comprehends a wide range
of natural language instructions is critical for bridging communication gaps and
facilitating more intuitive interactions. However, the absence of a comprehen-
sive evaluation benchmark poses a significant challenge. We present Dynamic-
SUPERB Phase-2, an open and evolving benchmark for the comprehensive eval-
uation of instruction-based universal speech models. Building upon the first
generation, this second version incorporates 125 new tasks contributed collab-
oratively by the global research community, expanding the benchmark to a to-
tal of 180 tasks, making it the largest benchmark for speech and audio evalu-
ation. While the first generation of Dynamic-SUPERB was limited to classifi-
cation tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by
introducing a wide array of novel and diverse tasks, including regression and se-
quence generation, across speech, music, and environmental audio. Evaluation
results show that no model performed well universally. SALMONN-13B excelled
in English ASR and Qwen2-Audio-7B-Instruct showed high accuracy in emo-
tion recognition, but current models still require further innovations to handle a
broader range of tasks. We open-source all task data and the evaluation pipeline
at https://github.com/dynamic-superb/dynamic-superb.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have accelerated the development of natural
language processing (NLP) (Touvron et al., 2023a; Achiam et al., 2023; Li et al., 2023b; Anthropic,
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2023; Bai et al., 2023). These models can follow natural language instructions, making users quickly
adopt them for a variety of applications. They have been integrated into commercial products, such
as ChatGPT (Achiam et al., 2023) and Claude (Anthropic, 2023), as well as in the open-source
research community, including the LLaMA series (Touvron et al., 2023a;b; Dubey et al., 2024).
Yet, they are primarily text-based models, meaning they cannot process speech or audio, which are
essential for more natural ways of communication and interaction with the real world.

Compared to written text, spoken language has always been a more natural and convenient way for
humans to communicate. Spoken language conveys a wealth of information, including semantics,
prosody, emotion, and speaker characteristics, while text is limited to representing semantic infor-
mation, which can sometimes even depend on the prosodic cues present in spoken language (Lin
et al., 2024). This highlights the need for universal speech models and explains why automatic
speech recognition (ASR) systems using text-based language models are not optimal. Several at-
tempts have been made to develop instruction-based universal speech or audio models capable of
performing various tasks, such as LTU-AS (Gong et al., 2023), SALMONN (Tang et al., 2024a),
Qwen-Audio (Chu et al., 2023; 2024), and WavLLM (Hu et al., 2024).

Despite significant research in universal speech models, evaluating them effectively and compre-
hensively remains a major challenge. In NLP, benchmarks for text LLMs include a large number of
tasks. CrossFit (Ye et al., 2021) includes 160 tasks, BIG-bench (Srivastava et al., 2022) comprises
204 tasks, and Natural-Instructions (Mishra et al., 2022; Wang et al., 2022) provides 1,616 tasks.
For universal speech models, several benchmarks have been proposed but with a fixed and limited
set of tasks (typically around a dozen) to evaluate specific capabilities of models (Yang et al., 2021;
Dunbar et al., 2022; Maimon et al., 2024). This is insufficient for evaluating a universal model, as
we aim to investigate whether models can handle a broader range of tasks beyond fixed benchmarks.
There is a strong demand for a benchmark that can evaluate these models across various aspects with
a wide range of speech tasks, which led to the creation of Dynamic-SUPERB (Huang et al., 2024a).

Dynamic-SUPERB is the first benchmark for evaluating universal instruction-based speech and au-
dio models. As models advance, we dynamically expand the benchmark by adding new tasks to
provide better guidance for researchers in model development. We have designed a well-structured
pipeline that harnesses the collective efforts of the community to gather diverse challenging, novel,
and creative tasks. The first generation of Dynamic-SUPERB consists of 55 tasks, covering var-
ious aspects of speech (e.g., semantics, speakers, etc.), making it the speech benchmark with the
most tasks. However, this is not sufficient to pave the way for developing universal speech models,
especially given the complexity and richness of the information conveyed by spoken language.

This paper presents the Dynamic-SUPERB Phase-2. We expanded it to 180 tasks, more than dou-
ble the size of its first iteration, with contributions from the global research community. They cover
a broad range of types, and some tasks present novel challenges that have not been explored in any
previous research. Besides, previous speech research has typically treated music and environmental
audio as background noise to be ignored. However, these sounds contain rich information and share
overlapping elements that complement each other. Thus, in Dynamic-SUPERB, we also introduced
preliminary music and audio tasks from established music and audio benchmarks (Yuan et al., 2023;
Turian et al., 2022). We define the core tasks by reformulating the SUPERB (Yang et al., 2021)
(speech), MARBLE (Yuan et al., 2023) (music), and HEAR (Turian et al., 2022) (audio) bench-
marks for quick-round research experiments. One challenge of evaluating with such a large-scale
benchmark is deriving concrete and useful insights from hundreds of evaluation results. We provide
a taxonomy for every task in Dynamic-SUPERB, where tasks are clustered by the specific model
capabilities they probe. Researchers can follow this taxonomy to develop or reinforce specific ca-
pabilities of the models they build. To our knowledge, Dynamic-SUPERB is the largest benchmark
and the first to provide such a detailed task taxonomy in speech processing.

We conducted a comprehensive evaluation of several models using Dynamic-SUPERB Phase-2. To
handle the diverse output formats of these models, we propose an automated LLM-based pipeline
for general evaluation across tasks. The evaluation results show that these models perform well
only on a limited range of tasks. For example, SALMONN-13B performed well on English ASR,
while Qwen2-Audio-7B-Instruct achieved high accuracy in emotion recognition. However, they
do not generalize well to a much broader range of tasks in speech recognition and paralinguistics.
Notably, training on diverse data, even with significant differences in signal-level characteristics,
can enhance performance across domains. We observed that spoken language models outperformed
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music models in certain music tasks. This highlights the potential for developing unified models for
speech, music, and general audio. We have open-sourced all materials to support reproducibility and
further research. We invite researchers to help expand Dynamic-SUPERB, making it more diverse
and comprehensive to advance universal spoken language models.

2 RELATED WORKS

2.1 INSTRUCTION-FOLLOWING UNIVERSAL SPEECH MODELS

LLMs have shown strong natural language processing abilities and are used in speech, audio, and
music applications. Recent frameworks integrate a pre-trained speech encoder with an LLM through
fine-tuning techniques such as LoRA (Hu et al., 2021). LTU-AS (Gong et al., 2023) combines
Whisper (Radford et al., 2023) with LLaMA (Touvron et al., 2023a), and it is fine-tuned on open-
ended speech and audio question-answering. SALMONN adopts a window-level Q-former (Li et al.,
2023a) to generate soft prompts fusing representations from the speech and audio encoders. Qwen-
Audio (Chu et al., 2023) introduces task-specific tags into Qwen to encourage knowledge sharing
and prevent interference across diverse tasks, and it supports multi-turn dialogues for both audio and
text inputs. WavLLM (Hu et al., 2024) uses curriculum learning to prevent overfitting on specific
tasks while maintaining the LLM’s original capabilities. All these models accept speech, audio, and
text as input but output only text, focusing on understanding rather than generation in speech and
audio. Several attempts have also used prompts for speech, music, and audio generation (Guo et al.,
2023; Agostinelli et al., 2023; Liu et al., 2023a). However, to our knowledge, there is no universal
model capable of handling both generation and understanding tasks. Moreover, these models have
not been comprehensively evaluated on a benchmark, which hinders fair comparisons between them.

2.2 EVALUATION BENCHMARKS

Several benchmarks have been developed to evaluate speech models. SUPERB (Yang et al., 2021) is
the most widely used benchmark for assessing the performance of speech foundation models across
various tasks that cover different aspects of speech. On the other hand, SLUE (Shon et al., 2022;
2023) focuses more specifically on spoken language understanding. Yet, they are primarily limited
to English. LeBenchmark (Evain et al., 2021; Parcollet et al., 2023) evaluates speech foundation
models specifically for French, while IndicSUPERB (Javed et al., 2023) is dedicated to Indian lan-
guages. ML-SUPERB (Shi et al., 2023; 2024b) offers ASR and language identification tasks in 100+
languages. Aside from speech, MARBLE (Yuan et al., 2023) and HEAR (Turian et al., 2022) offer
platforms for evaluating various music and a wide range of audio tasks. Using these benchmarks,
researchers build a specialized model for each task. Thus, the number of tasks is limited due to the
growing costs associated with adding more tasks. Conversely, universal models are expected to do
various tasks without fine-tuning for each one, allowing users to engage in far more diverse appli-
cations and enabling benchmark developers to include more tasks for comprehensive evaluation. In
NLP and CV, benchmarks have been developed to evaluate models across a much broader range of
tasks (Bitton et al., 2023; Srivastava et al., 2022; Mishra et al., 2022). However, in speech, we lack
a benchmark of comparable scale. Dynamic-SUPERB (Huang et al., 2024a) is the first benchmark
for instruction-based universal speech models. While its first version includes far more tasks than
all other speech benchmarks, they are all classification tasks. AIR-bench (Yang et al., 2024b), on
the other hand, includes tasks from speech, music, and audio, and expands beyond classification,
although the number of tasks available for evaluating universal models remains limited (19 tasks in
foundation track). Thus, there remains a critical need for a comprehensive benchmark that evaluates
universal models across a broader range of tasks to fully assess their capabilities. Consequently, we
developed Dynamic-SUPERB Phase-2, substantially upgrading the first generation with a detailed
taxonomy and establishing community contribution protocols to facilitate continual task integration.

3 DYNAMIC-SUPERB PHASE-2

3.1 OVERVIEW

Figure 1 depicts the framework of Dynamic-SUPERB Phase-2. Our goal is to evaluate universal
models that meet the following criteria: (1) The model can accept speech, music, or other audio as
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Figure 1: An overview of Dynamic-SUPERB.

input. (2) The model can perform specific tasks without requiring fine-tuning. (3) The model follows
natural language instructions to execute the corresponding tasks. To comprehensively evaluate these
universal models, we have collected hundreds of tasks and developed a task taxonomy to better
guide benchmark users (Figure 1a). All tasks in Dynamic-SUPERB Phase-2 are intended solely for
testing purposes; we do not provide training data for two main reasons. First, current models are
trained on large-scale, open-source, or proprietary datasets, making it challenging to ensure that all
models are trained under consistent conditions. Second, we aim to evaluate universal models that
do not require fine-tuning for downstream tasks.

The Dynamic-SUPERB project is designed to evolve dynamically with research advancements by
incorporating novel tasks from the research community (Figure 1b). With the first call for tasks,
Dynamic-SUPERB Phase-2 has grown from its first generation, expanding from 55 to 180 tasks.
Table 1 compares several benchmarks used in speech, music, and audio research, demonstrating that
Dynamic-SUPERB Phase-2 is the largest benchmark covering all three areas. It provides a more
fine-grained evaluation than any other benchmark.

Table 1: Comparison of popular benchmarks with Dynamic-SUPERB.

Benchmark SUPERB SLUE HEAR MARBLE AIR-Bench Dynamic- Dynamic-
SUPERB Phase-1 SUPERB Phase-2

# of tasks 13 7 19 13 19∗ 55 180

Speech ✓ ✓ ✓ ✓ ✓
Music ✓ ✓ ✓ ✓
Audio ✓ ✓ ✓ ✓

∗ foundation track

3.2 TASK FORMULATION

As Figure 1c depicts, in Dynamic-SUPERB Phase-2, each task is structured to include: (1) Text
instruction: A natural language instruction that guides the model on the task to perform. Each
task has multiple different instructions to evaluate the model’s ability to understand instructions.
(2) Audio component: At least one audio element, which can be in the input, the output, or both.
(3) (Optional) Text component: Text elements (other than instruction) that may serve as inputs or
outputs. The number of audio elements in the inputs or outputs may vary depending on the task. For
example, in speaker verification, two utterances are used to determine whether they were produced
by the same speaker (green blocks in Figure 1c). Besides, text inputs are not always required; for
instance, ASR does not involve any text inputs. We use text format for instructions instead of spoken
format. Spoken instructions involve varying content, speaker characteristics, and prosody, making
them more complex. Text instructions act as an intermediary, bridging text and spoken universal
models. These designs ensure consistency and simplify the model’s understanding and processing
of diverse tasks while maintaining the benchmark’s extendibility with minimal constraints.
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Another problem in evaluating universal models is the format of classification and regression tasks.
Generally, a task-specialized model generates predicted labels (soft distributions or hard labels)
within a pre-defined set of labels for classification or numeric values for regression within a pre-
defined range. However, a universal model does not necessarily have access to this information, and
thus it is hard to evaluate them in the same way, especially using it to perform several different tasks.
To address this, we believe that a universal speech model should produce outputs in natural language
for all tasks (model outputs in Figure 1c). Therefore, in Dynamic-SUPERB, all classification labels
are represented as text. For regression tasks with specific formats (e.g., scalars, JSON, or Python-
style lists), we can parse the natural language outputs using a post-processing pipeline (Section 4.2).

3.3 CALL FOR TASKS

Dynamic-SUPERB fosters community collaboration, encouraging the addition of innovative tasks to
remain relevant in this rapidly changing field. In Phase-2, we initiated a call for tasks in March 2024
to invite contributions from the research community. We established an organized and transparent
submission process on our GitHub portal, where we organize members who serve as editors to
guide contributors. Contributors propose tasks by providing relevant information on GitHub. Each
proposal is assigned to an editor who checks for major issues and prevents duplicated efforts. Then,
task proposers upload their data to our Huggingface space in specified formats, using only datasets
with proper licenses. They complete submissions by opening a pull request on GitHub with the
necessary files. Afterward, editors review submissions on a rolling basis, offering suggestions for
refinement rather than immediate acceptance or rejection. After iterative improvements, accepted
tasks are merged into the repository. Between March and July 2024, we received more than 140 task
proposals and accepted over 120 new tasks. Tasks still under review are not included here but will
be featured in the next phase. For details, please refer to Appendix F.

3.4 TASK TAXONOMY

(a) Task Taxonomy for speech tasks. (b) Task Taxonomy for audio and music tasks.

Figure 2: Task taxonomy in Dynamic-SUPERB.

One primary challenge in building a large-scale benchmark is offering valuable insights to its users.
To address this, we developed a task taxonomy1 that helps researchers interpret performance results
across various tasks. Researchers can leverage this taxonomy to select specific tasks for model
development instead of evaluating every task in the benchmark.

Figures 2 shows the high-level task taxonomy in Dynamic-SUPERB Phase-2. Due to the space
limitation, we only show some representative tasks. Each leaf node includes at least one task and

1We developed the taxonomy by referencing sessions from the INTERSPEECH conference and EDICS of
IEEE SPS. Though not identical, they have a very similar structure (please refer to Appendix A for comparison).
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may be further categorized into more fine-grained sub-domains, which are not shown here due to
space constraints. For example, within ‘Speaker & Language/Speaker’, we have two categories:
‘Speaker Characteristics’ and ‘Speaker Identification’, each containing several tasks. Please refer to
Appendix B for the complete task list. We first categorize tasks into two primary fields: (I) speech
and (II) music & audio, which are generally distinguished by the source of the sound. For instance,
speech is produced by human vocal cords, music is created using instruments, and audio includes
sounds generated by other creatures, materials, or natural phenomena. We then split each field into
several domains based on the key attributes and challenges that the tasks within them present.

3.4.1 SPEECH

As Figure 2a shows, there are 8 domains within the speech field. Speech Recognition focuses on
converting spoken language into text. This includes tackling various challenges like multilingual
and code-switching ASR, as well as spontaneous ASR which is very different from audiobook-
style ones. It also contains specialized tasks such as command recognition and keyword spotting.
Speaker and Language addresses the analysis of speaker characteristics and languages, covering
tasks such as speaker verification, diarization, and language identification. Spoken Language Un-
derstanding deals with understanding and analysis of the content and semantics of spoken language.
It covers tasks like sentiment analysis and speech translation. Phonetics, Phonology, and Prosody
focuses on the sound structure of speech, including phoneme recognition, pronunciation evaluation,
and prosodic features like stress and accent classification. Paralinguistics explores non-verbal as-
pects of speech, such as emotion recognition and vocal event detection, which can capture nuances
like screaming or coughing. Speech Enhancement aims to improve speech quality by detecting and
mitigating noise, reverberation, and other degradations, but currently, we only have understanding
tasks. Speech, Voice, and Hearing Disorders is dedicated to identifying and classifying disorders
such as stuttering and so on. Safety and Security focuses on detecting synthetic or manipulated
speech, addressing tasks like spoof detection and recognizing deepfake voices.

3.4.2 AUDIO & MUSIC

The audio and music field includes a wide range of tasks that focus on various attributes of sound
beyond speech, such as musical elements, environmental sounds, and advanced sound analysis.
This field is divided into 9 domains, each addressing a specific aspect of audio or music process-
ing. Music Classification tasks focus on categorizing musical elements such as instruments, genres,
and emotions, providing a foundation for recognizing and analyzing different types of musical con-
tent. Pitch Analysis delves into identifying the pitch and harmony within music, including tasks
like pitch extraction, chord classification, and key detection. Rhythm Analysis involves tasks such
as beat tracking, which is critical for understanding the temporal structure of music. In Singing
Analysis, tasks address both lyric recognition and translation, as well as the classification of vocal
techniques used in singing. Quality Assessment evaluates the perceived quality of singing, includ-
ing automated predictions of Mean Opinion Scores (MOS). The Sound Event domain is broader,
covering various sound sources such as animals, the environment, and human activities. Tasks range
from animal sound classification to emergency traffic detection and even advanced tasks like multi-
channel sound event understanding. Safety domain includes detecting deepfakes in singing voices
and identifying manipulated audio files, ensuring sound authenticity and integrity. Spatial Audio
covers all tasks related to understanding spatial information, such as estimating the distance or posi-
tion of sounds in the real world. Finally, Signal Characteristics Analysis domain addresses general
signal-level characteristics of audio, including sound effect detection, and duration prediction.

3.4.3 CORE TASKS

While our task taxonomy provides a comprehensive, hierarchical, and systematic approach for
benchmark users to easily get started with Dynamic-SUPERB Phase-2, evaluating all tasks with
limited resources remains a challenge. To address this, alongside the task taxonomy, we have se-
lected core tasks for speech, music, and audio. These core tasks are reduced subsets of essential
tasks that have been widely used or studied within the research community. We include tasks from
three popular benchmarks: SUPERB (speech), MARBLE (music), and HEAR (audio). The three
benchmarks were originally designed for evaluating encoders, not for an instruction-following uni-
versal model, so modifications are required. We crafted instructions for each task, reduced the data
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size, and reformulated them into the Dynamic-SUPERB format. Besides, we replaced the datasets
in some tasks to address licensing issues. Since the core task set is much smaller than the full bench-
mark, researchers can more efficiently evaluate their models across a reasonable range of domains.

4 EXPERIMENTAL SETTINGS

4.1 MODELS

We evaluated several publicly-available models on Dynamic-SUPERB Phase-2: SALMONN, LTU-
AS, Qwen-Audio-Chat, Qwen2-Audio-7B-Instruct, WavLLM, MU-LLaMA (Liu et al., 2024),
GAMA (Ghosh et al., 2024). SALMONN is further categorized into 7B and 13B versions based
on the size of its LLM component. All of these models are publicly available, and we utilized
their official implementations for inference without any modifications. The first five models are
instruction-based speech models, each also trained with audio understanding capabilities. However,
as they were not trained on music data, we do not expect them to perform well on music-related
tasks. Hence, we further included MU-LLaMA and GAMA. MU-LLaMA is specifically designed
for various music-understanding tasks, and GAMA is trained with both general audio data and a mu-
sic corpus. Similar to the speech models, MU-LLaMA and GAMA adopt an LLM-based framework.
They use a music or audio encoder, such as MERT (LI et al., 2024) or Q-former, to convert music
or audio into features, which the LLM then uses as prompts for subsequent reasoning. The sam-
pling strategies used for generating outputs from the LLMs were retained as defined in their official
implementations. Finally, we implemented a cascaded system baseline called Whisper-LLaMA.
The system first transcribes audio using Whisper-v3-large, and then LLaMA3.1-8B processes the
transcriptions to perform various tasks based on the provided instructions.

When evaluating models on these diverse tasks, several challenges inevitably arise. One challenge
was testing the baseline models on tasks involving multiple audio inputs. For example, in speaker
verification, a model determines whether two utterances are produced by the same speaker. Among
the evaluated models, only Qwen-Audio and Qwen2-Audio provide interfaces that allow inputting
multiple audio files. For the remaining models, we concatenated all audio files, separated by 0.5
seconds of silence, and used the concatenated file as input.

Last, different models have their own maximum supported audio durations. Models using Whisper
to encode speech face an inherent limitation: Whisper can process audio files of up to 30 seconds,
and some models are restricted to handling even shorter durations. Consequently, we retained the
original model settings and did not modify the model architecture to accommodate longer audio
clips. A preliminary analysis of all audio (Appendix G) in Dynamic-SUPERB Phase-2 shows that
only a small proportion (around 6.57%) exceeds 30 seconds in length. Hence, we believe our settings
do not largely impact the evaluation results and ensure reasonable inference efficiency.

4.2 EVALUATION METRICS

The outputs of universal speech models are natural language sentences, making it difficult to assess
their correctness using conventional metrics. For classification tasks, such as emotion recognition,
a task-specific model outputs a label from predefined emotions in the dataset, while a universal
model generates sentences like “The speaker sounds happy.” In this case, we can easily assess
the correctness of the former by comparing labels, but this approach does not apply to the latter.
Similarly, in regression tasks, a natural language response like “Using MOS scoring criteria, I give
the audio a score of 3 out of 5” makes it difficult to directly use metrics such as mean square error.

In evaluation, we categorize tasks into three types: (1) classification, (2) regression, and (3) se-
quence generation. For each type, we use different pipelines to evaluate the models’ outputs. For
classification tasks, we utilize external LLMs (GPT-4o) as referees, with the temperature set to
be zero for evaluation consistency, to evaluate whether the outputs from speech or music models2

match the ground truth. This approach has been widely adopted in the NLP community (Wang
et al., 2023; Liu et al., 2023b; Chiang & Lee, 2023), and we extend its application to speech re-
search. We design a prompt that includes the task instructions, the model’s output to be evaluated,

2To avoid ambiguity, unless specified otherwise, the terms “output” or “model output” in this section refer
to the results generated by the models in Sec. 4.1.
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and the corresponding ground truth. The LLM judge gets this prompt and determines if the output
aligns with the ground truth using a chain-of-thought reasoning process. By leveraging the strong
instruction-following capabilities of these LLMs, we constrain them to provide the final decision in
a fixed format, allowing us to extract the answer using simple methods such as regular expressions3.
We then define accuracy as the percentage of outputs that the LLM judge considers aligned with
the ground truth. Please refer to Appendix E for details on the prompts and the alignment between
LLMs and humans. Importantly, although we used GPT-4o for evaluation in the main text,
to support reproducibility we have also included comprehensive evaluation results using the
open-source LLM (LLaMA3.1-8b-Instruct) in Appendix C.

For regression tasks, the above method cannot be applied because performance is not assessed us-
ing hard labels. Instead, we use LLMs (GPT-4o) as a post-processor to transform natural language
responses into a format compatible with the original metrics used in these tasks. Specifically, we
developed a prompt that directs the LLMs to extract essential information from the output and con-
vert it into the same format as the ground truth. If the output lacks correct or relevant information
that can be converted to match the ground truth format, the LLM returns “N/A” to mark it as invalid.
Since conventional metrics cannot accommodate “N/A” and setting a default value is unreasonable
due to the variability of metrics, we also calculate the N/A rate for each regression task, defined as
the percentage of invalid outputs within a task. A higher N/A rate indicates that the model struggles
with following instructions, which may indirectly affect its performance on the task.

For sequence generation tasks such as ASR and captioning, we apply their original metrics directly
to the raw outputs from baseline models. This is because identifying redundant prefixes or sections
unrelated to the task objectives is highly challenging in sequence generation, even with human in-
volvement. Besides, our review of the original evaluation results reported by these baseline models
revealed no explicit mention of post-processing procedures. Therefore, we base our evaluations
solely on the unprocessed outputs, ensuring consistency and objectivity across all models.

5 RESULTS

Figure 3: Domain-level relative-score-based performance comparison across different models. We
exclude tasks where the models have a 100% NA rate or where Whisper-LLaMA scores zero, as
these make it impossible to average their scores with other tasks.

3We have tried to ask the speech universal models to directly output their decisions in a fixed format, but
they do not always follow the instructions. Therefore, the evaluation pipeline described here is necessary.
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5.1 DOMAIN-LEVEL PERFORMANCE COMPARISON IN TAXONOMY

Here, we analyze the results based on the taxonomy. Due to space limitations, we can only report and
compare the results of different models at the domain level in this subsection. Since different metrics
are used across tasks, we adopted a relative-score-based method to summarize task performance.
For each task, we calculated the relative improvement of each model compared to the cascaded
system baseline (Whisper + LLaMA) and then obtained the domain-level scores by averaging all
its improvements across the tasks within each domain. For regression tasks, we introduced the N/A
rate to measure how well a model meets the task requirements. The original task metric was only
computed on instances that followed the task format (after post-processing by the LLM). To account
for whether a model can follow instructions, we incorporated the N/A rate into the reported scores.
Accordingly, we calculated the improvement based on scaled values. For metrics where a higher
value indicates better performance (such as the F1 score), we multiplied the metric value by (1 –
N/A rate). Conversely, for metrics where a lower value indicates better performance (such as word
error rate), we divided the metric value by (1 – N/A rate).

Figure 3 presents a domain-level comparison of relative scores across different models. Whisper-
LLaMA consistently has zero scores throughout all domains, serving as the reference baseline for
evaluating other models. In speech domains, no model outperforms Whisper-LLaMA in speech
recognition and spoken language understanding. This shows that using ASR remains a strong
baseline for language understanding, as text more explicitly represents semantic information than
speech. However, Whisper-LLaMA lags behind SALMONN in phoneme recognition, a task for
which SALMONN is explicitly trained, indicating that task-specific training still provides superior
performance in specialized domains.

Conversely, in the speaker and paralinguistics domains, all models surpass the baseline. This im-
provement occurs because the ASR process in the cascaded system tends to discard critical informa-
tion from the speech signal, such as speaker characteristics, pitch, and emotion. In contrast, other
models utilize soft representations that retain more speech information, giving them the potential to
learn beyond ASR, and some of these models were also trained to perform specific tasks within cer-
tain domains 4. Additionally, music-specific large language models like GAMA-IT and Mu-LLaMA
perform poorly on speech recognition and understanding tasks, which is expected since they were
primarily designed for music understanding. Nevertheless, they surprisingly achieved scores com-
parable to the speech models in speaker and paralinguistics.

Turning to audio and music domains, where ASR models cannot transcribe non-speech informa-
tion into text, most models outperform the baseline in several areas, such as music classification
and sound event detection. Surprisingly, spoken language models primarily trained on speech data
(Qwen models, SALMONN, WavLLM)5 outperform the two music models (GAMA-IT and Mu-
LLaMA) in various music-related domains such as harmony and pitch, music classification, and
rhythm analysis. We speculate that training on diverse data, even with significant differences in
signal-level characteristics, enhances performance across domains, emphasizing the importance of
developing unified models for speech, music, and general audio processing.

Lastly, we observe some outliers with significantly higher or lower values in the figure, typically
resulting from unbounded evaluation metrics. For instance, in the phonetics and prosody domain,
WavLLM and LTU-AS exhibit poor scores due to their erroneous outputs in phone/phoneme seg-
ment counting tasks, predicting thousands of segments in utterances lasting only seconds and result-
ing in an excessively high mean square error. While the relative score-based approach effectively
summarizes model performance, domain-level scores can be distorted by specific tasks within a do-
main. Thus, we encourage researchers aiming to develop model performance in specific domains to
comprehensively report task-level scores to more accurately reflect their models’ capabilities.

5.2 CORE TASKS RESULTS

We tested the performance of the models on core tasks that are widely studied and commonly used.
Table 2 presents the detailed results of the models on SUPERB tasks, displaying each task’s perfor-

4Although the models have been trained on some tasks in the same domains, the training tasks of these
models generally do not use the same instructions as Dynamic-SUPERB and do not offer as broad coverage.

5Qwen and SALMONN are trained on a mixture of speech (dominant component), music, and audio data.
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Table 2: Evaluation on SUPERB tasks. A “*” indicates that the metric is scaled with NA rate, and a
“-” means a model has a 100% NA rate.

PR KS IC ER ASR QbE SF SV SD
PER ↓ Acc ↑ Acc ↑ Acc ↑ WER ↓ Acc ↑ F1∗ ↑ CER∗ ↓ Acc ↑ DER∗ ↓

Whisper-LLaMA 100.1 36.5 36.5 12.5 34.0 46.5 53.6 51.3 45.0 1068.7
SALMONN-7B 25.4 30.5 21.0 12.1 15.1 49.0 61.6 61.5 45.0 -

SALMONN-13B 24.6 2.0 5.5 12.5 2.8 51.5 29.6 106.3 51.0 -
Qwen-Audio-Chat 100.6 60.5 26.5 70.4 69.4 48.0 42.2 90.1 49.0 8852.2

Qwen2-Audio-7B-Inst. 101.0 47.0 26.0 75.8 36.7 53.5 42.4 55.7 51.0 4664.4
WavLLM 100.0 43.0 28.0 12.1 6.9 49.5 50.8 84.9 49.0 3621.2
LTU-AS 102.8 1.0 0.1 25.8 96.3 45.0 10.2 559.3 44.0 14923.3

GAMA-IT 100.4 2.0 1.0 0.0 116.7 2.5 2.7 4750.0 45.0 187.6
Mu-LLaMA 110.3 4.0 3.5 12.9 103.7 51.0 1.0 15869.6 44.0 -

PR: Phoneme Recognition, KS: Keyword Spotting, IC: Intent Classification, ER: Emotion Recognition, QbE:
Query-by-Example, SF: Slot Filling, SV: Speaker Verification, SD: Speaker Diarization

mance in its own metric rather than relative scores. Please refer to Appendix D for results on HEAR
and MARBLE. It is worth noting that these tasks have been adapted to the Dynamic-SUPERB
framework. Therefore, the results are not directly comparable to previous studies that tested on the
original SUPERB. However, they indicate current performance levels on these tasks.

No single model excels across all tasks. In phoneme recognition (PR), the SALMONN models
were the only ones to achieve a relatively lower phoneme error rate (PER) compared to the others.
For keyword spotting (KS), Qwen-Audio-Chat was the only model to perform slightly better than
a random guess (50%). Whisper-LLaMA surpassed all other models in intent classification (IC).
Regarding emotion recognition (ER), Qwen-Audio-Chat and Qwen2-Audio-7B-Instruct stood out,
with the latter even achieving about 75% accuracy. In ASR, SALMONN-13B and WavLLM are
the only two models that achieved a word error rate (WER) lower than 10%. Query-by-example
(QbE) appears to be very challenging for all models, as none performed better than a random guess
(50%). Slot-filling (SF) is evaluated using two metrics: F1 for slot type and CER for slot value.
While Whisper-LLaMA and SALMONN-7B are the top two in this task, their results are still far
from ideal. In speaker verification (SV), all models performed badly, as even the best ones achieved
results close to random guessing (50%). In speaker diarization (SD), results were similarly poor,
with some even reaching a 100% N/A rate. Comparing Figure 3 and Table 2, we observed that per-
formance on core tasks sometimes deviates from trends observed at the domain level. For example,
although SALMONN-13B outperforms other models in ASR, it lags behind Whisper-LLaMA in the
speech recognition domain, revealing its limited capabilities and highlighting the need to enhance
its generalizability. In summary, among tested models, some excel in specific tasks, while others
perform poorly across the board, and none dominate across all tasks. We believe these findings
provide valuable insights for researchers aiming to improve models, starting from core tasks and
progressively tackling each domain in the benchmark for broader applicability.

6 CONCLUSIONS

This paper presents Dynamic-SUPERB Phase-2, the largest benchmark for evaluating instruction-
based universal spoken language models, building upon collaborative efforts across the research
community. Dynamic-SUPERB covers a wide range of diverse tasks and offers a fine-grained task
taxonomy. The recent models show good performance on specific tasks but poor generalization
across common tasks like those in SUPERB, highlighting the need for further research on universal
models. All materials are made openly available to facilitate reproduction and benchmarking. We
sincerely invite researchers to join our vibrant community and collaborate to advance the field.

Limitations: Although Dynamic-SUPERB Phase-2 is the largest and most comprehensive bench-
mark, we acknowledge its limitations. It lacks comprehensive speech-generation tasks, as Phase-2
focused on understanding tasks due to the few universal generation models. Despite our efforts to
develop the task taxonomy scientifically, new domains may emerge as the benchmark grows, and
tasks can be categorized in various ways. While our automatic evaluation pipeline using LLMs
correlates well with human evaluations (Appendix E) for current tasks, it may not generalize to all
future tasks. Upholding the core spirit of the Dynamic-SUPERB project, we are striving to address
these issues and enhance the benchmark for the next phase.
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7 ETHICS STATEMENT

Dynamic-SUPERB Phase-2 includes several datasets, and we asked contributors to describe how
they used them. Most contributors derived task data by uniformly sampling from the origi-
nal datasets without applying any special processing. Therefore, Dynamic-SUPERB Phase-2 in-
evitably inherits the biases present in these datasets across tasks. Additionally, we asked all
contributors to provide the necessary license information to ensure that we can include them in
the benchmark properly. More specifically, all task data in Dynamic-SUPERB are derived from
datasets with licenses that permit remixing and redistribution. As we expect the benchmark
to grow dynamically in the future, we maintain a complete list of dataset licenses on our offi-
cial GitHub page (https://github.com/dynamic-superb/dynamic-superb/blob/
main/docs/dataset_license.md), which will be updated as new tasks are introduced. If
there are any changes to the dataset license in the future, we may adjust the benchmark task accord-
ingly.

8 REPRODUCIBILITY STATEMENT

We open-source all task data and the evaluation pipeline at https://github.com/
dynamic-superb/dynamic-superb. For LLM-based evaluation, we set GPT-4o’s tempera-
ture to 0 to ensure a stable evaluation process. However, we acknowledge that GPT-4o’s behavior
may change with future updates. Therefore, we provide a comprehensive set of evaluation results
using LLaMA-3.1-8b-Instruct in Appendix C (Table 6). Additionally, in Appendix E, we present a
preliminary study on using open-source LLMs for evaluation, demonstrating promising correlations
with human annotations. We encourage researchers to use these open-source LLMs when evaluating
their own models to support reproducibility.
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nagarikano. Quesst2014: Evaluating query-by-example speech search in a zero-resource setting
with real-life queries. In 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5833–5837, 2015. doi: 10.1109/ICASSP.2015.7179090.

Anthropic. Claude. https://www.anthropic.com, 2023. Large language model.

Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty,
Reuben Morais, Lindsay Saunders, Francis Tyers, and Gregor Weber. Common voice: A
massively-multilingual speech corpus. In Proceedings of the Twelfth Language Resources and
Evaluation Conference, pp. 4218–4222, 2020.

Muhammad Asif, Muhammad Usaid, Munaf Rashid, Tabarka Rajab, Samreen Hussain, and Sarwar
Wasi. Large-scale audio dataset for emergency vehicle sirens and road noises. Scientific data, 9
(1):599, 2022.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Jon Barker, Shinji Watanabe, Emmanuel Vincent, and Jan Trmal. The Fifth ’CHiME’ Speech Sep-
aration and Recognition Challenge: Dataset, Task and Baselines. In Proc. Interspeech 2018, pp.
1561–1565, 2018. doi: 10.21437/Interspeech.2018-1768.

Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojanski, and Verena Rieser. SLURP: A Spoken
Language Understanding Resource Package. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020.
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A TASK TAXONOMY

Figures 4 and 5 show the complete task taxonomy in Dynamic-SUPERB Phase-2. Additionally, Ta-
ble 3 compares our task taxonomy with the INTERSPEECH conference and EDICS from IEEE SPS.
While not identical, our taxonomy is well-aligned with those organized by professional conferences
and institutions.

Figure 4: Task taxonomy of speech.
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Figure 5: Task taxonomy of audio and music.
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Table 3: Comparison of task taxonomy in Dynamic-SUPERB Phase-2 with INTERSPEECH and
EDICS. A “✓” indicates that a conference session, area, or EDICS category matches or closely
aligns with the taxonomy.

Taxonomy INTERSPEECH EDICS
Music/Harmony & Pitch ✓
Music/Music Classification
Music/Rhythm Analysis ✓
Audio/Quality Assessment ✓
Audio/Safety ✓
Audio/Signal-Characteristics Analysis
Audio/Singing Analysis ✓
Audio/Sound Event ✓ ✓
Audio/Spatial Audio Analysis ✓ ✓
Speech/Paralinguistics ✓
Speech/Phonetics, Phonology, Prosody ✓
Speech/Safety and Security ✓
Speech/Speaker & Language ✓
Speech/Speech Enhancement ✓ ✓
Speech/Speech Recognition ✓ ✓
Speech/Speech, Voice, Hearing Disorder ✓
Speech/Spoken Language Understanding ✓ ✓

B DYNAMIC-SUPERB TASKS

Table 4: The list of all tasks in Dynamic-SUPERB Phase-2. Tasks are ordered by the taxonomy.
Core tasks are highlighted in green (SUPERB), blue (HEAR), or orange (MARBLE).

Domain Task Dataset
Audio / Harmony &
Pitch / Harmony

Chord Classification Musical Instrument Chord
Classification (Audio)
(DeepContractor, 2024)

Audio / Harmony &
Pitch / Harmony

MARBLE Key
Detection

GiantSteps (key) (Knees et al., 2015)

Audio / Harmony &
Pitch / Pitch

HEAR Music
Transcription

MAESTRO (Hawthorne et al., 2019)

Audio / Harmony &
Pitch / Pitch

HEAR Percussion
Instruments Tonic
Classification

Mridangam Stroke
(Anantapadmanabhan et al., 2013)

Audio / Harmony &
Pitch / Pitch

Instrument Pitch
Classification

Nsynth (Engel et al., 2017)

Audio / Harmony &
Pitch / Pitch

Pitch Extraction By
Lyrics

CSD (Choi et al., 2020)

Audio / Music
Classification / Emotion

Emotion
Classificaiton In
Songs

EMOTIFY (Aljanaki et al., 2016)

Audio / Music
Classification / Emotion

MARBLE Emotion
Detection

MTG-Jamendo (Bogdanov et al.,
2019)

Audio / Music
Classification / Genre

HEAR Music Genre
Classification

ISMIR04 (Cano et al., 2018)

Continued on next page
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Domain Task Dataset

Audio / Music
Classification / Genre

MARBLE Genre
Classification
MTG-Genre

MTG-Jamendo (Bogdanov et al.,
2019)

Audio / Music
Classification / Genre

MARBLE Music
Tagging

MagnaTagATune (Law et al., 2009)

Audio / Music
Classification / Genre

MARBLE Music
Tagging

MTG-Jamendo (Bogdanov et al.,
2019)

Audio / Music
Classification / Genre

Music Genre
Classification

FMA (Defferrard et al., 2017)

Audio / Music
Classification /
Instrument

HEAR Percussion
Instruments
Classification

Beijing Opera Percussion Instrument
Dataset (Tian et al., 2014)

Audio / Music
Classification /
Instrument

HEAR Percussion
Instruments Stroke
Classification

Mridangam Stroke
(Anantapadmanabhan et al., 2013)

Audio / Music
Classification /
Instrument

Instrument
Classification

Nsynth (Engel et al., 2017)

Audio / Music
Classification /
Instrument

Instrument
Combination
Recognition

OpenMIC-2018 (Humphrey et al.,
2018)

Audio / Music
Classification /
Instrument

Instrument Source
Classification

Nsynth (Engel et al., 2017)

Audio / Music
Classification /
Instrument

MARBLE
Instrument
Classification

MTG-Jamendo (Bogdanov et al.,
2019)

Audio / Quality
Assessment / Singing

Singing Automatic
MOS Prediction

SingMOS (Tang et al., 2024b)

Audio / Rhythm
Analysis

MARBLE Beat
Tracking ASAP

ASAP (Foscarin et al., 2020)

Audio / Rhythm
Analysis

Music Beat Tracking
ASAP

ASAP (Foscarin et al., 2020)

Audio / Safety / Audio
Integrity

Audio Editing
Identification

People’s Speech (Galvez et al., 2021)

Audio / Safety / Audio
Integrity

Scene Fake
Detection

ASPIRE (Gogate et al., 2020)

Audio / Safety /
Deepfake

Audio Deep Fake
Detection

LJSpeech (Ito & Johnson, 2017)
WaveFake (Frank & Schönherr)
MUSDB18HQ (Rafii et al., 2019)

Audio / Safety /
Deepfake

Singing Voice
Deepfake Detection

CtrSVDD (Zang et al., 2024)
ACEKiSing (Shi et al., 2024a)
M4Singer (Zhang et al., 2022)

Audio / Signal
Characteristics Analysis

Audio Duration
Prediction

NTUML2021 (Yang et al., 2024a)
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Domain Task Dataset

Audio / Signal
Characteristics Analysis

HEAR Music
Speech
Classification

MAESTRO (Hawthorne et al., 2019)
Librispeech (Panayotov et al., 2015)

Audio / Signal
Characteristics Analysis

Sound Effect
Detection

RemFx (Rice et al., 2023)

Audio / Signal
Characteristics Analysis

Speech Detection LibriSpeech-TestClean (Panayotov
et al., 2015)

Audio / Signal
Characteristics Analysis

Speech Detection LibriSpeech-TestOther (Panayotov
et al., 2015)

Audio / Signal
Characteristics Analysis

Speech Detection LJSpeech (Ito & Johnson, 2017)

Audio / Singing
Analysis / Lyrics

Children Song
Transcript
Verification

CSD (Choi et al., 2020)

Audio / Singing
Analysis / Lyrics

Lyric Translation SingSet (self-recorded)

Audio / Singing
Analysis / Lyrics

Song Lyric
Recognition

SingSet (self-recorded)

Audio / Singing
Analysis / Vocal
Techniques

MARBLE Vocal
Technique Detection

VocalSet (Wilkins et al., 2018)

Audio / Sound Event /
Advanced
Understanding

Audio Segment
Retrieval

Clotho (Drossos et al., 2020)

Audio / Sound Event /
Advanced
Understanding

HEAR Sound Event
Detection

DCASE2016Task2 (IEEE DCASE
2016 Challenge, 2016)

Audio / Sound Event /
Advanced
Understanding

Multi-channel Sound
Event Understanding

STARSS23 (Shimada et al., 2024)

Audio / Sound Event /
Animal

Animal
Classification

WaveSource-Test (WavSource, n.d.)

Audio / Sound Event /
Animal

Bird Sound
Detection

Warblrb10k (Stowell et al., 2019)

Audio / Sound Event /
Animal

Cat Emotion
Classification

CatSoundClassificationDataset-V2
(Pandeya et al., 2018; Pandeya & Lee,
2018)

Audio / Sound Event /
Animal

Cornell Birdcall
Identification

Cornell Birdcall Identification
(Howard et al., 2020)

Audio / Sound Event /
Animal

Environmental
Sound Classification

ESC50-Animals (Piczak, 2015)

Audio / Sound Event /
Animal

HEAR Beehive
States Classification

Beehive States (Nolasco et al., 2019)

Audio / Sound Event /
Environment

Domestic
Environment Sound
Event Detection

DESED-PublicEval (Turpault et al.,
2019)
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Domain Task Dataset

Audio / Sound Event /
Environment

Emergency Traffic
Detection

Large-Scale-Audio-dataset (Asif et al.,
2022)

Audio / Sound Event /
Environment

Environmental
Sound Classification

ESC50-ExteriorAndUrbanNoises
(Piczak, 2015)

Audio / Sound Event /
Environment

Environmental
Sound Classification

ESC50-InteriorAndDomesticSounds
(Piczak, 2015)

Audio / Sound Event /
Environment

Environmental
Sound Classification

ESC50-
NaturalSoundscapesAndWaterSounds
(Piczak, 2015)

Audio / Sound Event /
Environment

Environmental
Sound Classification

UrbanSound8K-UrbanNoises
(Salamon et al., 2014)

Audio / Sound Event /
Environment

Environment
Recognition

ESC50 (Piczak, 2015)

Audio / Sound Event /
Environment

HEAR
Environmental
Sound Classification

ESC50 (Piczak, 2015)

Audio / Sound Event /
Human

HEAR Vocal
Imitation
Classification

Vocal Imitations (Kim et al., 2018)

Audio / Spatial Audio Audio Spatial
Distance Prediction

Spatial LibriSpeech (Sarabia et al.,
2023)

Audio / Spatial Audio How Far Are You 3DSpeaker (Zheng et al., 2023)

Audio / Spatial Audio Sound Position
Prediction

BinauralSoundPerception (Vasudevan
et al., 2020)

Speech / Paralinguistics
/ Emotion Analysis

Dialogue Emotion
Classification

DailyTalk (Lee et al., 2023)

Speech / Paralinguistics
/ Emotion Analysis

Emoji Grounded
Speech Emotion
Recognition

RAVDESS (Livingstone & Russo,
2018)

Speech / Paralinguistics
/ Emotion Analysis

Emotion Change
Detection

RAVDESS (Livingstone & Russo,
2018)

Speech / Paralinguistics
/ Emotion Analysis

Emotion
Recognition

MELD (Poria et al., 2019)

Speech / Paralinguistics
/ Emotion Analysis

HEAR Emotion
Recognition

CREMAD (Cao et al., 2014)

Speech / Paralinguistics
/ Emotion Analysis

SUPERB Emotion
Recognition
RAVDESS

RAVDESS (Livingstone & Russo,
2018)

Speech / Paralinguistics
/ Vocal Event Detection

Covid19 Cough
Audio Classification

CoughVid (Orlandic et al., 2021)

Speech / Paralinguistics
/ Vocal Event Detection

Environmental
Sound Classification

ESC50-HumanAndNonSpeechSounds
(Piczak, 2015)

Speech / Paralinguistics
/ Vocal Event Detection

Human Non-Speech
Sound Recognition

Nonspeech7k-test (Rashid et al., 2023)
CommonVoice (Ardila et al., 2020)

Speech / Paralinguistics
/ Vocal Event Detection

Human Screaming
Detection

Environmentdb (whats2000, 2023)
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Domain Task Dataset

Speech / Paralinguistics
/ Vocal Event Detection

Vocal Sound
Recognition

VocalSound (Gong et al., 2022)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing / Phoneme
Recognition Tasks

Phoneme Segment
Counting

Librispeech-words (lib)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing / Phoneme
Recognition Tasks

Phone Segment
Counting

VoxAngeles (Chodroff et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing / Phoneme
Recognition Tasks

SUPERB Phoneme
Recognition

LibriSpeech-TestClean (Panayotov
et al., 2015)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing / Phoneme
Recognition Tasks

Phoneme
Recognition

LibriSpeech-TestOther (Panayotov
et al., 2015)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-
ConsonantPlaceOfArticulation
(Chodroff et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-MannerOfArticulation
(Chodroff et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-Phone (Chodroff et al.,
2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-VowelFrontness
(Chodroff et al., 2024)
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Domain Task Dataset

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-VowelHeight (Chodroff
et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Phonological Feature
Analysis

Phonological Feature
Classification

VoxAngeles-VowelRoundedness
(Chodroff et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Pronounciation
Evaluation

Heteronym
Differentiation

HeteronymEn (self-constructed)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Pronounciation
Evaluation

L2 English Accuracy speechocean762-Ranking (Zhang
et al., 2021)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Pronounciation
Evaluation

L2 English Accuracy speechocean762-scoring (Zhang et al.,
2021)

Speech / Phonetics,
Phonology, Prosody /
Phonetics and Phoneme
Processing /
Pronounciation
Evaluation

Multilingual
Pronunciation
Similarity

VoxAngeles (Chodroff et al., 2024)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Feature Classification

Accent Classification Accentdb Extended (Ahamad et al.,
2020)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Feature Classification

Stress Detection MIRSD (CHEN & JANG, 2012;
Tseng, 2008; Tsai, 2015)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Feature Classification

Third Tone Sandhi
Recognition

NCCU Corpus of Spoken Taiwan
Mandarin (National Chengchi
University, n.d.)
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Domain Task Dataset

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

L2 English Fluency speechocean762-Ranking (Zhang
et al., 2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

L2 English Fluency speechocean762-Scoring (Zhang et al.,
2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

L2 English Prosodic speechocean762-Ranking (Zhang
et al., 2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

L2 English Prosodic speechocean762-Scoring (Zhang et al.,
2021)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

Prosody Naturalness ProsAudit-Lexical (de Seyssel et al.,
2023)

Speech / Phonetics,
Phonology, Prosody /
Prosody / Prosodic
Quality Assessment

Prosody Naturalness ProsAudit-Protosyntax (de Seyssel
et al., 2023)

Speech / Safety &
Security / Spoofing and
Anti-Spoofing

Spoof Detection ASVspoof2015 (Wu et al., 2015)

Speech / Safety &
Security / Spoofing and
Anti-Spoofing

Spoof Detection ASVspoof2017 (Delgado et al., 2018)

Speech / Safety &
Security / Synthetic
Speech Detection

Deep Fake Voice
Recognition

DEEP-VOICE (Bird & Lotfi, 2023)

Speech / Safety &
Security / Synthetic
Speech Detection

Enhancement
Detection

LibriTTS-TestClean (Zen et al., 2019)
WHAM (Wichern et al., 2019)

Speech / Safety &
Security / Synthetic
Speech Detection

Fraud Robocall
Recognition

CallHome (Katerenchuk et al., 2018)

Speech / Safety &
Security / Synthetic
Speech Detection

Fraud Robocall
Recognition

Promo (self-constructed)

Speech / Safety &
Security / Synthetic
Speech Detection

Fraud Robocall
Recognition

Robocall Prasad & Reaves

Speech / Speaker &
Language / Language /
Language Identification

HEAR Language
Identification

VoxLingua107 Top10 (Valk &
Alumäe, 2021)
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Domain Task Dataset

Speech / Speaker &
Language / Language /
Language Identification

Language
Identification

VoxForge (MacLean, 2018)

Speech / Speaker &
Language / Speaker /
Speaker Characteristics

Age Classification CommonVoiceCorpus-Test (Ardila
et al., 2020)

Speech / Speaker &
Language / Speaker /
Speaker Characteristics

Gender Recognition
by Voice

CommonVoice-DeltaSegment-15
(Ardila et al., 2020)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

HEAR Speaker
Count Identification

LibriCount (Stöter et al., 2018)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

Multi Speaker
Detection

VCTK (Yamagishi et al., 2019)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

Speaker Counting LibriTTS-TestClean (Zen et al., 2019)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

Speaker Verification LibriSpeech-TestClean (Panayotov
et al., 2015)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

Speaker Verification LibriSpeech-TestOther (Panayotov
et al., 2015)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

Speaker Verification VCTK (Yamagishi et al., 2019)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

SUPERB Speaker
Diarization

Libri2Mix-Test (Cosentino et al.,
2020)

Speech / Speaker &
Language / Speaker /
Speaker Recognition

SUPERB Speaker
Verification

SUPERB Hidden Set
(self-reconstructed)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection LJSpeech (Ito & Johnson, 2017)
MUSAN-Gaussian (Snyder et al.,
2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection LJSpeech (Ito & Johnson, 2017)
MUSAN-Music (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection LJSpeech (Ito & Johnson, 2017)
MUSAN-Noise (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection LJSpeech (Ito & Johnson, 2017)
MUSAN-Speech (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection VCTK (Yamagishi et al., 2019)
MUSAN-Music (Snyder et al., 2015)
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Domain Task Dataset

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection VCTK (Yamagishi et al., 2019)
MUSAN-Noise (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection VCTK (Yamagishi et al., 2019)
MUSAN-Speech (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise Detection VCTK (Yamagishi et al., 2019)
MUSAN-Gaussian (Snyder et al.,
2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise SNR Level
Prediction

VCTK (Yamagishi et al., 2019)
MUSAN-Gaussian (Snyder et al.,
2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise SNR Level
Prediction

VCTK (Yamagishi et al., 2019)
MUSAN-Music (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise SNR Level
Prediction

VCTK (Yamagishi et al., 2019)
MUSAN-Noise (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Noise SNR Level
Prediction

VCTK (Yamagishi et al., 2019)
MUSAN-Speech (Snyder et al., 2015)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

LJSpeech (Ito & Johnson, 2017)
RirsNoises-LargeRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

LJSpeech (Ito & Johnson, 2017)
RirsNoises-MediumRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

LJSpeech (Ito & Johnson, 2017)
RirsNoises-SmallRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

VCTK (Yamagishi et al., 2019)
RirsNoises-LargeRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

VCTK (Yamagishi et al., 2019)
RirsNoises-MediumRoom (Ko et al.,
2017)

Speech / Speech
Enhancement /
Degradation Detection

Reverberation
Detection

VCTK (Yamagishi et al., 2019)
RirsNoises-SmallRoom (Ko et al.,
2017)

Speech / Speech
Recognition / ASR
Post-Processing

N-Best Correction Librispeech-TestOther (Panayotov
et al., 2015)

Speech / Speech
Recognition / Language

AAVE Speech
Recognition

CORAAL (Kendall & Farrington,
2023)

Speech / Speech
Recognition / Language

Code-switch Speech
Recognition

NTUML2021 (Yang et al., 2024a)

Speech / Speech
Recognition / Language

Code-Switching
Speech Recognition

ASCEND (Lovenia et al., 2022)
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Domain Task Dataset

Speech / Speech
Recognition / Language

Multi-Lingual
Speech Recognition

MLS-de (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-Lingual
Speech Recognition

MLS-en (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-Lingual
Speech Recognition

MLS-es (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-Lingual
Speech Recognition

MLS-fr (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-Lingual
Speech Recognition

MLS-it (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-Lingual
Speech Recognition

MLS-nl (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-Lingual
Speech Recognition

MLS-pl (Pratap et al., 2020)

Speech / Speech
Recognition / Language

Multi-Lingual
Speech Recognition

MLS-pt (Pratap et al., 2020)

Speech / Speech
Recognition / Language

PTBR Speech
Recognition

CommonVoice17-Test (Ardila et al.,
2020)

Speech / Speech
Recognition / Language

SUPERB ASR LibriSpeech-TestClean (Panayotov
et al., 2015)

Speech / Speech
Recognition / Language

ASR LibriSpeech-TestOther (Panayotov
et al., 2015)

Speech / Speech
Recognition / Language

SUPERB OOD ASR
(Ar)

CommonVoice7-Test (Ardila et al.,
2020)

Speech / Speech
Recognition / Language

SUPERB OOD ASR
(Es)

CommonVoice7-Test (Ardila et al.,
2020)

Speech / Speech
Recognition / Language

SUPERB OOD ASR
(Spontaneous)

CHIME6-Test (Barker et al., 2018;
Watanabe et al., 2020)

Speech / Speech
Recognition / Language

SUPERB OOD ASR
(Zh)

CommonVoice7-Test (Ardila et al.,
2020)

Speech / Speech
Recognition / Speaker

Target Speaker ASR AMI-test (Carletta et al., 2005)

Speech / Speech
Recognition / Specific
Recognition Tasks

Multi-Speaker
Detection

LibriSpeech-TestClean (Panayotov
et al., 2015)

Speech / Speech
Recognition / Specific
Recognition Tasks

Speech Command
Recognition

AudioMNIST (Becker et al., 2024)

Speech / Speech
Recognition / Specific
Recognition Tasks

Speech Text
Matching

LibriSpeech-TestClean (Panayotov
et al., 2015)

Speech / Speech
Recognition / Specific
Recognition Tasks

Speech Text
Matching

LibriSpeech-TestOther (Panayotov
et al., 2015)
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Domain Task Dataset

Speech / Speech
Recognition / Specific
Recognition Tasks

Speech Text
Matching

LJSpeech (Ito & Johnson, 2017)

Speech / Speech
Recognition / Specific
Recognition Tasks

Spoken Term
Detection

LibriSpeech-TestClean (Panayotov
et al., 2015)

Speech / Speech
Recognition / Specific
Recognition Tasks

Spoken Term
Detection

LibriSpeech-TestOther (Panayotov
et al., 2015)

Speech / Speech
Recognition / Specific
Recognition Tasks

Spoken Term
Detection

LJSpeech (Ito & Johnson, 2017)

Speech / Speech
Recognition / Specific
Recognition Tasks

SUPERB Keyword
Spotting

SpeechCommandsV1-Test (Warden,
2018)

Speech / Speech
Recognition / Specific
Recognition Tasks

SUPERB Query by
Example

Quesst14-Eval (Anguera et al., 2015)

Speech / Speech, Voice,
Hearing Disorder /
Disorder Detection and
Classification

Stuttering Detection SEP-28k (Lea et al., 2021)

Speech / Speech, Voice,
Hearing Disorder /
Disorder Detection and
Classification

Voice Disorder
Classification

VOICED (Goldberger et al., 2000)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Conversation
Matching

EnShortConversation (CEEC)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Dialogue Act
Classification

SLUE-HVB (Shon et al., 2022)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Dialogue Act
Classification

DailyTalk (Lee et al., 2023)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Dialogue Act Pairing DailyTalk (Lee et al., 2023)

Speech / Spoken
Language
Understanding / Intent
& Meaning

SUPERB Intent
Classification

SLURP (Bastianelli et al., 2020)
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Domain Task Dataset

Speech / Spoken
Language
Understanding / Intent
& Meaning

Intent Classification
(Action)

SLURP-Action (Bastianelli et al.,
2020)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Intent Classification
(Intent)

SLURP-Intent (Bastianelli et al., 2020)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Named Entity
Localization

SLUE-VoxPopuli (Shon et al., 2022)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Named Entity
Recognition

SLUE-VoxPopuli (Shon et al., 2022)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Sarcasm Detection Mustard (Castro et al., 2019)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Semantic Textual
Similarity

SpokenSTS (Agirre et al., 2012)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Speech Sentiment
Analysis

MELD (Poria et al., 2019)

Speech / Spoken
Language
Understanding / Intent
& Meaning

Spoken Digit
Arithmetic

AudioMNIST (Becker et al., 2024)

Speech / Spoken
Language
Understanding / Intent
& Meaning

SUPERB Slot Filling AudioSnips-Test (Yang et al., 2021)

Speech / Spoken
Language
Understanding /
Linguistic Structure &
Grammar

Code-Switching
Semantic Grammar
Acceptability
Comparison

CSZS-zh-en (Huang et al., 2024b)

Speech / Spoken
Language
Understanding /
Linguistic Structure &
Grammar

Nonce Word
Detection

sWUGGY (Dunbar et al.)
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Domain Task Dataset

Speech / Spoken
Language
Understanding /
Linguistic Structure &
Grammar

PoS Estimation
LibriTTS PoS

LibriTTS (Zen et al., 2019)

Speech / Spoken
Language
Understanding /
Linguistic Structure &
Grammar

PoS Estimation
LibriTTS PoS with
transcription

LibriTTS (Zen et al., 2019)

Speech / Spoken
Language
Understanding /
Linguistic Structure &
Grammar

Sentence Grammar
Acceptability

sBLIMP (Dunbar et al.)

Speech / Spoken
Language
Understanding / Speech
Translation

SUPERB Speech
Translation

CoVoST2-Test (Wang et al., 2021)

C TASK-LEVEL EVALUATION RESULTS

Table 5: Task-level Evaluation Results: GPT4o

Task Metric Whisper-
LLaMA

LTU-AS SALMONN
7B

SALMONN
13B

Qwen-
Audio-
Chat

Qwen2-
Audio-
7B-Inst.

WavLLM MU-
LLaMA

GAMA-
IT

Chord
Classification

LLM-C↑ 4.00% 10.00% 0.50% 9.00% 44.00% 28.50% 44.50% 51.00% 0.00%

MARBLE Key
Detection
(GiantSteps - Key)

LLM-C↑ 3.00% 0.50% 1.50% 1.00% 3.00% 17.00% 2.00% 0.50% 0.00%

HEAR Music
Transcription
(MAESTRO)

NAR↓ 92.43% 100.00% 99.46% 100.00% 96.76% 96.76% 96.76% 100.00% 100.00%

HEAR Music
Transcription
(MAESTRO)

TER↓ 1.0065 - 36.0000 - 8.3438 1.6875 6.25 - -

HEAR Percussion
Instruments Tonic
Classification
(Mridangam
Tonic)

LLM-C↑ 2.00% 2.50% 12.70% 13.40% 11.30% 11.80% 12.80% 12.50% 5.70%

Instrument Pitch
Classification
(Nsynth)

LLM-C↑ 0.56% 0.56% 0.11% 0.22% 0.67% 18.11% 0.78% 0.33% 0.78%

Pitch Extraction
By Lyrics (CSD)

NAR↓ 37.50% 94.00% 47.50% 73.50% 65.50% 84.50% 76.00% 98.00% 68.50%

Pitch Extraction
By Lyrics (CSD)

TER↓ 146.28% 116.67% 226.21% 639.24% 106.45% 165.96% 136.11% 100.00% 195.18%
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Emotion
Classificaiton In
Songs
(EMOTIFY)

LLM-C↑ 10.00% 0.00% 1.67% 3.33% 13.33% 8.33% 8.33% 1.67% 0.00%

MARBLE
Emotion Detection
(MTG)

LLM-C↑ 0.00% 1.50% 0.00% 0.00% 2.70% 0.80% 0.80% 0.80% 0.10%

HEAR Music
Genre
Classification
(ISMIR04)

LLM-C↑ 15.58% 7.04% 31.16% 44.22% 33.67% 37.69% 16.58% 27.64% 2.51%

MARBLE Genre
Classification
(MTG)

LLM-C↑ 0.00% 1.60% 0.10% 0.20% 3.20% 0.10% 0.20% 0.20% 0.00%

MARBLE Music
Tagging
(MagnaTagATune)

LLM-C↑ 5.50% 1.00% 3.50% 9.00% 4.50% 1.50% 1.00% 3.50% 7.50%

MARBLE Music
Tagging (MTG)

LLM-C↑ 0.10% 0.30% 0.00% 0.00% 2.90% 0.30% 0.10% 0.50% 0.10%

Music Genre
Classification
(FMA)

LLM-C↑ 10.71% 1.79% 9.82% 16.07% 8.04% 15.18% 9.82% 9.82% 4.46%

HEAR Percussion
Instruments
Classification
(Beijing Opera
Percussion)

LLM-C↑ 3.39% 4.24% 10.17% 20.76% 16.10% 27.12% 24.15% 22.03% 11.44%

HEAR Percussion
Instruments Stroke
Classification
(Mridangam
Stroke)

LLM-C↑ 0.10% 3.80% 7.60% 4.90% 11.50% 10.80% 13.70% 10.30% 0.10%

Instrument
Classification
(Nsynth)

LLM-C↑ 1.23% 9.56% 13.97% 14.58% 17.89% 54.41% 11.89% 6.99% 10.17%

Instrument
Combination
Recognition
(OpenMIC-2018)

LLM-C↑ 4.20% 13.51% 17.72% 24.02% 25.83% 24.92% 20.42% 19.52% 8.11%

Instrument Source
Classification
(Nsynth)

LLM-C↑ 7.22% 28.33% 37.33% 43.56% 32.67% 35.22% 30.89% 38.00% 35.89%

MARBLE
Instrument
Classification
(MTG)

LLM-C↑ 0.40% 2.30% 0.00% 0.00% 6.40% 1.40% 0.20% 0.60% 0.20%

Singing Automatic
MOS Prediction
(SingMOS)

NAR↓ 99.50% 67.72% 0.33% 11.15% 17.30% 0.00% 22.96% 97.34% 98.34%

Singing Automatic
MOS Prediction
(SingMOS)

MSE↓ 12.17 2.3872 10.0777 11.2308 14.8895 1.4485 11.421 4.53 2.08

Singing Automatic
MOS Prediction
(SingMOS)

KTAU↑ -0.3333 0.0126 -0.1105 0.0166 0.0712 0.0099 0.0103 0.1705 0.3539

Singing Automatic
MOS Prediction
(SingMOS)

LCC↑ -0.6747 -0.0706 -0.1354 0.036 0.0824 0.0255 -0.0216 0.1866 0.3846

Singing Automatic
MOS Prediction
(SingMOS)

SRCC↑ -0.5 0.0183 -0.1325 0.0231 0.0872 0.0124 0.0118 0.2281 0.4247
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MARBLE Beat
Tracking (ASAP)

NAR↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

MARBLE Beat
Tracking (ASAP)

ERR↓ - - - - - - - - -

Music Beat
Tracking (ASAP)

NAR↓ 54.55% 74.55% 51.82% 63.64% 62.73% 40.91% 47.27% 80.00% 84.55%

Music Beat
Tracking (ASAP)

Miss
Time↓

135.6077 183.6786 118.4047 77.9687 157.5917 76.0904 111.7759 240 93.8751

Audio Editing
Identification
(People’s Speech)

NAR↓ 84.38% 87.50% 62.50% 75.00% 75.00% 68.75% 96.88% 65.62% 37.50%

Audio Editing
Identification
(People’s Speech)

ACC↑ 204.3094 53.6938 165.0617 43.1693 184.695 154.6202 100 164.0558 154.8122

Scene Fake
Detection
(ASPIRE)

LLM-C↑ 22.00% 46.00% 48.00% 37.00% 49.00% 54.00% 49.00% 20.00% 41.00%

Audio Deep Fake
Detection
(LJSpeech,
WaveFake,
MUSDB18HQ)

LLM-C↑ 8.25% 24.56% 22.79% 38.31% 31.43% 27.90% 30.84% 39.10% 25.54%

Singing Voice
Deepfake
Detection
(CtrSVDD,
ACEKiSing,
M4Singer)

LLM-C↑ 5.56% 22.06% 22.06% 26.19% 24.44% 21.43% 9.21% 20.95% 9.84%

Audio Duration
Prediction
(NTUML2021)

NAR↓ 33.00% 37.00% 10.50% 55.00% 0.00% 0.00% 0.50% 46.50% 14.00%

Audio Duration
Prediction
(NTUML2021)

MSE↓ 13.3657 39.1111 31652.7877 2216.7111 28.985 62.515 3581.0352 1527.785 62.7674

HEAR Music
Speech
Classification
(MAESTRO,
Librispeech)

LLM-C↑ 72.50% 77.50% 91.50% 99.50% 98.00% 89.50% 59.50% 51.50% 88.00%

Sound Effect
Detection
(RemFx)

LLM-C↑ 2.00% 6.50% 14.17% 17.67% 15.83% 19.83% 17.50% 17.00% 15.83%

Speech Detection
(LibriSpeech-
TestClean)

LLM-C↑ 48.00% 29.00% 46.00% 66.00% 45.50% 56.50% 35.00% 46.50% 38.50%

Speech Detection
(LibriSpeech-
TestOther)

LLM-C↑ 52.00% 31.50% 46.00% 66.50% 44.50% 55.50% 37.00% 45.50% 36.00%

Speech Detection
(LJSpeech)

LLM-C↑ 54.00% 44.50% 60.50% 74.00% 57.00% 45.00% 53.00% 49.00% 55.50%

Children Song
Transcript
Verification (CSD)

WER↓ 58.68% 102.68% 104.02% 100.99% 128.67% 94.93% 155.48% 100.00% 100.12%

Lyric Translation
(SingSet)

Sacre
Bleu↑

2.1093 1.0357 2.8126 0.9941 3.3975 3.9155 1.8969 0.1593 0.0739

Song Lyric
Recognition
(SingSet)

MER↓ 101.93% 164.53% 356.36% 266.00% 118.41% 115.62% 481.13% 117.53% 168.52%
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MARBLE Vocal
Technique
Detection
(VocalSet)

LLM-C↑ 8.00% 1.00% 11.00% 6.50% 6.50% 15.50% 8.00% 8.50% 2.50%

Audio Segment
Retrieval (Clotho)

NAR↓ 80.00% 78.00% 2.00% 4.00% 12.00% 4.00% 14.00% 82.00% 6.00%

Audio Segment
Retrieval (Clotho)

IoU↑ 8.17% 22.17% 8.25% 8.68% 4.58% 7.07% 6.90% 0.00% 10.45%

HEAR Sound
Event Detection
(DCASE2016
Task2)

LLM-C↑ 0.00% 0.00% 21.43% 35.71% 7.14% 14.29% 21.43% 21.43% 7.14%

Multi-channel
Sound Event
Understanding
(STARSS23)

LLM-C↑ 38.73% 4.23% 37.32% 26.06% 38.03% 41.55% 21.83% 4.93% 11.27%

Animal
Classification
(WaveSource-
Test)

LLM-C↑ 9.25% 40.50% 58.25% 67.00% 75.75% 34.00% 12.00% 4.25% 15.25%

Bird Sound
Detection
(Warblrb10k)

LLM-C↑ 28.50% 43.00% 74.50% 75.00% 78.50% 79.00% 75.00% 40.50% 33.00%

Cat Emotion
Classification (Cat
Sound
Classification
Dataset V2)

LLM-C↑ 6.00% 0.00% 2.00% 4.00% 6.00% 14.00% 8.00% 2.00% 14.00%

Cornell Birdcall
Identification

LLM-C↑ 0.00% 0.00% 0.00% 3.33% 10.00% 10.00% 13.33% 3.33% 0.00%

Environmental
Sound
Classification
(ESC50-Animals)

LLM-C↑ 14.50% 8.00% 14.00% 3.00% 82.00% 36.00% 5.00% 0.00% 2.00%

HEAR Beehive
States
Classification
(Beehive States)

LLM-C↑ 43.00% 35.00% 54.00% 42.50% 19.00% 42.50% 37.00% 37.50% 19.00%

Domestic
Environment
Sound Event
Detection
(DESED-
PublicEval)

NAR↓ 91.39% 99.44% 99.72% 99.72% 99.17% 99.72% 99.72% 100.00% 99.72%

Domestic
Environment
Sound
EventDetection
(DESED-
PublicEval)

Event-
based
F1↑

0 0.6 0 0 0 0.01 0 0 0

Emergency Traffic
Detection
(Large-Scale-
Audio-dataset)

LLM-C↑ 39.00% 34.00% 55.50% 7.25% 65.50% 74.50% 17.50% 43.50% 15.83%

Environmental
Sound
Classification
(ESC50-Exterior
And Urban
Noises)

LLM-C↑ 4.50% 14.50% 0.50% 0.50% 77.00% 25.00% 6.50% 0.00% 6.50%

Environmental
Sound
Classification
(ESC50-Interior
And Domestic
Sounds)

LLM-C↑ 4.50% 3.50% 0.50% 0.00% 59.00% 2.50% 4.00% 0.00% 0.00%
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Environmental
Sound
Classification
(ESC50-Natural
Soundscapes And
Water Sounds)

LLM-C↑ 3.00% 7.50% 6.50% 1.00% 78.00% 5.00% 7.00% 0.00% 7.00%

Environmental
Sound
Classification
(UrbanSound8K-
Urban Noises)

LLM-C↑ 10.00% 3.26% 1.40% 0.00% 39.53% 4.88% 10.47% 0.00% 0.70%

Environment
Recognition
(ESC50)

LLM-C↑ 7.02% 38.60% 42.11% 19.30% 56.14% 63.16% 40.35% 10.53% 31.58%

HEAR
Environmental
Sound
Classification
(ESC50)

LLM-C↑ 4.80% 25.30% 61.00% 73.40% 68.80% 43.90% 9.80% 0.40% 35.30%

HEAR Vocal
Imitation
Classification
(Vocal Imitations)

LLM-C↑ 15.17% 5.50% 1.17% 1.83% 18.67% 11.17% 17.50% 3.83% 5.83%

Audio Spatial
Distance
Prediction (Spatial
LibriSpeech)

NAR↓ 50.50% 59.00% 62.50% 100.00% 85.50% 58.00% 44.00% 97.00% 71.00%

Audio Spatial
Distance
Prediction (Spatial
LibriSpeech)

MEDAE↓ 0.6651 0.933 0.449 - 1.5011 0.6915 0.9011 0.9212 0.5

How Far Are You
(3DSpeaker)

LLM-C↑ 26.00% 13.00% 4.50% 8.00% 30.00% 26.00% 32.00% 18.00% 2.50%

Sound Position
Prediction

NAR↓ 81.25% 100.00% 100.00% 100.00% 100.00% 25.00% 93.75% 100.00% 100.00%

Sound Position
Prediction

Angle
Diff↓

1.4006 - - - - 1.1063 0.8681 - -

Dialogue Emotion
Classification
(Daily Talk)

LLM-C↑ 33.50% 16.50% 27.00% 11.50% 33.00% 54.00% 18.50% 19.00% 33.00%

Emoji Grounded
Speech Emotion
Recognition
(RAVDESS)

LLM-C↑ 1.10% 0.00% 0.00% 0.10% 1.30% 1.20% 0.10% 1.90% 48.50%

Emotion Change
Detection
(Ravdess)

LLM-C↑ 0.08% 0.42% 0.58% 0.96% 0.04% 2.96% 0.08% 0.58% 0.04%

Emotion
Recognition
(MELD)

LLM-C↑ 22.50% 14.50% 19.00% 9.50% 43.50% 36.50% 40.50% 0.50% 2.50%

HEAR Emotion
Recognition
(CREMAD)

LLM-C↑ 6.70% 9.30% 18.80% 18.10% 62.50% 61.10% 25.60% 12.40% 13.20%

SUPERB Emotion
Recognition
(RAVDESS)

LLM-C↑ 12.50% 25.83% 12.08% 12.50% 70.42% 75.83% 12.08% 12.92% 0.00%

Covid19 Cough
Audio
Classification
(CoughVid)

LLM-C↑ 0.93% 1.03% 0.00% 0.00% 4.12% 0.72% 4.22% 21.91% 0.21%
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Environmental
Sound
Classification
(ESC50-Human
And Non Speech
Sounds)

LLM-C↑ 17.50% 11.00% 8.50% 3.00% 82.00% 29.00% 16.50% 0.00% 2.00%

Human Non
Speech Sound
Recognition
(Nonspeech7k,
CommonVoice)

LLM-C↑ 2.86% 5.00% 44.29% 30.71% 27.14% 23.57% 14.29% 17.14% 32.86%

Human Screaming
Detection
(Environmentdb)

LLM-C↑ 52.50% 25.00% 52.50% 65.00% 62.50% 87.50% 47.50% 42.50% 60.00%

Vocal Sound
Recognition
(VocalSound)

LLM-C↑ 29.86% 1.53% 11.53% 4.31% 75.56% 30.97% 14.44% 0.28% 2.78%

Phoneme Segment
Counting
(Librispeech-
words)

NAR↓ 16.29% 48.64% 39.09% 11.62% 5.99% 1.73% 0.50% 2.67% 72.22%

Phoneme Segment
Counting
(Librispeech-
words)

ACC↑ 13.56% 11.77% 11.84% 8.25% 5.42% 13.46% 9.55% 0.47% 2.29%

Phoneme Segment
Counting
(Librispeech-
words)

Abs
Diff↓

2.5378 1012.8103 6.5285 50.7724 7.1857 3.0622 7.9109 15.6777 5.0491

Phone Segment
Counting
(VoxAngeles)

NAR↓ 19.19% 57.24% 41.88% 12.56% 0.41% 16.11% 15.04% 41.47% 18.79%

Phone Segment
Counting
(VoxAngeles)

ACC↑ 13.20% 1.69% 15.81% 20.04% 1.77% 6.60% 10.11% 9.14% 3.80%

Phone Segment
Counting
(VoxAngeles)

Abs
Diff↓

41.236 3759.3878 5.4857 4.9331 3.1286 2.8706 45754.9952 5.4242 2.8694

SUPERB
Phoneme
Recognition
(LibriSpeech-
TestClean)

PER↓ 100.12% 102.75% 25.36% 24.60% 100.58% 100.96% 99.99% 110.27% 100.37%

Phoneme
Recognition
(LibriSpeech-
TestOther)

PER↓ 100.17% 101.08% 22.79% 22.91% 100.62% 100.88% 99.99% 111.18% 100.61%

Phonological
Feature
Classification
(VoxAngeles-
Consonant Place
Of Articulation)

LLM-C↑ 25.77% 1.37% 1.88% 1.37% 1.54% 3.24% 1.88% 1.54% 0.51%

Phonological
Feature
Classification
(VoxAngeles-
Manner Of
Articulation)

LLM-C↑ 17.42% 9.36% 2.06% 1.50% 5.62% 6.74% 6.84% 7.96% 8.99%

Phonological
Feature
Classification
(VoxAngeles-
Phone)

LLM-C↑ 5.73% 0.09% 1.76% - 3.60% 3.97% 0.00% 0.00% 0.09%
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Phonological
Feature
Classification
(VoxAngeles-
Vowel Frontness)

LLM-C↑ 50.71% 17.52% 41.14% 38.09% 48.47% 57.23% 36.46% 42.97% 10.39%

Phonological
Feature
Classification
(VoxAngeles-
Vowel Height)

LLM-C↑ 24.44% 17.11% 31.77% 35.23% 29.53% 36.86% 37.88% 39.10% 24.44%

Phonological
Feature
Classification
(VoxAngeles-
Vowel
Roundedness)

LLM-C↑ 43.38% 21.18% 27.29% 61.30% 46.44% 69.65% 38.90% 21.79% 18.94%

Heteronym
Differentiation
(HeteronymEn)

LLM-C↑ 55.00% 26.00% 37.00% 45.00% 52.00% 44.00% 51.00% 30.00% 20.00%

L2 English
Accuracy
(speechocean762-
Ranking)

LLM-C↑ 24.72% 33.89% 50.00% 49.72% 34.44% 50.00% 41.67% 48.06% 45.56%

L2 English
Accuracy
(speechocean762-
scoring)

NAR↓ 15.44% 95.03% 0.40% 0.27% 37.72% 0.94% 9.53% 90.47% 50.07%

L2 English
Accuracy
(speechocean762-
scoring)

PCC↑ 0.0185 -0.183 0.0633 0.0438 0.0293 -0.0159 0.0439 0.0727 0.0151

Multi-lingual
Pronunciation
Similarity
(VoxAngeles)

LLM-C↑ 38.40% 13.50% 47.20% 48.50% 23.70% 44.70% 48.00% 25.10% 40.60%

Accent
Classification
(Accentdb
Extended)

LLM-C↑ 17.50% 5.50% 3.00% 4.50% 26.50% 14.00% 7.00% 27.00% 4.00%

Stress Detection
(MIRSD)

LLM-C↑ 15.50% 3.00% 2.00% 13.00% 16.50% 23.50% 25.50% 0.00% 1.00%

Third Tone Sandhi
Recognition
(NCCU Corpus of
Spoken Taiwan
Mandarin)

NAR↓ 59.38% 93.75% 100.00% 87.50% 84.38% 84.38% 28.12% 96.88% 100.00%

Third Tone Sandhi
Recognition
(NCCU Corpus of
Spoken Taiwan
Mandarin)

IoU↑ 0.2179 0.5 0 0.75 0 0 0.1304 0 0

L2 English
Fluency
(speechocean762-
Ranking)

LLM-C↑ 31.39% 21.94% 50.00% 50.00% 40.28% 50.56% 27.78% 49.44% 45.00%

L2 English
Fluency
(speechocean762-
Scoring)

NAR↓ 14.67% 88.16% 0.00% 0.67% 8.75% 0.81% 41.86% 63.53% 55.72%

L2 English
Fluency
(speechocean762-
Scoring)

PCC↑ 0.0055 0.0332 0.0292 0.0183 -0.0422 -0.0858 0.0222 0.0505 0.0532
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L2 English
Prosodic
(speechocean762-
Ranking)

LLM-C↑ 26.39% 35.00% 46.67% 52.50% 34.44% 51.11% 34.44% 49.72% 42.22%

L2 English
Prosodic
(speechocean762-
Scoring)

NAR↓ 39.43% 94.75% 0.27% 1.21% 71.47% 3.10% 11.98% 94.62% 82.91%

L2 English
Prosodic
(speechocean762-
Scoring)

PCC↑ 0.0435 -0.1747 0.0427 0.0775 0.1446 0.0201 0.0461 -0.1535 0.0973

Prosody
Naturalness
(ProsAudit-
Lexical)

LLM-C↑ 49.81% 32.82% 48.26% 47.10% 21.62% 51.74% 54.83% 47.10% 5.41%

Prosody
Naturalness
(ProsAudit-
Protosyntax)

LLM-C↑ 53.44% 31.68% 46.56% 46.18% 25.95% 50.76% 43.51% 49.24% 4.20%

Spoof Detection
(ASVspoof2015)

LLM-C↑ 41.00% 19.00% 55.00% 14.00% 13.00% 23.00% 19.50% 69.50% 0.50%

Spoof Detection
(ASVspoof2017)

LLM-C↑ 49.00% 4.50% 63.00% 38.00% 27.00% 32.50% 21.00% 64.00% 0.00%

Deep Fake Voice
Recognition
(DEEP-VOICE)

LLM-C↑ 27.25% 7.75% 50.75% 40.00% 48.75% 50.50% 43.50% 45.00% 19.75%

Enhancement
Detection
(LibriTTS-
TestClean,
WHAM)

LLM-C↑ 50.50% 30.50% 30.00% 46.50% 55.00% 56.50% 30.00% 50.00% 21.00%

Fraud Robocall
Recognition
(CallHome)

LLM-C↑ 73.33% 13.33% 0.00% 100.00% 100.00% 100.00% 90.00% 26.67% 100.00%

Fraud Robocall
Recognition
(Promo)

LLM-C↑ 47.37% 10.53% 0.00% 73.68% 57.89% 63.16% 63.16% 5.26% 100.00%

Fraud Robocall
Recognition
(Robocall)

LLM-C↑ 94.87% 51.28% 100.00% 20.51% 51.28% 61.54% 30.77% 30.77% 0.00%

HEAR Language
Identification
(VoxLingua107)

LLM-C↑ 92.18% 1.95% 6.28% 11.01% 18.00% 36.11% 1.85% 0.00% 0.10%

Language
Identification
(VoxForge)

LLM-C↑ 95.50% 13.50% 22.00% 8.50% 84.50% 93.00% 18.00% 6.00% 0.00%

Age Classification
(Common Voice)

LLM-C↑ 0.50% 19.75% 22.75% 21.00% 26.00% 35.50% 21.00% 23.50% 17.75%

Gender
Recognition by
Voice (Common
Voice)

LLM-C↑ 1.00% 81.50% 63.00% 57.00% 53.50% 97.50% 35.00% 51.00% 63.00%

HEAR Speaker
Count
Identification
(LibriCount)

NAR↓ 30.40% 42.10% 35.90% 42.50% 3.50% 0.40% 22.00% 23.20% 26.20%

HEAR Speaker
Count
Identification
(LibriCount)

ACC↑ 17.53% 16.93% 13.26% 17.22% 10.26% 13.76% 5.51% 13.80% 17.48%
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Multi-Speaker
Detection (VCTK)

LLM-C↑ 46.50% 23.50% 36.00% 30.50% 57.00% 51.00% 32.50% 39.00% 48.50%

Speaker Counting
(LibriTTS-
TestClean)

LLM-C↑ 18.50% 6.00% 14.50% 13.50% 17.50% 26.50% 14.00% 4.00% 12.00%

Speaker
Verification
(LibriSpeech-
TestClean)

LLM-C↑ 48.00% 37.50% 45.00% 54.50% 43.50% 52.00% 19.00% 24.00% 13.00%

Speaker
Verification
(LibriSpeech-
TestOther)

LLM-C↑ 46.00% 36.00% 49.00% 46.00% 47.00% 54.00% 21.00% 33.00% 23.00%

Speaker
Verification
(VCTK)

LLM-C↑ 48.00% 38.50% 54.00% 58.50% 32.50% 51.00% 24.00% 19.50% 7.00%

SUPERB Speaker
Diarization
(Libri2Mix-Test)

NAR↓ 93.00% 99.50% 100.00% 100.00% 99.50% 98.00% 97.50% 100.00% 60.50%

SUPERB Speaker
Diarization
(Libri2Mix-Test)

DER↓ 74.81% 74.62% - - 44.26% 93.29% 90.53% - 74.12%

SUPERB Speaker
Verification
(SUPERB Hidden
Set)

LLM-C↑ 45.00% 44.00% 45.00% 51.00% 49.00% 51.00% 49.00% 44.00% 45.00%

Noise Detection
(LJSpeech,
MUSAN-
Gaussian)

LLM-C↑ 45.50% 18.50% 50.00% 47.50% 42.00% 49.00% 39.00% 41.00% 21.50%

Noise Detection
(LJSpeech,
MUSAN-Music)

LLM-C↑ 52.00% 8.50% 52.00% 47.00% 50.50% 47.00% 44.50% 33.00% 6.00%

Noise Detection
(LJSpeech,
MUSAN-Noise)

LLM-C↑ 47.00% 13.50% 50.50% 49.00% 50.50% 49.50% 44.50% 48.00% 9.00%

Noise Detection
(LJSpeech,
MUSAN-Speech)

LLM-C↑ 48.00% 13.50% 53.00% 36.00% 50.50% 47.00% 45.00% 50.50% 51.00%

Noise Detection
(VCTK,
MUSAN-Music)

LLM-C↑ 46.00% 32.50% 45.50% 57.50% 42.00% 54.50% 52.00% 37.50% 3.50%

Noise Detection
(VCTK,
MUSAN-Noise)

LLM-C↑ 44.50% 26.50% 45.50% 55.00% 44.50% 61.00% 47.00% 54.00% 4.50%

Noise Detection
(VCTK,
MUSAN-Speech)

LLM-C↑ 45.00% 51.50% 43.50% 52.50% 46.50% 57.00% 44.50% 48.50% 56.50%

Noise Detection
(VCTK, MUSAN-
Gaussian)

LLM-C↑ 53.00% 15.50% 49.00% 56.50% 45.50% 54.50% 46.00% 38.50% 11.50%

Noise SNR Level
Prediction
(VCTK, MUSAN-
Gaussian)

LLM-C↑ 24.00% 8.00% 13.50% 15.50% 13.00% 17.50% 17.50% 15.00% 1.50%

Noise SNR Level
Prediction
(VCTK,
MUSAN-Music)

LLM-C↑ 23.00% 9.00% 10.00% 8.50% 10.00% 14.00% 15.50% 9.00% 1.50%
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Noise SNR Level
Prediction
(VCTK,
MUSAN-Noise)

LLM-C↑ 23.00% 12.50% 9.50% 16.00% 7.50% 19.00% 14.00% 11.00% 0.50%

Noise SNR Level
Prediction
(VCTK,
MUSAN-Speech)

LLM-C↑ 23.50% 11.50% 13.00% 1.50% 14.00% 20.50% 15.00% 10.50% 0.50%

Reverberation
Detection
(LJSpeech,
RirsNoises-
LargeRoom)

LLM-C↑ 44.50% 11.00% 19.00% 34.00% 28.00% 48.00% 42.50% 17.50% 6.00%

Reverberation
Detection
(LJSpeech,
RirsNoises-
MediumRoom)

LLM-C↑ 40.00% 4.50% 14.50% 25.00% 31.00% 48.00% 41.00% 10.50% 5.00%

Reverberation
Detection
(LJSpeech,
RirsNoises-
SmallRoom)

LLM-C↑ 45.00% 4.50% 9.00% 19.50% 24.00% 48.00% 42.50% 14.00% 6.50%

Reverberation
Detection (VCTK,
RirsNoises-
LargeRoom)

LLM-C↑ 43.00% 24.50% 18.50% 25.00% 18.00% 46.00% 37.00% 14.50% 7.50%

Reverberation
Detection (VCTK,
RirsNoises-
MediumRoom)

LLM-C↑ 46.50% 22.50% 8.50% 19.50% 20.00% 46.00% 38.50% 14.00% 6.50%

Reverberation
Detection (VCTK,
RirsNoises-
SmallRoom)

LLM-C↑ 47.00% 18.50% 8.00% 13.00% 17.50% 46.00% 36.00% 10.50% 11.00%

N-Best Correction
(Librispeech-
TestOther)

LLM-C↑ 31.80% 22.80% 23.00% 29.20% 32.80% 29.00% 32.60% 20.80% 30.80%

AAVE Speech
Recognition
(CORAAL)

WER↓ 21.73% 97.34% 23.99% 31.56% 96.81% 38.55% 34.91% 136.50% 102.92%

Code-switch
Speech
Recognition
(NTUML2021)

MER↓ 424.58% 215.51% 293.50% 185.27% 165.54% 116.88% 172.03% 130.18% 193.47%

Code-Switching
Speech
Recognition
(ASCEND)

NAR↓ 68.20% 12.20% 5.40% 88.80% 1.60% 0.00% 30.40% 69.40% 14.60%

Code-Switching
Speech
Recognition
(ASCEND)

ACC↑ 28.30% 50.57% 58.14% 14.29% 44.31% 60.80% 10.92% 13.73% 9.84%

Multi-Lingual
Speech
Recognition
(MLS-de)

WER↓ 73.80% 132.35% 34.46% 25.21% 79.60% 24.96% 49.56% 99.37% 105.81%

Multi-Lingual
Speech
Recognition
(MLS-en)

WER↓ 65.03% 100.29% 9.37% 9.47% 27.97% 17.47% 17.23% 96.03% 97.09%

Multi-Lingual
Speech
Recognition
(MLS-es)

WER↓ 72.49% 123.26% 23.45% 16.10% 58.82% 18.19% 44.90% 103.19% 101.75%
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Multi-Lingual
Speech
Recognition
(MLS-fr)

WER↓ 71.09% 133.86% 26.52% 21.27% 46.27% 19.01% 42.35% 102.25% 102.01%

Multi-Lingual
Speech
Recognition
(MLS-it)

WER↓ 85.38% 125.39% 39.11% 31.54% 56.55% 33.16% 46.14% 102.72% 108.84%

Multi-Lingual
Speech
Recognition
(MLS-nl)

WER↓ 74.96% 120.29% 32.11% 29.37% 140.01% 42.94% 55.56% 102.05% 101.22%

Multi-Lingual
Speech
Recognition
(MLS-pl)

WER↓ 76.79% 139.04% 73.83% 51.53% 278.19% 101.41% 90.11% 100.23% 105.43%

Multi-Lingual
Speech
Recognition
(MLS-pt)

WER↓ 73.63% 136.66% 31.88% 25.07% 117.33% 24.72% 46.26% 99.71% 103.48%

PTBR Speech
Recognition
(Common Voice)

WER↓ 45.75% 248.05% 69.88% 73.91% 233.85% 38.57% 62.93% 639.12% 270.64%

SUPERB ASR
(LibriSpeech-
TestClean)

WER↓ 33.96% 96.28% 15.11% 2.79% 69.35% 36.70% 6.87% 103.67% 116.66%

ASR
(LibriSpeech-
TestOther)

WER↓ 42.14% 91.89% 11.44% 4.31% 79.53% 40.28% 9.17% 111.03% 130.00%

SUPERB OOD
ASR (Ar)
(Common Voice)

WER↓ 51.04% 245.85% 216.51% 178.02% 289.25% 178.21% 149.15% 225.28% 504.53%

SUPERB OOD
ASR (Es)
(Common Voice)

WER↓ 10.93% 150.00% 98.96% 99.22% 100.83% 75.08% 99.38% 141.68% 303.28%

SUPERB OOD
ASR
(Spontaneous)
(CHIME6-Test)

WER↓ 65.71% 122.86% 61.11% 62.80% 92.17% 80.21% 136.24% 137.25% 266.72%

SUPERB OOD
ASR (Zh)
(Common Voice)

CER↓ 29.67% 508.02% 609.28% 310.33% 449.32% 270.63% 445.36% 435.33% 1097.41%

Target Speaker
ASR (AMI-test)

WER↓ 143.02% 133.86% 273.90% 187.15% 207.01% 132.13% 266.26% 108.32% 140.37%

Multi-Speaker
Detection
(LibriSpeech-
TestClean)

LLM-C↑ 46.00% 29.00% 16.50% 22.00% 58.00% 52.00% 22.00% 42.50% 53.00%

Speech Command
Recognition
(AudioMNIST)

NAR↓ 4.80% 76.40% 3.07% 0.40% 0.67% 0.00% 0.67% 1.60% 76.40%

Speech Command
Recognition
(AudioMNIST)

ACC↑ 88.80% 77.40% 96.70% 74.43% 96.24% 77.07% 93.42% 9.89% 8.47%

Speech Text
Matching
(LibriSpeech-
TestClean)

LLM-C↑ 86.50% 43.50% 57.00% 59.50% 64.00% 92.00% 50.50% 50.50% 42.00%

Speech Text
Matching
(LibriSpeech-
TestOther)

LLM-C↑ 80.50% 42.50% 56.50% 60.00% 66.00% 92.50% 51.50% 47.50% 40.00%
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Speech Text
Matching
(LJSpeech)

LLM-C↑ 83.50% 44.50% 57.00% 60.00% 67.00% 90.00% 60.00% 49.50% 41.00%

Spoken Term
Detection
(LibriSpeech-
TestClean)

LLM-C↑ 76.50% 28.00% 60.00% 54.50% 77.00% 61.50% 51.00% 30.50% 37.50%

Spoken Term
Detection
(LibriSpeech-
TestOther)

LLM-C↑ 75.50% 23.00% 54.50% 50.50% 72.50% 64.00% 59.50% 41.00% 34.00%

Spoken Term
Detection
(LJSpeech)

LLM-C↑ 83.50% 33.50% 57.00% 53.50% 74.50% 79.50% 56.50% 38.50% 25.00%

SUPERB
Keyword Spotting
(Speech
Commands
V1-Test)

LLM-C↑ 36.50% 1.00% 30.50% 2.00% 60.50% 47.00% 43.00% 4.00% 2.00%

SUPERB Query
by Example
(Quesst14-Eval)

LLM-C↑ 46.50% 45.00% 49.00% 51.50% 48.00% 53.50% 49.50% 51.00% 2.50%

Stuttering
Detection
(SEP28k)

LLM-C↑ 49.10% 51.00% 50.50% 50.30% 50.50% 52.40% 55.00% 49.60% 47.40%

Voice Disorder
Classification
(VOICED)

LLM-C↑ 13.46% 1.92% 13.46% 17.31% 13.46% 16.35% 18.27% 21.15% 6.73%

Conversation
Matching

LLM-C↑ 77.78% 5.56% 57.41% 37.04% 51.85% 66.67% 62.96% 3.70% 24.07%

Dialogue Act
Classification
(SLUE-HVB)

LLM-C↑ 11.08% 0.00% 36.00% 0.92% 5.00% 15.83% 13.17% 1.83% 1.33%

Dialogue Act
Classification
(Daily Talk)

LLM-C↑ 29.00% 10.50% 34.00% 40.50% 42.00% 30.00% 36.50% 18.50% 4.00%

Dialogue Act
Pairing (Daily
Talk)

LLM-C↑ 50.00% 3.50% 51.00% 48.00% 43.50% 46.00% 37.00% 40.00% 25.00%

SUPERB Intent
Classification
(SLURP)

LLM-C↑ 36.50% 0.06% 21.00% 5.50% 26.50% 26.00% 28.00% 3.50% 1.00%

Intent
Classification
(SLURP-Action)

LLM-C↑ 27.00% 14.00% 28.50% 28.50% 44.00% 68.50% 37.50% 6.50% 1.50%

Intent
Classification
(SLURP-Intent)

LLM-C↑ 45.50% 11.50% 27.00% 19.00% 68.50% 56.00% 56.50% 4.00% 0.50%

Named Entity
Localization
(SLUE-
VoxPopuli)

NAR↓ 81.25% 100.00% 100.00% 100.00% 100.00% 25.00% 93.75% 100.00% 100.00%

Named Entity
Localization
(SLUE-
VoxPopuli)

F1↑ 1.4006 - - - - 1.1063 0.8681 - -

Named Entity
Recognition
(SLUE-
VoxPopuli)

NAR↓ 90.76% 98.37% 95.65% 98.37% 95.11% 91.30% 91.85% 97.83% 96.74%
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Named Entity
Recognition
(SLUE-
VoxPopuli)

IoU↑ 0 0.3333 0 0 0 0.0625 0.0222 0 0

Sarcasm Detection
(Mustard)

LLM-C↑ 44.50% 15.00% 38.50% 46.00% 42.50% 48.00% 46.50% 43.00% 8.00%

Semantic Textual
Similarity
(SpokenSTS)

LLM-C↑ 48.80% 47.20% 47.20% 50.40% 42.80% 46.80% 50.40% 51.20% 38.80%

Speech Sentiment
Analysis (MELD)

LLM-C↑ 38.50% 37.50% 33.50% 35.09% 38.50% 49.00% 44.00% 27.50% 27.00%

Spoken Digit
Arithmetic
(AudioMNIST)

LLM-C↑ 43.50% 13.00% 31.00% 33.00% 15.00% 43.50% 40.50% 4.50% 13.00%

SUPERB Slot
Filling
(AudioSnips-Test)

NAR↓ 38.00% 88.50% 34.00% 68.50% 51.00% 45.00% 44.00% 99.00% 97.00%

SUPERB Slot
Filling
(AudioSnips-Test)

Slot
Type
F1↑

0.8637 0.8864 0.9325 0.9396 0.8616 0.7704 0.907 1 0.8939

SUPERB Slot
Filling
(AudioSnips-Test)

Slot
Value
CER↓

0.3178 0.6432 0.4059 0.3349 0.4417 0.3065 0.4752 1.587 1.425

Code-Switching
Semantic
Grammar
Acceptability
Comparison
(CSZS-zh-en)

LLM-C↑ 51.50% 45.00% 50.00% 49.50% 27.50% 49.50% 27.50% 28.00% 19.00%

Nonce Word
Detection
(sWUGGY)

LLM-C↑ 48.43% 30.20% 48.43% 48.43% 21.08% 50.14% 48.15% 35.04% 19.37%

PoS Estimation
(LibriTTS)

POS↓ 2.5722 1.2792 2.9675 1.199 3.062 2.3091 3.1126 1.5327 1.9635

PoS Estimation
with transcription
(LibriTTS)

POS↓ 0.9081 1.3507 1.7583 1.0601 2.158 1.7514 2.0463 1.2394 1.3911

Sentence
Grammar
Acceptability
(sBLIMP)

LLM-C↑ 52.78% 6.75% 27.38% 42.06% 28.97% 49.40% 49.80% 50.79% 3.57%

SUPERB Speech
Translation
(CoVoST2-Test)

Sacre
Bleu↑

17.372 0.107 18.7884 16.7835 6.9846 23.3458 21.7423 0.0566 0.0219

Table 6: Task-level evaluation results using LLaMA-3.1-8B-Instruct.

Task Metric Whisper-
LLaMA

LTU-AS SALMONN
7B

SALMONN
13B

Qwen-
Audio-
Chat

Qwen2-
Audio-
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GAMA-
IT

Chord
Classification

LLM-C↑ 4.00% 5.00% 7.50% 13.00% 43.00% 16.00% 45.50% 50.00% 0.50%

MARBLE Key
Detection
(GiantSteps - Key)

LLM-C↑ 3.50% 1.00% 1.50% 1.00% 3.00% 13.00% 2.00% 0.50% 11.50%
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HEAR Music
Transcription
(MAESTRO)

NAR↓ 95.14% 100.00% 100.00% 100.00% 97.30% 96.22% 84.86% 100.00% 100.00%

HEAR Music
Transcription
(MAESTRO)

TER↓ 99.45% - - - 99.54% 100.00% 99.48% - -

HEAR Percussion
Instruments Tonic
Classification
(Mridangam
Tonic)

LLM-C↑ 2.40% 3.30% 14.00% 15.10% 14.00% 13.20% 16.00% 14.30% 8.60%

Instrument Pitch
Classification
(Nsynth)

LLM-C↑ 0.70% 0.90% 1.70% 5.40% 1.60% 18.90% 1.20% 0.40% 1.00%

Pitch Extraction
By Lyrics (CSD)

NAR↓ 30.00% 73.50% 57.00% 85.50% 76.50% 73.00% 57.50% 97.50% 53.00%

Pitch Extraction
By Lyrics (CSD)

TER↓ 1.86 2.82 4.32 7.38 2.33 2.42 2.71 1.00 3.87

Emotion
Classificaiton In
Songs
(EMOTIFY)

LLM-C↑ 10.00% 0.00% 1.70% 3.30% 21.70% 8.30% 8.30% 1.70% 1.70%

MARBLE
Emotion Detection
(MTG)

LLM-C↑ 3.60% 8.70% 0.80% 3.70% 9.90% 3.30% 1.80% 7.20% 1.10%

HEAR Music
Genre
Classification
(ISMIR04)

LLM-C↑ 13.07% 10.05% 26.13% 45.73% 31.66% 37.19% 15.58% 26.13% 1.51%

MARBLE Genre
Classification
(MTG)

LLM-C↑ 1.20% 2.80% 0.90% 1.50% 5.60% 0.50% 1.20% 1.80% 0.40%

MARBLE Music
Tagging
(MagnaTagATune)

LLM-C↑ 7.50% 3.00% 7.00% 16.00% 5.00% 3.50% 14.50% 9.00% 7.00%

MARBLE Music
Tagging (MTG)

LLM-C↑ 5.20% 3.00% 1.40% 0.90% 4.50% 4.80% 2.60% 3.80% 1.10%

Music Genre
Classification
(FMA)

LLM-C↑ 13.40% 1.80% 9.80% 16.10% 8.00% 17.00% 8.90% 9.80% 5.40%

HEAR Percussion
Instruments
Classification
(Beijing Opera
Percussion)

LLM-C↑ 2.98% 3.82% 10.60% 20.74% 16.48% 29.26% 25.42% 22.02% 11.84%

HEAR Percussion
Instruments Stroke
Classification
(Mridangam
Stroke)

LLM-C↑ 0.10% 5.00% 7.90% 4.90% 12.00% 11.50% 14.40% 10.60% 0.90%

Instrument
Classification
(Nsynth)

LLM-C↑ 3.70% 12.90% 14.80% 15.30% 21.30% 55.40% 13.20% 10.90% 9.60%

Instrument
Combination
Recognition
(OpenMIC-2018)

LLM-C↑ 8.10% 12.00% 21.90% 27.90% 33.60% 25.50% 24.90% 22.80% 10.20%

Instrument Source
Classification
(Nsynth)

LLM-C↑ 9.90% 36.20% 39.20% 48.00% 37.10% 37.90% 38.00% 41.40% 47.70%
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MARBLE
Instrument
Classification
(MTG)

LLM-C↑ 1.50% 6.90% 0.20% 0.00% 6.70% 2.60% 1.30% 3.00% 7.60%

Singing Automatic
MOS Prediction
(SingMOS)

NAR↓ 99.50% 68.22% 0.33% 16.14% 17.30% 0.83% 23.13% 97.84% 98.50%

Singing Automatic
MOS Prediction
(SingMOS)

MSE↓ 6.5670 2.4110 5.3810 33.1090 14.8900 1.3810 11.2760 4.3720 2.3070

Singing Automatic
MOS Prediction
(SingMOS)

KTAU↑ 0.3330 0.0090 0.2330 0.0230 0.0710 0.0180 0.0300 0.1640 0.2250

Singing Automatic
MOS Prediction
(SingMOS)

LCC↑ 0.6150 -0.0780 0.0240 0.0140 0.0820 0.0400 -0.0050 0.0980 0.2330

Singing Automatic
MOS Prediction
(SingMOS)

SRCC↑ 0.5000 0.0120 0.2210 0.0330 0.0870 0.0230 0.0380 0.1870 0.2790

MARBLE Beat
Tracking (ASAP)

NAR↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

MARBLE Beat
Tracking (ASAP)

ERR↓ - - - - - - - - -

Music Beat
Tracking (ASAP)

NAR↓ 53.64% 91.82% 50.00% 65.45% 51.82% 40.91% 43.64% 78.18% 95.45%

Music Beat
Tracking (ASAP)

Miss
Time↓

59.7630 63.6760 98.6640 56.3060 131.7640 31.3990 81.3490 199.8770 22.2000

Audio Editing
Identification
(People’s Speech)

NAR↓ 87.50% 93.75% 84.38% 84.38% 46.88% 31.25% 81.25% 87.50% 37.50%

Audio Editing
Identification
(People’s Speech)

ACC↑ 153.6830 -
650.0000

283.7050 82.8400 123.3700 165.0680 -
49.7720

154.1090 147.6570

Scene Fake
Detection
(ASPIRE)

LLM-C↑ 29.00% 48.00% 48.00% 52.00% 49.00% 54.00% 49.00% 19.00% 47.00%

Audio Deep Fake
Detection
(LJSpeech,
WaveFake,
MUSDB18HQ)

LLM-C↑ 18.50% 34.20% 29.10% 42.00% 36.00% 39.70% 42.00% 40.30% 37.90%

Singing Voice
Deepfake
Detection
(CtrSVDD,
ACEKiSing,
M4Singer)

LLM-C↑ 10.00% 35.20% 29.80% 38.60% 29.70% 31.90% 27.10% 40.80% 22.20%

Audio Duration
Prediction
(NTUML2021)

NAR↓ 33.00% 28.00% 0.50% 49.00% 0.00% 0.00% 0.00% 46.00% 14.00%

Audio Duration
Prediction
(NTUML2021)

MSE↓ 13.3660 35.6460 98,768.7290 2,005.3330 28.9400 62.1550 3,243.7400 1,779.0420 62.7500

HEAR Music
Speech
Classification
(MAESTRO,
Librispeech)

LLM-C↑ 65.00% 68.50% 87.50% 99.50% 94.00% 89.50% 22.00% 53.50% 88.00%

Sound Effect
Detection
(RemFx)

LLM-C↑ 4.00% 7.67% 14.67% 18.00% 17.00% 19.67% 17.33% 17.00% 16.33%
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Speech Detection
(LibriSpeech-
TestClean)

LLM-C↑ 48.00% 32.00% 46.00% 66.00% 45.50% 56.50% 36.50% 46.50% 56.00%

Speech Detection
(LibriSpeech-
TestOther)

LLM-C↑ 51.00% 33.00% 46.00% 66.50% 45.00% 55.50% 38.50% 45.00% 51.00%

Speech Detection
(LJSpeech)

LLM-C↑ 55.00% 46.00% 60.50% 74.00% 56.50% 47.50% 51.50% 49.50% 76.00%

Children Song
Transcript
Verification (CSD)

WER↓ 58.70% 102.70% 104.00% 101.00% 128.70% 94.90% 155.50% 100.00% 100.10%

Lyric Translation
(SingSet)

Sacre
Bleu↑

2.1090 1.0360 2.8130 0.9940 3.3970 3.9160 1.8970 0.1590 0.0740

Song Lyric
Recognition
(SingSet)

MER↓ 1.0193 1.6453 3.5636 2.6600 1.1841 1.1562 4.8113 1.1753 1.6852

MARBLE Vocal
Technique
Detection
(VocalSet)

LLM-C↑ 8.50% 2.00% 12.00% 11.00% 7.50% 15.50% 10.00% 9.00% 4.00%

Audio Segment
Retrieval (Clotho)

NAR↓ 86.00% 92.00% 24.00% 24.00% 42.00% 28.00% 44.00% 84.00% 42.00%

Audio Segment
Retrieval (Clotho)

IoU↑ 0.3700 0.2970 0.1900 0.2460 0.0570 0.1930 0.1710 0.0000 0.1590

HEAR Sound
Event Detection
(DCASE2016
Task2)

LLM-C↑ 0.00% 0.00% 28.60% 35.70% 0.00% 7.10% 42.90% 7.10% 14.30%

Multi-channel
Sound Event
Understanding
(STARSS23)

LLM-C↑ 36.60% 9.20% 36.60% 26.10% 38.00% 43.00% 23.90% 8.50% 15.50%

Animal
Classification
(WaveSource-
Test)

LLM-C↑ 9.80% 36.30% 58.50% 66.50% 75.80% 34.50% 13.30% 4.30% 15.30%

Bird Sound
Detection
(Warblrb10k)

LLM-C↑ 32.50% 41.50% 75.50% 77.50% 78.50% 82.50% 75.00% 45.00% 35.50%

Cat Emotion
Classification (Cat
Sound
Classification
Dataset V2)

LLM-C↑ 10.00% 2.00% 2.00% 4.00% 4.00% 16.00% 8.00% 2.00% 8.00%

Cornell Birdcall
Identification

LLM-C↑ 10.00% 3.30% 0.00% 3.30% 10.00% 10.00% 13.30% 3.30% 13.30%

Environmental
Sound
Classification
(ESC50-Animals)

LLM-C↑ 14.00% 17.50% 20.00% 8.00% 78.00% 34.00% 5.50% 2.50% 7.50%

HEAR Beehive
States
Classification
(Beehive States)

LLM-C↑ 92.50% 70.00% 60.50% 92.00% 56.00% 92.00% 82.50% 61.00% 70.00%

Domestic
Environment
Sound Event
Detection
(DESED-
PublicEval)

NAR↓ 97.22% 100.00% 99.72% 100.00% 99.44% 99.72% 100.00% 98.33% 99.72%
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Domestic
Environment
Sound
EventDetection
(DESED-
PublicEval)

Event-
based
F1↑

0.4800 0.0000 0.0000 0.0000 0.1680 1.0000 0.0000 1.0000 0.0000

Emergency Traffic
Detection
(Large-Scale-
Audio-dataset)

LLM-C↑ 53.50% 32.50% 57.50% 85.00% 66.00% 75.50% 40.50% 46.00% 73.00%

Environmental
Sound
Classification
(ESC50-Exterior
And Urban
Noises)

LLM-C↑ 7.00% 11.00% 4.50% 5.00% 67.50% 25.00% 6.50% 1.00% 12.00%

Environmental
Sound
Classification
(ESC50-Interior
And Domestic
Sounds)

LLM-C↑ 13.50% 7.50% 1.00% 0.50% 56.50% 15.00% 10.00% 0.00% 6.50%

Environmental
Sound
Classification
(ESC50-Natural
Soundscapes And
Water Sounds)

LLM-C↑ 5.00% 10.00% 7.00% 1.00% 68.50% 8.00% 8.50% 0.00% 9.00%

Environmental
Sound
Classification
(UrbanSound8K-
Urban Noises)

LLM-C↑ 13.00% 5.80% 2.30% 5.30% 35.10% 7.90% 10.90% 0.50% 4.70%

Environment
Recognition
(ESC50)

LLM-C↑ 7.00% 45.60% 40.40% 21.10% 68.40% 66.70% 38.60% 10.50% 52.60%

HEAR
Environmental
Sound
Classification
(ESC50)

LLM-C↑ 10.70% 31.40% 64.00% 76.60% 73.00% 52.00% 22.80% 4.30% 43.40%

HEAR Vocal
Imitation
Classification
(Vocal Imitations)

LLM-C↑ 15.33% 9.00% 2.00% 2.17% 17.83% 11.33% 22.83% 4.17% 7.67%

Audio Spatial
Distance
Prediction (Spatial
LibriSpeech)

NAR↓ 45.00% 64.00% 81.00% 95.50% 80.00% 41.50% 39.50% 92.50% 55.50%

Audio Spatial
Distance
Prediction (Spatial
LibriSpeech)

MEDAE↓ 0.7110 0.6800 0.6840 0.0000 1.3130 0.7840 0.7450 0.6340 0.5910

How Far Are You
(3DSpeaker)

LLM-C↑ 27.50% 13.00% 19.00% 8.00% 30.00% 26.50% 32.00% 19.00% 2.50%

Sound Position
Prediction

NAR↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Sound Position
Prediction

Angle
Diff↓

- - - - - - - - -

Dialogue Emotion
Classification
(Daily Talk)

LLM-C↑ 54.00% 18.00% 28.50% 13.00% 33.50% 54.00% 22.50% 42.00% 41.00%

Emoji Grounded
Speech Emotion
Recognition
(RAVDESS)

LLM-C↑ 1.10% 2.00% 2.20% 0.20% 3.50% 1.80% 0.10% 2.20% 5.00%

Continued on next page

51



Published as a conference paper at ICLR 2025

Task Metric Whisper-
LLaMA

LTU-AS SALMONN
7B

SALMONN
13B

Qwen-
Audio-
Chat

Qwen2-
Audio-
7B-Inst.

WavLLM MU-
LLaMA

GAMA-
IT

Emotion Change
Detection
(Ravdess)

LLM-C↑ 5.00% 10.30% 10.00% 11.20% 1.00% 10.30% 3.90% 11.30% 2.90%

Emotion
Recognition
(MELD)

LLM-C↑ 33.50% 14.00% 20.00% 10.00% 43.50% 36.50% 40.50% 1.50% 8.50%

HEAR Emotion
Recognition
(CREMAD)

LLM-C↑ 10.60% 10.40% 18.80% 18.10% 64.00% 62.40% 26.30% 13.60% 16.00%

SUPERB Emotion
Recognition
(RAVDESS)

LLM-C↑ 12.92% 24.58% 13.75% 13.33% 70.42% 76.25% 12.50% 13.75% 5.00%

Covid19 Cough
Audio
Classification
(CoughVid)

LLM-C↑ 40.00% 18.80% 4.90% 86.40% 9.30% 8.30% 18.60% 42.10% 6.00%

Environmental
Sound
Classification
(ESC50-Human
And Non Speech
Sounds)

LLM-C↑ 17.00% 11.00% 9.50% 3.00% 77.00% 29.00% 19.50% 0.00% 11.00%

Human Non
Speech Sound
Recognition
(Nonspeech7k,
CommonVoice)

LLM-C↑ 3.60% 5.70% 45.00% 30.70% 27.90% 23.60% 18.60% 17.10% 28.60%

Human Screaming
Detection
(Environmentdb)

LLM-C↑ 52.50% 45.00% 52.50% 65.00% 62.50% 87.50% 47.50% 47.50% 67.50%

Vocal Sound
Recognition
(VocalSound)

LLM-C↑ 32.50% 2.50% 11.70% 4.00% 75.70% 38.30% 22.10% 1.00% 3.90%

Phoneme Segment
Counting
(Librispeech-
words)

NAR↓ 23.29% 60.40% 37.69% 18.67% 9.52% 13.44% 26.81% 4.97% 89.74%

Phoneme Segment
Counting
(Librispeech-
words)

ACC↑ 0.1510 0.1400 0.1760 0.1190 0.0540 0.1530 0.1380 0.0070 0.1020

Phoneme Segment
Counting
(Librispeech-
words)

Abs
Diff↓

2.4090 79.7600 367.5620 38.1450 7.1110 2.9900 8.8670 15.2140 4.5020

Phone Segment
Counting
(VoxAngeles)

NAR↓ 23.29% 70.96% 32.22% 14.07% 12.30% 28.23% 18.81% 46.88% 24.10%

Phone Segment
Counting
(VoxAngeles)

ACC↑ 0.1510 0.1180 0.1910 0.2300 0.0730 0.0950 0.1610 0.1100 0.0430

Phone Segment
Counting
(VoxAngeles)

Abs
Diff↓

2.2150 5,532.7270 8.1900 6.2270 2.8590 2.7220 51,811.8860 3.9190 2.8570

SUPERB
Phoneme
Recognition
(LibriSpeech-
TestClean)

PER↓ 100.12% 102.75% 25.36% 24.60% 100.58% 100.96% 99.99% 110.27% 100.37%

Phoneme
Recognition
(LibriSpeech-
TestOther)

PER↓ 100.17% 101.08% 22.79% 22.91% 100.62% 100.88% 99.99% 111.18% 100.61%
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Phonological
Feature
Classification
(VoxAngeles-
Consonant Place
Of Articulation)

LLM-C↑ 25.90% 2.20% 2.00% 5.10% 4.40% 9.90% 3.60% 3.10% 1.00%

Phonological
Feature
Classification
(VoxAngeles-
Manner Of
Articulation)

LLM-C↑ 16.90% 9.50% 2.20% 1.50% 5.50% 6.50% 7.00% 8.00% 6.00%

Phonological
Feature
Classification
(VoxAngeles-
Phone)

LLM-C↑ 5.90% 0.00% 2.80% - 9.50% 5.20% 79.90% 0.60% 0.10%

Phonological
Feature
Classification
(VoxAngeles-
Vowel Frontness)

LLM-C↑ 50.30% 14.90% 41.30% 38.30% 50.50% 58.20% 47.00% 42.20% 16.10%

Phonological
Feature
Classification
(VoxAngeles-
Vowel Height)

LLM-C↑ 21.20% 15.10% 32.00% 35.20% 30.80% 38.70% 39.30% 39.10% 25.70%

Phonological
Feature
Classification
(VoxAngeles-
Vowel
Roundedness)

LLM-C↑ 41.10% 18.10% 27.30% 61.30% 46.40% 70.10% 37.10% 21.80% 17.90%

Heteronym
Differentiation
(HeteronymEn)

LLM-C↑ 55.00% 25.00% 42.00% 53.00% 45.00% 44.00% 49.00% 29.00% 20.00%

L2 English
Accuracy
(speechocean762-
Ranking)

LLM-C↑ 22.20% 30.80% 50.00% 51.10% 35.30% 50.00% 37.20% 51.90% 30.80%

L2 English
Accuracy
(speechocean762-
scoring)

NAR↓ 15.44% 78.52% 0.27% 32.48% 10.47% 0.94% 12.89% 61.88% 15.84%

L2 English
Accuracy
(speechocean762-
scoring)

PCC↑ 0.0260 0.2990 0.0670 0.0920 0.0250 -0.0110 0.0930 0.0370 -0.0310

Multi-lingual
Pronunciation
Similarity
(VoxAngeles)

LLM-C↑ 37.90% 6.60% 46.60% 46.20% 14.80% 43.20% 44.40% 20.20% 29.70%

Accent
Classification
(Accentdb
Extended)

LLM-C↑ 17.50% 8.50% 6.00% 7.00% 24.00% 14.00% 7.50% 37.00% 4.00%

Stress Detection
(MIRSD)

LLM-C↑ 15.00% 6.50% 7.00% 18.50% 9.50% 20.00% 29.00% 5.00% 5.00%

Third Tone Sandhi
Recognition
(NCCU Corpus of
Spoken Taiwan
Mandarin)

NAR↓ 25.00% 34.38% 65.62% 28.12% 62.50% 3.12% 28.12% 56.25% 50.00%
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Third Tone Sandhi
Recognition
(NCCU Corpus of
Spoken Taiwan
Mandarin)

IoU↑ 0.0420 0.0530 0.0910 0.1460 0.0830 0.0650 0.1740 0.1430 0.0630

L2 English
Fluency
(speechocean762-
Ranking)

LLM-C↑ 27.80% 22.80% 50.00% 50.60% 51.90% 54.20% 30.00% 50.60% 49.40%

L2 English
Fluency
(speechocean762-
Scoring)

NAR↓ 13.59% 74.02% 0.00% 19.52% 2.42% 0.40% 41.18% 14.27% 2.02%

L2 English
Fluency
(speechocean762-
Scoring)

PCC↑ 0.0210 0.2580 0.0290 0.0370 0.0460 -0.0860 0.0540 0.3110 0.2920

L2 English
Prosodic
(speechocean762-
Ranking)

LLM-C↑ 23.60% 36.70% 46.70% 50.80% 36.10% 47.20% 45.30% 52.50% 24.20%

L2 English
Prosodic
(speechocean762-
Scoring)

NAR↓ 27.86% 92.73% 0.27% 10.77% 26.92% 2.69% 13.86% 82.10% 17.77%

L2 English
Prosodic
(speechocean762-
Scoring)

PCC↑ 0.0900 0.3550 0.0430 0.0900 0.4930 -0.0170 0.0940 -0.0670 0.1330

Prosody
Naturalness
(ProsAudit-
Lexical)

LLM-C↑ 57.10% 40.90% 51.40% 52.90% 32.00% 58.70% 68.70% 74.90% 36.30%

Prosody
Naturalness
(ProsAudit-
Protosyntax)

LLM-C↑ 61.50% 41.60% 53.80% 50.40% 36.30% 59.20% 59.20% 75.20% 36.30%

Spoof Detection
(ASVspoof2015)

LLM-C↑ 45.50% 23.00% 56.00% 19.00% 13.00% 24.00% 23.00% 73.00% 10.50%

Spoof Detection
(ASVspoof2017)

LLM-C↑ 48.50% 11.00% 68.50% 42.50% 28.00% 35.50% 27.50% 66.00% 10.50%

Deep Fake Voice
Recognition
(DEEP-VOICE)

LLM-C↑ 37.50% 26.00% 51.80% 47.30% 49.50% 47.00% 47.50% 42.00% 31.50%

Enhancement
Detection
(LibriTTS-
TestClean,
WHAM)

LLM-C↑ 52.00% 33.00% 30.00% 50.50% 59.00% 58.00% 35.00% 54.50% 45.50%

Fraud Robocall
Recognition
(CallHome)

LLM-C↑ 73.30% 13.30% 0.00% 100.00% 100.00% 100.00% 83.30% 50.00% 100.00%

Fraud Robocall
Recognition
(Promo)

LLM-C↑ 47.40% 0.00% 0.00% 73.70% 42.10% 63.20% 47.40% 47.40% 100.00%

Fraud Robocall
Recognition
(Robocall)

LLM-C↑ 94.90% 46.20% 100.00% 20.50% 74.40% 61.50% 33.30% 38.50% 0.00%

HEAR Language
Identification
(VoxLingua107)

LLM-C↑ 88.68% 6.66% 10.48% 17.50% 26.02% 54.32% 4.70% 12.34% 3.10%
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Language
Identification
(VoxForge)

LLM-C↑ 96.00% 12.00% 21.00% 8.50% 84.50% 93.00% 17.50% 5.50% 0.00%

Age Classification
(Common Voice)

LLM-C↑ 12.80% 24.50% 23.30% 20.80% 24.50% 36.50% 21.80% 23.50% 15.50%

Gender
Recognition by
Voice (Common
Voice)

LLM-C↑ 4.50% 82.00% 61.00% 57.00% 53.50% 97.50% 35.00% 51.00% 64.50%

HEAR Speaker
Count
Identification
(LibriCount)

NAR↓ 32.80% 56.70% 45.30% 47.00% 10.70% 9.60% 37.90% 36.70% 24.80%

HEAR Speaker
Count
Identification
(LibriCount)

ACC↑ 20.39% 24.94% 16.64% 20.94% 12.21% 15.60% 11.11% 17.69% 17.42%

Multi-Speaker
Detection (VCTK)

LLM-C↑ 49.50% 32.50% 36.00% 30.50% 50.00% 51.00% 30.50% 32.50% 42.00%

Speaker Counting
(LibriTTS-
TestClean)

LLM-C↑ 18.00% 6.00% 14.50% 13.50% 17.50% 26.50% 14.00% 3.50% 14.50%

Speaker
Verification
(LibriSpeech-
TestClean)

LLM-C↑ 56.50% 28.50% 45.00% 58.00% 43.50% 63.00% 16.50% 36.00% 34.50%

Speaker
Verification
(LibriSpeech-
TestOther)

LLM-C↑ 48.00% 29.00% 49.00% 60.00% 48.00% 70.00% 19.00% 41.00% 33.00%

Speaker
Verification
(VCTK)

LLM-C↑ 55.00% 29.50% 54.00% 59.50% 44.00% 60.50% 23.00% 33.50% 36.50%

SUPERB Speaker
Diarization
(Libri2Mix-Test)

NAR↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

SUPERB Speaker
Diarization
(Libri2Mix-Test)

DER↓ - - - - - - - - -

SUPERB Speaker
Verification
(SUPERB Hidden
Set)

LLM-C↑ 52.00% 38.00% 45.00% 52.00% 52.00% 59.00% 43.00% 52.00% 39.00%

Noise Detection
(LJSpeech,
MUSAN-
Gaussian)

LLM-C↑ 45.50% 18.50% 50.00% 40.00% 42.00% 49.00% 45.00% 36.50% 31.50%

Noise Detection
(LJSpeech,
MUSAN-Music)

LLM-C↑ 53.00% 23.00% 52.00% 47.00% 50.50% 47.50% 50.00% 31.50% 37.00%

Noise Detection
(LJSpeech,
MUSAN-Noise)

LLM-C↑ 49.50% 18.00% 50.50% 57.00% 50.50% 59.50% 48.00% 48.00% 33.00%

Noise Detection
(LJSpeech,
MUSAN-Speech)

LLM-C↑ 48.00% 22.00% 53.00% 36.00% 50.50% 47.00% 46.50% 50.00% 51.00%

Noise Detection
(VCTK,
MUSAN-Music)

LLM-C↑ 47.50% 39.00% 45.50% 57.50% 42.00% 58.50% 56.00% 37.50% 39.00%

Noise Detection
(VCTK,
MUSAN-Noise)

LLM-C↑ 45.50% 35.00% 45.50% 56.50% 44.50% 67.00% 53.50% 54.00% 33.50%
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Noise Detection
(VCTK,
MUSAN-Speech)

LLM-C↑ 46.50% 50.00% 43.50% 52.50% 45.50% 57.00% 46.50% 48.50% 56.50%

Noise Detection
(VCTK, MUSAN-
Gaussian)

LLM-C↑ 53.00% 24.50% 49.00% 51.50% 45.50% 54.50% 52.50% 36.00% 21.00%

Noise SNR Level
Prediction
(VCTK, MUSAN-
Gaussian)

LLM-C↑ 23.50% 15.00% 31.50% 21.00% 15.00% 22.00% 17.50% 21.50% 17.00%

Noise SNR Level
Prediction
(VCTK,
MUSAN-Music)

LLM-C↑ 21.50% 13.50% 24.50% 26.00% 14.50% 15.00% 17.00% 14.50% 10.00%

Noise SNR Level
Prediction
(VCTK,
MUSAN-Noise)

LLM-C↑ 30.00% 19.50% 10.50% 21.00% 10.50% 21.00% 16.50% 15.50% 15.00%

Noise SNR Level
Prediction
(VCTK,
MUSAN-Speech)

LLM-C↑ 24.00% 15.00% 16.00% 10.00% 17.50% 21.50% 18.00% 15.50% 13.50%

Reverberation
Detection
(LJSpeech,
RirsNoises-
LargeRoom)

LLM-C↑ 46.50% 38.50% 45.50% 57.00% 54.50% 48.00% 47.00% 49.00% 27.50%

Reverberation
Detection
(LJSpeech,
RirsNoises-
MediumRoom)

LLM-C↑ 40.50% 25.50% 44.00% 51.00% 53.50% 50.50% 49.50% 48.00% 29.00%

Reverberation
Detection
(LJSpeech,
RirsNoises-
SmallRoom)

LLM-C↑ 46.00% 36.50% 42.50% 47.50% 43.50% 51.00% 50.00% 44.50% 37.50%

Reverberation
Detection (VCTK,
RirsNoises-
LargeRoom)

LLM-C↑ 44.50% 37.50% 42.50% 48.00% 63.00% 46.00% 44.00% 45.00% 36.00%

Reverberation
Detection (VCTK,
RirsNoises-
MediumRoom)

LLM-C↑ 49.00% 32.00% 40.50% 45.50% 53.00% 51.50% 44.00% 47.00% 27.00%

Reverberation
Detection (VCTK,
RirsNoises-
SmallRoom)

LLM-C↑ 48.00% 39.00% 42.50% 44.00% 47.50% 51.50% 45.50% 43.50% 47.00%

N-Best Correction
(Librispeech-
TestOther)

LLM-C↑ 45.00% 30.00% 31.60% 36.20% 42.60% 41.80% 39.20% 39.60% 35.40%

AAVE Speech
Recognition
(CORAAL)

WER↓ 21.70% 97.30% 24.00% 31.60% 96.80% 38.60% 34.90% 136.50% 102.90%

Code-switch
Speech
Recognition
(NTUML2021)

MER↓ 424.58% 215.51% 293.50% 185.27% 165.54% 116.88% 172.03% 130.18% 193.47%

Code-Switching
Speech
Recognition
(ASCEND)

NAR↓ 68.20% 12.20% 5.40% 88.80% 1.60% 0.00% 30.40% 69.40% 14.60%

Continued on next page
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Task Metric Whisper-
LLaMA

LTU-AS SALMONN
7B

SALMONN
13B

Qwen-
Audio-
Chat

Qwen2-
Audio-
7B-Inst.

WavLLM MU-
LLaMA

GAMA-
IT

Code-Switching
Speech
Recognition
(ASCEND)

ACC↑ 28.30% 50.57% 58.14% 14.29% 44.31% 60.80% 10.92% 13.73% 9.84%

Multi-Lingual
Speech
Recognition
(MLS-de)

WER↓ 73.80% 132.35% 34.46% 25.21% 79.60% 24.96% 49.56% 99.37% 105.81%

Multi-Lingual
Speech
Recognition
(MLS-en)

WER↓ 65.03% 100.29% 9.37% 9.47% 27.97% 17.47% 17.23% 96.03% 97.09%

Multi-Lingual
Speech
Recognition
(MLS-es)

WER↓ 72.49% 123.26% 23.45% 16.10% 58.82% 18.19% 44.90% 103.19% 101.75%

Multi-Lingual
Speech
Recognition
(MLS-fr)

WER↓ 71.09% 133.86% 26.52% 21.27% 46.27% 19.01% 42.35% 102.25% 102.01%

Multi-Lingual
Speech
Recognition
(MLS-it)

WER↓ 85.38% 125.39% 39.11% 31.54% 56.55% 33.16% 46.14% 102.72% 108.84%

Multi-Lingual
Speech
Recognition
(MLS-nl)

WER↓ 74.96% 120.29% 32.11% 29.37% 140.01% 42.94% 55.56% 102.05% 101.22%

Multi-Lingual
Speech
Recognition
(MLS-pl)

WER↓ 76.79% 139.04% 73.83% 51.53% 278.19% 101.41% 90.11% 100.23% 105.43%

Multi-Lingual
Speech
Recognition
(MLS-pt)

WER↓ 73.63% 136.66% 31.88% 25.07% 117.33% 24.72% 46.26% 99.71% 103.48%

PTBR Speech
Recognition
(Common Voice)

WER↓ 45.75% 248.05% 69.88% 73.91% 233.85% 38.57% 62.93% 639.12% 270.64%

SUPERB ASR
(LibriSpeech-
TestClean)

WER↓ 33.96% 96.28% 15.11% 2.79% 69.35% 36.70% 6.87% 103.67% 116.66%

ASR
(LibriSpeech-
TestOther)

WER↓ 42.14% 91.89% 11.44% 4.31% 79.53% 40.28% 9.17% 111.03% 130.00%

SUPERB OOD
ASR (Ar)
(Common Voice)

WER↓ 51.04% 245.85% 216.51% 178.02% 289.25% 178.21% 149.15% 225.28% 504.53%

SUPERB OOD
ASR (Es)
(Common Voice)

WER↓ 10.93% 150.00% 98.96% 99.22% 100.83% 75.08% 99.38% 141.68% 303.28%

SUPERB OOD
ASR
(Spontaneous)
(CHIME6-Test)

WER↓ 65.71% 122.86% 61.11% 62.80% 92.17% 80.21% 136.24% 137.25% 266.72%

SUPERB OOD
ASR (Zh)
(Common Voice)

CER↓ 29.67% 508.02% 609.28% 310.33% 449.32% 270.63% 445.36% 435.33% 1097.41%

Target Speaker
ASR (AMI-test)

WER↓ 143.02% 133.86% 273.90% 187.15% 207.01% 132.13% 266.26% 108.32% 140.37%

Continued on next page
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Task Metric Whisper-
LLaMA

LTU-AS SALMONN
7B

SALMONN
13B

Qwen-
Audio-
Chat

Qwen2-
Audio-
7B-Inst.

WavLLM MU-
LLaMA

GAMA-
IT

Multi-Speaker
Detection
(LibriSpeech-
TestClean)

LLM-C↑ 49.00% 31.50% 16.50% 21.50% 50.50% 52.00% 20.50% 33.50% 48.50%

Speech Command
Recognition
(AudioMNIST)

NAR↓ 4.93% 76.80% 2.93% 0.00% 0.93% 0.00% 0.53% 5.20% 75.87%

Speech Command
Recognition
(AudioMNIST)

ACC↑ 0.8890 0.8330 0.9670 0.7410 0.9620 0.7710 0.9340 0.1000 0.2430

Speech Text
Matching
(LibriSpeech-
TestClean)

LLM-C↑ 87.00% 32.00% 58.00% 57.00% 68.00% 84.50% 50.50% 41.50% 18.50%

Speech Text
Matching
(LibriSpeech-
TestOther)

LLM-C↑ 82.00% 34.00% 57.00% 56.50% 72.00% 87.50% 55.50% 45.00% 18.50%

Speech Text
Matching
(LJSpeech)

LLM-C↑ 82.50% 32.00% 59.50% 55.50% 64.50% 76.00% 49.00% 47.50% 16.00%

Spoken Term
Detection
(LibriSpeech-
TestClean)

LLM-C↑ 77.00% 29.50% 54.50% 53.50% 52.50% 62.00% 57.00% 48.50% 39.50%

Spoken Term
Detection
(LibriSpeech-
TestOther)

LLM-C↑ 77.00% 27.50% 50.00% 50.00% 48.50% 66.00% 55.50% 40.00% 39.50%

Spoken Term
Detection
(LJSpeech)

LLM-C↑ 83.50% 28.50% 53.00% 51.50% 47.00% 79.50% 50.00% 40.00% 31.00%

SUPERB
Keyword Spotting
(Speech
Commands
V1-Test)

LLM-C↑ 75.50% 4.50% 30.50% 31.50% 30.00% 59.00% 47.50% 27.50% 34.00%

SUPERB Query
by Example
(Quesst14-Eval)

LLM-C↑ 48.50% 33.50% 49.00% 51.50% 37.50% 53.50% 49.00% 52.00% 31.00%

Stuttering
Detection
(SEP28k)

LLM-C↑ 49.50% 45.40% 50.50% 50.30% 50.20% 52.60% 58.90% 49.80% 48.50%

Voice Disorder
Classification
(VOICED)

LLM-C↑ 16.30% 13.50% 13.50% 17.30% 19.70% 17.30% 20.20% 22.10% 13.50%

Conversation
Matching

LLM-C↑ 77.80% 9.30% 57.40% 37.00% 51.90% 61.10% 61.10% 1.90% 18.50%

Dialogue Act
Classification
(SLUE-HVB)

LLM-C↑ 21.80% 18.90% 22.80% 3.30% 9.40% 20.60% 17.30% 4.90% 4.10%

Dialogue Act
Classification
(Daily Talk)

LLM-C↑ 29.00% 14.50% 37.00% 44.00% 43.50% 30.50% 42.00% 20.50% 11.00%

Dialogue Act
Pairing (Daily
Talk)

LLM-C↑ 51.00% 16.00% 53.50% 48.00% 43.00% 48.50% 39.50% 50.00% 39.00%

SUPERB Intent
Classification
(SLURP)

LLM-C↑ 33.00% 7.50% 13.50% 3.00% 31.00% 26.50% 20.50% 4.00% 2.00%

Continued on next page
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Task Metric Whisper-
LLaMA

LTU-AS SALMONN
7B

SALMONN
13B

Qwen-
Audio-
Chat

Qwen2-
Audio-
7B-Inst.

WavLLM MU-
LLaMA

GAMA-
IT

Intent
Classification
(SLURP-Action)

LLM-C↑ 24.50% 12.50% 16.50% 16.00% 27.50% 67.50% 33.00% 7.00% 10.00%

Intent
Classification
(SLURP-Intent)

LLM-C↑ 36.50% 12.00% 21.00% 13.50% 48.50% 43.00% 41.50% 6.00% 6.50%

Named Entity
Localization
(SLUE-
VoxPopuli)

NAR↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Named Entity
Localization
(SLUE-
VoxPopuli)

F1↑ - - - - - - - - -

Named Entity
Recognition
(SLUE-
VoxPopuli)

NAR↓ 43.48% 84.78% 67.39% 55.43% 44.57% 64.13% 68.48% 89.13% 90.22%

Named Entity
Recognition
(SLUE-
VoxPopuli)

IoU↑ 0.0190 0.2640 0.2120 0.1180 0.0290 0.1190 0.6930 0.0500 0.0000

Sarcasm Detection
(Mustard)

LLM-C↑ 38.50% 36.50% 41.50% 46.00% 44.00% 48.00% 47.50% 45.50% 36.00%

Semantic Textual
Similarity
(SpokenSTS)

LLM-C↑ 50.40% 40.80% 49.60% 50.40% 22.00% 49.20% 43.60% 54.00% 21.20%

Speech Sentiment
Analysis (MELD)

LLM-C↑ 39.00% 31.00% 33.50% 36.00% 38.50% 49.00% 42.50% 28.50% 29.50%

Spoken Digit
Arithmetic
(AudioMNIST)

LLM-C↑ 43.50% 13.00% 31.00% 33.00% 51.50% 43.50% 41.50% 26.50% 16.50%

SUPERB Slot
Filling
(AudioSnips-Test)

NAR↓ 40.50% 82.50% 44.00% 70.00% 41.50% 58.00% 63.50% 95.00% 92.00%

SUPERB Slot
Filling
(AudioSnips-Test)

Slot
Type
F1↑

0.8570 0.9020 0.9230 0.9210 0.8650 0.9270 0.8960 0.7770 0.9020

SUPERB Slot
Filling
(AudioSnips-Test)

Slot
Value
CER↓

0.3540 0.8500 0.2370 0.2970 0.4600 0.2390 0.5510 0.6690 0.4160

Code-Switching
Semantic
Grammar
Acceptability
Comparison
(CSZS-zh-en)

LLM-C↑ 51.50% 37.50% 50.00% 49.50% 45.50% 49.50% 23.00% 45.50% 32.00%

Nonce Word
Detection
(sWUGGY)

LLM-C↑ 63.00% 25.60% 55.00% 58.10% 32.20% 61.80% 63.50% 42.50% 19.90%

PoS Estimation
(LibriTTS)

POS↓ 2.5722 1.2792 2.9675 1.1990 3.0620 2.3091 3.1126 1.5327 1.9635

PoS Estimation
with transcription
(LibriTTS)

POS↓ 0.9081 1.3507 1.7583 1.0601 2.1580 1.7514 2.0463 1.2394 1.3911

Sentence
Grammar
Acceptability
(sBLIMP)

LLM-C↑ 68.50% 7.30% 44.00% 62.30% 50.80% 73.80% 61.30% 72.80% 10.50%

SUPERB Speech
Translation
(CoVoST2-Test)

Sacre
Bleu↑

17.3720 0.1070 18.7884 16.7835 6.9846 23.3458 21.7423 0.0566 0.0219
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D HEAR & MARBLE EVALUATION RESULTS

Tables 7 and 8 show the evaluation results for the HEAR and MARBLE tasks, respectively, as
collected in Dynamic-SUPERB Phase-2. Importantly, we replaced the datasets for some tasks to
address licensing issues and reduced their size to enable more efficient inference. Furthermore,
we removed certain tasks because they overlap with existing SUPERB tasks. Consequently, these
results are not directly comparable to those evaluated on the original HEAR and MARBLE.

Table 7: HEAR (audio) Results. LLM-C stands for LLM Classification, NAR stands for Not Appli-
cable Rate, TER stands for Token Error Rate, and ACC stands for Accuracy.

Task Metric Whisper- LTU-AS SALMONN SALMONN Qwen- Qwen2- WavLLM MU- GAMA-ITLLaMA 7B 13B Audio-Chat Audio-7B-Inst. LLaMA

Beehive States Classification
- Beehive States LLM-C ↑ 43.00% 35.00% 54.00% 42.50% 19.00% 42.50% 37.00% 37.50% 19.00%

Emotion Recognition
- CREMAD LLM-C ↑ 6.70% 9.30% 18.80% 18.10% 62.50% 61.10% 25.60% 12.40% 13.20%

Environmental Sound
Classification - ESC-50 LLM-C ↑ 4.80% 25.30% 61.00% 73.40% 68.80% 43.90% 9.80% 0.40% 35.30%

Language Identification
- VoxLingua107 Top10 LLM-C ↑ 92.18% 1.95% 6.28% 11.01% 18.00% 36.11% 1.85% 0.00% 0.10%

Music Genre Classification
- ISMIR04 LLM-C ↑ 15.58% 7.04% 31.16% 44.22% 33.67% 37.69% 16.58% 27.64% 2.51%

Music Speech Classification
- MAESTRO-LibriSpeech LLM-C ↑ 72.50% 77.50% 91.50% 99.50% 98.00% 89.50% 59.50% 51.50% 88.00%

Music Transcription
- MAESTRO

NAR ↓ 92.43% 100.00% 99.46% 100.00% 96.76% 96.76% 96.76% 100.00% 100.00%
TER ↓ 1.0065 - 36.0000 - 8.3438 1.6875 6.2500 - -

Percussion Instruments
Classification - Beijing Opera

Percussion Instrument
LLM-C ↑ 3.39% 4.24% 10.17% 20.76% 16.10% 27.12% 24.15% 22.03% 11.44%

Percussion Instruments
Stroke Classification
- Mridangam Stroke

LLM-C ↑ 0.10% 3.80% 7.60% 4.90% 11.50% 10.80% 13.70% 10.30% 0.10%

Percussion Instruments
Tonic Classification
- Mridangam Stroke

LLM-C ↑ 2.00% 2.50% 12.70% 13.40% 11.30% 11.80% 12.80% 12.50% 5.70%

Sound Event Detection
- DCASE2016 Task2 LLM-C ↑ 0.00% 0.00% 21.43% 35.71% 7.14% 14.29% 21.43% 21.43% 7.14%

Speaker Count Identification
- LibriCount

NAR ↓ 30.40% 42.10% 35.90% 42.50% 3.50% 0.40% 22.00% 23.20% 26.20%
ACC ↑ 17.53% 16.93% 13.26% 17.22% 10.26% 13.76% 5.51% 13.80% 17.48%

Vocal Imitation Classification
- Vocal Imitations LLM-C ↑ 15.17% 5.50% 1.17% 1.83% 18.67% 11.17% 17.50% 3.83% 5.83%

Table 8: MARBLE (music) Results. LLM-C stands for LLM Classification, NAR stands for Not
Applicable Rate, and MSE stands for Mean Squared Error.

Task Metric Whisper- LTU-AS SALMONN SALMONN Qwen- Qwen2- WavLLM MU- GAMA-ITLLaMA 7B 13B Audio-Chat Audio-7B-Inst. LLaMA
Key Detection

- Giantsteps (Key) LLM-C ↑ 3.00% 0.50% 1.50% 1.00% 3.00% 17.00% 2.00% 0.50% 0.00%

Music Tagging
- MTG-Jamendo LLM-C ↑ 0.10% 0.30% 0.00% 0.00% 2.90% 0.30% 0.10% 0.50% 0.10%

Music Tagging
- MagnaTagATune LLM-C ↑ 5.50% 1.00% 3.50% 9.00% 4.50% 1.50% 1.00% 3.50% 7.50%

Genre Classification
- MTG-Jamendo LLM-C ↑ 0.00% 1.60% 0.10% 0.20% 3.20% 0.10% 0.20% 0.20% 0.00%

Emotion Detection
- MTG-Jamendo LLM-C ↑ 0.00% 1.50% 0.00% 0.00% 2.70% 0.80% 0.80% 0.80% 0.10%

Beat Tracking
- ASAP

NAR ↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
MSE ↑ - - - - - - - - -

Vocal Technique
Detection - VocalSet LLM-C ↑ 8.00% 1.00% 11.00% 6.50% 6.50% 15.50% 8.00% 8.50% 2.50%

Instrument Classification
- MTG-Jamendo LLM-C ↑ 0.40% 2.30% 0.00% 0.00% 6.40% 1.40% 0.20% 0.60% 0.20%
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E LLM-BASED EVALUATION

Here, we list the prompt templates used in the evaluation. Figure 6 illustrates the prompt for classi-
fication task evaluation, while Figure 7 shows the prompt for regression task evaluation. In addition
to GPT-4o, we also employed open-source LLMs to ensure better reproducibility. Tables 9 and
10 present the performance evaluations of the proposed prompts on classification and regression
tasks, respectively, comparing their correlation with a human-labeled evaluation set. We found that
GPT-4o and LLaMA-3.1-70B-Instruct achieved very high accuracy in both classification and regres-
sion tasks. This demonstrates that our evaluation using GPT-4o is reliable and that researchers can
leverage LLaMA-3.1-70B-Instruct to conduct fully reproducible evaluations.

Table 9: Performance evaluation of the proposed post-processing prompt on classification tasks
using a human-labeled evaluation set. Accuracy is determined by agreement between the model
output and the corresponding human label.

Model Name Accuracy Correct Count
gpt-4o 98.67% 148/150
gpt-4o-mini 98.00% 147/150

gpt-o1-preview 98.67% 148/150
gpt-o1-mini 99.33% 149/150
llama-3.1-70B-Instruct 96.67% 145/150
llama-3.1-8B-Instruct 92.67% 139/150

llama-3.2-3B-Instruct 86.67 % 130/150
llama-3.2-1B-Instruct 61.33% 92/150

Table 10: Performance evaluation of the proposed post-processing prompt on regression tasks us-
ing a human-labeled evaluation set. Accuracy is determined by exact matches between the post-
processed model output and the corresponding human-generated post-processed output.

Model Name Accuracy Correct Count
gpt-4o 92.00% 138/150
gpt-4o-mini 86.67% 130/150

gpt-o1-preview 86.00% 129/150
gpt-o1-mini 89.33% 134/150

llama-3.1-70B-Instruct 90.00% 135/150
llama-3.1-8B-Instruct 82.00% 123/150

llama-3.2-3B-Instruct 61.33% 92/150
llama-3.2-1B-Instruct 39.33% 59/150
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Classification Post-processing Prompt:
You will be given a question, a corresponding correct answer(s), and a response from a model. The
model’s response is a reply to the question. Your task is to judge if the ”Model’s Response” aligns with
the ”Ground Truth Answer” based on the ”Question.”

Please strictly follow the guidelines below:
- Briefly explain the reasons for your judgment.
- Answer with the format ”Result: <YES or NO>” at the end.
- Output ”YES” if the response aligns with the ground truth answer; output ”NO” if the response does
not match the ground truth answer, selects incorrect or irrelevant options, or provides more answers than
required.
- The questions would be single-choice or multi-choice:
For single-choice questions, the model’s response should contain one and only one answer. If the model’s
response selects more than one answer or does not clearly indicate a single answer, you should mark it
as incorrect and output ”NO.” For multi-choice questions, the model’s response must exactly match all
applicable correct choices. If the model’s response selects too many, too few, or any incorrect answers,
you should mark it as incorrect and output ”NO.”
- Since the question is short answer, the model’s response does not need to mention the content of the
question. You only need to check if the model’s response has the same meaning as the ground truth
answer(s).

Input Format:
Question: {instruction}
Ground Truth Answer: {label}
Model’s Response: {response}

Figure 6: The prompt used for post-processing the classification tasks inference outputs in the study.
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Regression Post-processing Prompt:
You will be provided with an ”instruction,” a ”ground-truth label,” and a ”model output.” Your job is to
extract the value from the given ”model output” and return the post-processed ”model output”. Provide
your output with just the post-processed output without an explanation.

[Task Description]
- Analyze the ”instruction” and ”ground-truth label” to understand the desired output format.
- Post-process the ”model output” so that it matches the format of the ”ground-truth label” and is
numerically comparable to it.

[Guidelines]
- If the ”model output” can be adjusted to match the format of the ”ground-truth label,” return only the
post-processed result.
- If the ”model output” is already in an appropriate format, return it as is without changing it.
- If it can not be adjusted into the correct format, does not clearly indicate any of the candidates, is
ambiguous, or implies more than one answer, return ”N/A.”
- Do not confuse the ”ground-truth label” with ”model output”; you are only supposed to use the
”ground-truth label” to understand the desired output format.
- Do not tamper with the original content of ”model output”; you are only supposed to post-process
the format of ”model output” so it matches the format of ”ground-truth label” and can be compared or
evaluated against each other directly.
- The post-processed output should only be a number in numeric form.

Below you have three examples. Please consider their patterns to understand your task better:

[Example 1 - Inputs]
- ”instruction”: ”Please identify the total times of code-switching in this wavefile.”
- ”ground-truth label”: 8
- ”model output”: ”There are no instances of code-switching in this wavefile; it is purely Mandarin
speech.”
- Your response: 0

[Example 2 - Inputs]
- ”instruction”: ””Listen to the audio and assess the clarity and accuracy of pronunciation by considering
precise phonology, pronunciation errors, and overall comprehensibility. Use an Arabic numeral from 0 to
10 for your answer.””
- ”ground-truth label”: 3
- ”model output”: ”The audio is of a man speaking, in a Chinese, saying, ”I has to find a different back
door”. The accuracy of the pronunciation is 90%.”
- Your response: 9

[Example 3 - Inputs]
- ”instruction”: ”Please predict the spatial distance(0.5m-4.5m) based on the given audio.”
- ”ground-truth label”: 2.1196093634329904
- ”model output”: ”Based on the given audio, the spatial distance is likely between 0.5m and 4.5m.”
- Your response: N/A

[Inputs]
- ”instruction”: {instruction}
- ”ground-truth label”: {label}
- ”model output”: {model output}
- Your response:

Figure 7: The prompt used for post-processing the regression tasks inference outputs in the study.

F CALL FOR TASKS

Here we provide material from the call for tasks. Figure 8 shows a task proposal that we ask each
contributor to initiate. Task proposers need to provide a high-level description of the task, explain
its importance and challenges, and list the datasets they plan to use along with the dataset licenses.
Figure 9 presents the standard README format for each task. In the README, task proposers
include the task introduction, its challenges, the dataset, and the evaluation metric. Importantly, we
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also ask them to provide a table of state-of-the-art performance on the task, even if not achieved by
universal spoken language models. These results can serve as a reference for researchers to better
understand the task’s difficulty and how it has developed so far. Then, Figure 10 shows the JSON
format we require to record task information. For each task, our evaluation pipeline uses this JSON
file as input to automatically download data from Huggingface, formatting it for subsequent use.

Figure 8: An example of a task proposal from a task contributor.
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Figure 9: An example of the README file required in the task contribution.

Figure 10: An example of the JSON file required in the task contribution.
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G AUDIO DURATION DISTRIBUTION

Figure 11 shows the distribution of all audio files in Dynamic-SUPERB Phase-2. Only about 6.5%
of the audio files have a duration longer than 30 seconds, which reflects an inherent limitation of
models that incorporate Whisper in their framework.

Figure 11: Duration distribution of all audios in Dynamic-SUPERB Phase-2.
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