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A APPENDIX

A.1 RESTATEMENT OF ASSUMPTION 3

Assumption 5 (Restatement of Assumption 3). We assume Lipschitz properties for all functions
1;(0)(i = 1,2, 3) as follows:

a) 1;(0) is M-Lipschitz, i.e., for any 01 and 0, ||;(61) — 1;(62)] < M||61 — 02]|(i = 1,2, 3).
b) V1;(0) is L-Lipschitz, i.e., for any 01 and 0, |V1;(61) — V1;(02)|| < L||61 — 62]/(i = 1,2, 3).
V211(91) — V211(02)|| S pHHl 792”(2 = 1, 2, 3)

c) V21;(0) is p-Lipschitz, i.e., for any 6 and 65,

d) m(z, ) is My,1-Lipschitz wrt. z and My,s-Lipschitz w.rt. ¢, i.e.,

lm(z1,¢) —m(22, )|l < My ||21 — 2al|  for any z1 and 2z,

[m(z, 1) — m(z, da)|| < Mimall¢1 — ¢al|  for any é1 and ¢».
e) VZGT(@ is pg-Lipschitz, i.e., for any ¢1 and ¢o, V?ﬂT((bl) — ViHT(cég)H < polld1 — P2||-
The above Assumptions (a)(b)(c) also hold for stochastic 1;(9), Vi;(0) and Vgl}(@)(z’ =1,2,3).

A.2 PROOF OF SUPPORTING LEMMAS (LEMMA 12 CORRESPONDS TO PROPOSITION 1)

Lemma 1. Based on update procedure of 0,(0), we obtain

T-1 T—1
Volr(d) =Y ( 11 (I+V1m(V9lA(9T+z‘j)7¢)vgi(9T+ij))Vzm(VelA(Qi),(ﬁ)) .

i=0 \j=it+1

Proof. The 0;(¢) update process is shown below:
Or41(0) = 01(¢) + m(zt, ¢).

If we only consider z(6y; C;) = Val(0:(4); ) = Vgl(6;), then we obtain
Vbi1(0) = Vbi() + Vym(Vol(6:), 6)
= V40:(6) + Vim(Vol(6,), 0) V3l (60)V 56:(6) + Vam(Vol(6,), ¢)

= (I + Vam(Vol(6r), 6)V31(0:))Vs0i(0) + Vam(Vol(6:), ).

If we iterate the above equation from ¢ = 0 to 7', then we obtain

T—-1 T—1
Vobr(d) =3 ( 1T (I+v1m<vei<eq~ﬂ-j>,¢)vzi<0mn)vgm(veiwi),@)

j=it+1
+ T (7 + Vam(Voi(0r-:), )V3i(0r-)) Vb0,
=1

We assume 6 is randomly sampled and independent from ¢, then we obtain

T—1 T—1
Volr(o) = ( 11 <I+v1m(wi(9mj),qs)vgi(amj))vzm(wi(ei),qs)) .

i=0 \ j=i+1

Lemma 2. If we assume that 0o(¢1) = 00(¢p2), based on Assumption 3, then we obtain

M2
My L

107 (p1) — Or(p2)]| < <((Mm1L + )T 1) ) |1 — d2|| = Mor||dp1 — d2|.  (9)
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Proof. Based on the iterate procedure of 67 (¢), we obtain

07 (61) — 07 (2)||

T-1

D (m(Vol(61(61)), d1) — m(Vol(6:(62)), $2)) ’
T—-1

> (m(Vel(0:(61)), d1) — m(Vol(0:(41)), d2) + m(Vol(8:(¢1)), b2)

t=

—m(Vol(0:(¢2)), ¢2))
(m(Vol(0:(61)), p1) — m(Vol(0:($1)), b2))

—1
T

@

=

~

(]

&
Il
-

1

m(Vol(04(¢1)), ¢2) — m(Vol(0y(¢2)), $2))

t=1

T-1
> Myaé1 — o]
t=1

+

T—1
5 M [¥i61(60)) = it )|
T—1
(T = 1)Mpa||¢p1 — G2 + Mo Z Vol (0:(h1)) — Vol (6:(¢2)) |
T—1

(444)
<(T = 1) Mia|lg1 — oll + Mot LY [|04(¢1) — 04(¢2)]),
t=1

(44)
< +

where (i) follows from Equation (1), (i¢) and (zi7) from Assumption 3. If we further iterate it from
t = 0to T, we obtain

Mm2
M L

107 (f1) — Or(@2)] < <((Mm1L + )T 1) > |1 — @a2l| = Mor||d1 — @2l

O

Lemma 3. Ifwe define A;(¢) = Vom(Vol(0:(61)), d1), based on Assumption 3 and Lemma 2, we
obtain

[ Ai(¢1) — Ai(d2)ll < Maillpr — @2,
where M s; = L,yo + L1 LMy;.

Proof. Based on the definition of A;(¢), we have
[Ai(¢1) — Ai(d2)]l

= Vam(Vol(0:(61)), 61) — Vam(Vol(6:(62)), 62|
=[|Vam(Vol(0:(61)), d1) — Vam(Vol(0:(41)), ¢2)
+ Vam(Vel(8i (1)), ¢2) — Vam(Vel(0:(¢2)), 2)]|

(i) - .
<Lpa|lp1 — @2l + Lim1l| Vol (6i (1)) — Val(0i(d2))|
<Lmall¢1 — 2|l + Lina L||0:(¢1) — 0i(2) |

(i1)
< (L2 + Lyn LMo;) |91 — b2l = Masl[¢1 — o2,
where (i) follows from Assumption 3, (i¢) follows from Lemma 2. O

Lemma 4. We first define B;(¢) = V1m(Vl(0;(9)), gb)VgZ(Hi(gb)). Based on the Lemma 2 and
Assumption 3, we obtain

[Bi(¢1) — Bi(p2)|| < Mpil¢1 — @2,
where Mp; = M,1pMg; + LLyo + L*Lyy1 My;.
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Proof. Based on the definition of B;(¢), we have
IBi(é1) — Bi(a)]|
=[Vam(Vol(8:(¢1)), $1) V5l (0i(¢1)) — Vam(Vel(6:(62)), d2) V3I(6:(62))|
=[Vam(Vol(0:(¢1)), $1) V5l (0i(¢1)) — Vam(Vel(6:(61)), 1) V3I(0:(62))
+ Vim(Vol(0:(¢1)), $1)V5L(0:(62)) — Vam(Vol(0:(¢2)), 62)V3i(0:(62)) |

(S)Mml IV51(0:(61)) — V3L(0:(d2))[l + LIV1m(Vol(0:(61)), ¢1) — Vam(Vol(0;(¢2)), d2)|

D My oMol 61 — bll + LIVam(Voi(0:(61)), 61) — Vam(Vel (6:(61)), 62)
(Yol (8:(61)). d2) — Vim(Vol(8:(62)). 62)]

(2i1)

< My pMoillor = dall + LLina |61 — b2l + LLun [Vol(0:(61)) = Vol(6:(¢2))
<(Mpm1pMo; + LLy2 + L? Ly My;) |61 — ¢2|| = Mpi|lor — ¢2],
where (i) and (4i¢) follows from Assumption 3, (iz) follows from Lemma 2. O
Lemma 5. Based on Assumption 3 and Lemmas 1, 3 and 4, then we obtain
IVbr(¢1) — Vgbr(¢2)ll < Lor|lér — g2, (10)
where Lop = Yo" (14 Myt L)T = Mgy + 370" Mo (14 Myt )T =172 5720 Mpraizy),-

Proof. Based on the definition of V4607 (¢) in Lemma 1, we obtain
IVe0r(¢1) = Vbr (o)

T 1 T-1

< Z H <I+ Vlm(VQi(9T+i—j(¢l))v¢1)vzi(0T+i—j(¢l))>VQm(VOi(ai(¢l))v(bl)
=0 j i1
— H <I+V1m Vol(Op4i— i(#2)), ¢2)V§Z(9T+i—j(¢2)))VQW(VGZ(&(@))’¢2)
Jj=i+1
(i) - T-1 Tl
= Z H <I+BT+ij(¢1)>Ai(¢l) - H (I+BT+ij(¢2))Ai<¢2)
i=0 ! j=i+1 g=itl
T—1, T-1 T-1
:Z H <I+BT+1'J'(¢1)>A1‘(¢1)_ H <I+BT+1](¢1)>A1(¢2)
i=0 j i+1 J=itl
T-1
+ H (IJrBT-H —j ¢1)>A¢(¢2) H (I+BT+i—j(¢2)>Ai(¢2)
j=it1 i=it1
“é”z( + Mo L)1 44(0n) = As(o)| + M| T] (14 Braa(6n)
j=itl
T-1
— I I+ Bryizj(¢2)) D
j=it1
T-1

< ((1 + M1 )T A (1) — Ai( o) || + Mz (1 + My L)T =072

N

1

1Bryis(61) - Bﬂuwzn)

i+1

Hﬁ*
-3

(iv) . .
< ((1 + My L) M| 61 — bal| + Mypa(1 4 My L)T 772

0

<.
I
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T-1

Z Mprti-jllor — ¢2||>
j=it+1
T-1 T-1 T-1
=< S (A4 My L)' 7 Mg + > Mypp (14 M L)T 72 > MB(T+ij)) [¢1 — o2l
i=0 i=0 =it
=Lor||¢1 — o2,

where (i) is based on Lemma 1, (ii) is based on the fact that A;(¢1) = Vam(Vel(0i(41)), ¢1),

Brii—j(¢1) = Vlm(Vgl(HTﬂ,] (gf)l)),d)l)VglA(HTH,j (¢1)), (éit) follows from Assumption 3
and (iv) follows from Lemma 3 and 4. O

Lemma 6. Based on Lemmas 2, 5 and Assumption 3, we obtain
[Vogr(d1) = Vegr(¢)ll < Lgr[|é1 — @2,
where Ly, = M Lot + LM92T, Lyt is defined in Lemma 5, My is defined in Lemma 2.

Proof. We assume all functions share the same starting point 6y, then we have

IVeir(91) — Veir(o2)|l

=[IV4l(67(¢1)) = Vi(07(¢2))
=[|Vol(0r(¢1))Vebr(d1)] — Vol (01 (¢2))Vebr(d2)ll
<IVel(0r GV b1 (d1) — Vebr(¢2)||

+ IVol(07(61)) — Vol (07 (62)) |||V 607 (P2) |l

(@)
SM|IVpbr(01) = Vobr(2)ll + L0 (d1) — 0r(¢2)[l[I Vo1 (42)]l

CMLopllé1 — 2l + LMBrl61 — ]l = (M Lo + LMZ) 61 — dall = Ly 61 — o,
where (i) from Assumption 3, (¢7) from Lemma 2 and 5. O
Lemma 7. Based on the Lemma 2, 5 and Assumption 3, we obtain

IV33r(¢1) = V3gr(d2)]| < pgrllér — 2ll, (1n
where pg, = 3LMeorLor + Mpy + MGTp.

Proof. We first compute the Lipschitz condition of V¢Vei (07(¢9)) as follows

IV V6l(81(61) — Vo Voi(67(42)) |
=[[Vebr(61)]"V3i(0r (1)) — [V sb7(62)] V5l (07 (52))]]
<[Vobr(80)] " V307 (1)) — V5L (O7(62))

+ [[Vebr(01)]" = [Vabr(02)] IV 307 (62))]]
SMErpll61 - 6all + LorLlidn - ol
=(Mgrp + LorL)||¢1 — o2,

where (i) follows from Lemma 2, 5 and Assumption 3. Then, based on the definition of Vi ar (o),
we have

IV2ar(61) — Viar(s2)||
=[V3i(0r(¢1)) — VEI(0r(¢2))|
=[IV307(61) Vol (01 (1)) + [V207(61)] Vs Vol (07(61)) — V301 (02) Vel (67 (62))
— [V30r(62)]" Vo Voli (07 (¢2)) |
<|IV207 (1) Vol (01 (¢1)) — V307 (h2) Vol (07(62))]l
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+1[V407(61)]" Vo Val(01(61)) — [Vobr(62)]" Vs Vol (07 (2))|
<[IVZ0r (60l Vol(Br(¢1)) — Vol (61 (42)) |

+ V207 (1) — V?ﬁT(d)z)”||V91A(9T(¢2))H

+ [V 01 (6)] IV Vol (07(61)) — Ve Vol (0 (¢2))|

+[Ve0r(01)]" = [Vobr(02)]  [[1V6 Vol (61 (¢2))]]

CLLorl0r(61) = 0r(02)]| + MIVE02(61) — V20(60)]

+ Myr ||V Vol(07(¢1)) — Ve Val(0r(62))l| + Lozl ér — ¢l MorL
<LMprLor||¢1 — g2l + Mpo|l¢1 — ¢2|

+ (Mgrp + Lor L) Moz || ¢1 — ¢l + Mor LLor||d1 — 62|
=(3LMyrLor + Mpg + Mirp)|lon — dall = pgrlld1 — ¢2l|,

where (i) follows from Lemma 2 and 5.

Lemma 8. [fwe assume 0}(¢) = 03(¢), based on Assumption 3 and 4, we obtain

167:(¢) — 07.()I| < oo,

where T is the iteration number and cgr = (1 + My L)T% — %.

Proof. Based on the iterative process of 6;(¢), we obtain
167.(9) — 07.(¢)ll
©) . .
<[167-1(¢) +m(Vohi(911), 8) = 07_1(#) = m(Volo(07_1), O
(1) . .
<071 (0) = 071 (D) + My [ Vola (07 1) — Vala (67 1) ||
<[107-1(6) = 07 _1 (D)l + Mt |[Vol1 (07_1) — Vola(67_1)|
+ M1 [Vola (67 1) = Vola(67_,)|
(iit)
< (L4 My L)[|07_1(9) = 07_1(0) | + M1 s,

where (i) follows from Equation (1), (i¢) follows from Assumption 3, (i) follows from Assump-
tion 4. If we iterate above inequalities from ¢ = 0 to T’ — 1, then we obtain:

A A
167:(¢) — 67(o) ]| < (1 + MmlL)T% - % = oor.
O
Lemma 9. Based on Assumptions 3 and 4, Lemma 8, we have following inequality:
where C9 = Vom(Vol;(0;),¢) (i =0:T,j € {1,2}) and Ay = L1 (1 + Myp1 L) Ao
Proof. Based on the definition of C?, we obtain
ICF = C2[| =I1Vam(Vel1(6}), ¢) — Vam(Vala(67), 6) |
<L [[Vol1 (6}) = Vola(6}) + Vola(6}) — Vola(67)||
(@) Lo
<Lymi1Az + Ly L||6; — 07|
(i) .
S Lml(l + MmlL)lA12 - ACi7
where (i) follows from Assumption 3 and 4, (i¢) follows from Lemma 8. O
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Lemma 10. Then based on Assumptions 3 and 4, Lemma 8, we have following inequality:
D} — Df|| < Aps,

where DI = V;m(Vol;(07),¢)V31;(07) (i = 0 : T,j € 1,2), Ap; = Muyi(pog, + Ara) +
L1 L(1 + M1 L)' Avo and 0y, is defined in Lemma 8.

Proof. Based on the definition of D/, we obtain
1D} = D || =[IV1m(Vel1(6}), ) V5l (0}) = Vim(Vala (6
=[Vim(Vol1(6}), 8)V3ia (6]) — Vam(Vgli (6
+ Vim(Vely (0}), 6)V3ia(6?) — Vim(V
<[IVim(Voli(67), )IIV51(0F) — V5ia(67)]
+ IVim(Voli(6}), ¢) — Vim(Volz(67), )| Vil2(67) |
<M |[V5l(0F) = V5h(67) + V5l (67) — Viia(67)]
+ L1 LI Vol (07) = Volo(67) + Volr(67) — Vol (67))|
<My (pl|0) — 02 + Av2) + Lya L(Log; + Aro)

(i) ~ )
<Mpi1(pog, + A12) + L1 L(1 + M1 L) Aqe = Ap,,

where (4) follow from Lemma 8.

(67),9)V3la(07)|
(61),9)V3i2(67)
Vola(07), 6)Vila(67)|

Lemma 11. Based on Assumptions 3, 4 and Lemma I, we obtain

IV607() — Vb7 (o)l

T—1
<Z 1'i_]\4rnlL T - 1AC1+Mm2(1+Mm1L)T 2 Z AD_] )
Jj=i+1
where Ac; and Apj have been defined in Lemmas 9 and 10.
Proof. Based on the Lemma 1, we obtain
IVe07(9) — Veb7(9)|
()T 1, T—1 T-1 T—1
< Z H I+Dtll“+i—j)cil - H (I+D71F+i—j)ci2+ H (I+D%“+i—j)ci2
=0 "' j=i41 J=i+1 Jj=i+1
T-1
- H (I +D7yi—j)CF
j=i+1
T-1 T-1 T-1
Z( I @+ b pict =2+ || T ¢+ phy)
Jj=i+1 j=i+1
T-1
- II ¢+ D32
=i+l
(@) =1

<y ((1 + My L)Y CF = C2|| + Mypa (1 + My L)T—072

=0
T—-1
> IDhsiss = Dheisyl)
j=i+1
(i) T=1 T—1
< Z (14 Myt L) A + Mo (1 + M L)"72 > Ap; |

j=i+1
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where (i) follows from the definitions that D} = V,;m(Vel,;(67),0)V2i;(67), C/
Vam(Val;(0:), ¢), (i) follows from Assumption 3 and (7i7) follows from Lemma 9 and 10.

O

Lemma 12. (Correspond to Proposition 1) Based on Assumptions 3 and 4, Lemmas 8 and 11, we

obtain

||V¢§%(¢) — Vit (o)l = O(TQT_IKH +Q*T 1 A),
where Q = 1 4+ M,,1 L.

Proof. We first consider Ag; and A p;, we obtain
Aci =Lm1(1+ My L) Ars) = O(Q'Asy),
=O(Mpm1(pog, + A12) + L1 L(1 + M L) Aq)
O(QzAu + A+ Q'Az) = O(Q"Ara + A12),

where (i) follows because og; = (1 + M1 L)' 812 — 812 = O(Q'A1»).

Furthermore, we consider the uniform bound for ||V 401.(¢) — V460%(¢)|, then we obtain

||V¢9T ¢) — V¢9T
T-1 T-1
é(’) Z (QT i— 2 QAc; + Z AD Tie j)) )
=0 j=i+1
T-1 T-1
Z:O (QT i— 1Q1A12+QT i—2 Z QT-H JA12+A12))

Jj=i+1

|
Q

B
o
°

(
(ii)o ( (ij71£12 + QT+j71A12)
7=0

N
Il
=)

S
-

(T i 1)QT7i72512 + Q2Ti2A12)>
0

<.
Il

=

( TQT A, + QQT_lAlz) )

QT 1A12 + (T —i— 1)QT—i—2£12 + (QZT—i—Q _ QT_1>A12)>

12)

13)

where (7) follows from Lemma 11, (i7) follows from Equation (12) and Equation (13), (i) follows

because j = T — i — 1. Based on the formulation of V4§ (¢) in Lemma 6, we have

IV691(6) = Vi (0)l <MIVe07(6) — V07 ()| + MorQT Arz
(—)O(TQT_lﬁm +Q7 Ay,

where () follows because My defined in Lemma 2 satisfies that Mgy = O(QT~1).

Lemma 13. Based on the Assumption 3 and Lemma 2, we obtain

lgr (1) — gr(d2)|| < Myrlld1 — ¢l
where M, = M Mor and Mg is defined in Lemma 2.

Proof. Based on the definition of gr(¢), we have
lgr (1) — gr(d2)ll =[11(07 (1)) — 1(6r(2))]l

(7)
<M ||07(p1) — O7(d2)|
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(i1)
< M Myrl||p1 — ¢2||

=My, |[¢1 — ¢2l],
where (4) is based on Assumption 3, (i¢) is based on Lemma 2. O
Lemma 14. Based on the proposition 1 in ( ), Assumptions | and 3, if we set
a < min{ﬁ7 m}, B = min(f, ﬁ)for B < % in Algorithm 1, then we have

~ ~ M3 (L+ 52) [ Lyr + pgraMy, M,
E|6Y, 0 — ot )12 < O(1) =2~ Bu ( gr T Pyr gr | 9T>’
N s N

where Mg, is defined in Lemma 13, Ly, is defined in Lemma 6, py,. is defiend in Lemma 7.

Proof. Based on the Proposition 1 in ( ), we obtain

2 1

My, (1 + @) (LgT + pgr Mg, 4 MgT)
p? K VK )’

where GT(¢) is defined in Equation (5). Based on the Assumption 1 and the fact that 5}\4* =

arg min,, G (), we have

E[Gh(04) — Gh(dhs.)] < O(1)

~ ~ ) iy~ o~
Ell$hx — Sheall® <=E (Gh(Bhix) — GH(Bhra))

7
2 1
<O(l)MgT(l + 57) (LgT + Por @My MgT) .
- p K VK
O
Lemma 15. Based on Assumption 1 and Lemma 13, we have
131 g1 < 2V2MMor
* * — M\/ﬁ 7
where N is the sample size.
Proof. Based on Assumption 1 and Lemma 13, from Theorem 2 in ( ),
with probability at least 1 — §, we have
~ 4M?
Lty ool < g1
Furthermore, based on Assumption | and the fact that ¢} = arg min g}(¢), we obtain
~ 2 ~ 24M2  8M?
1112 < 2 (o1 (a1 — ol 1)<7 gr _ g1
191 = ol < (k1) — gh(eh)) < T 5% = oo
We take the square root from both side and obtain:
14— ) < 220
* * || = M\/W 9
with probability at least 1 — §. O

A.3 PROOF OF THEOREM |
Based on our definition of generalization error for the algorithm,
9%(;5}\41( - av¢§%(($}\/ﬁ<)) - 97(¢2)
S @i — By + 0 +aVuih (@) - aVoih(Bhire)) - g (69)
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< My, || @bk — Ghre + 0L — 0L + 0L — 8% + aVah(dhs,) — V42 (S| (14)
§M9T||¢}VIK - (b}\/[*” + MgT”(bi - ¢>¢1<|| + M9T||¢1 - ¢3||
020l V g (831,) — Vs dh (@10l + Myral| Vi (dhs ) — Vsdd Sk

<(Mg, + MgTLgTa)Ilng - d)M*H + My, |\¢i — ¢l + Mgy |16 — &3l
+ My || Voir(br) — Voir(dnr)ll,
where (i) follows from Assumption 2, (i7) follows from Lemma 13.
. . . . . i M _ . 8
Furthermore, considering Algorithm 1, if we set o < min{ 55, o-—57— on My . Bx = min(S, meEsy) +1)) for
B < < , based on Lemma 12, 14, 15, with probability at least 1 — &, we obtain

E[QT(¢MK C“V¢9T(¢MK QT ¢53

S(MgT + My, Ly, @) Ly, +pgT Ty My, . %
BVE uVIN

+ My, 613 + My, aO(T QT A+ QT 1A ),

where 613 = ||¢L — ¢3||, Q = (1 + M,,1 L), K is the step number for update, N is the sample size
for training.

Then for Lipschitz term Mg, defined in Lemma 13,
My, = MMyr = 0(QT 1),
where My defined in Lemma 2 satisfies Mpp = O(QT~1).

For Lipschitz term Lg,. defined in Lemma 6, we first compute the order for Ly which is defined in
Lemma 5, then we obtain

T-1 T-1

Lor =0 [ Y Q"' My, +ZQT 2N Mpryig
=0 1=0 Jj=i+1
T-1

-0 QT11Q21+ZQT122QT+ZJ1

=0 =0 Jj=i+1
T-1

P <Z QT- 2+ZQT i—20)T— 1> = O(TQT2 + Q*12),
=0 =0

where (i) follows from Lemmas 3 and 4. Then, we obtain
Ly, =MLgr + LM}
_O(TQT_2 + QQT—Q 4 Q2T_2) _ O(TQT_2 4 Q2T_2)~
For Lipschitz term p,,. defined in Lemma 7, we have
+ =3LMyrLor + Mpg + Mipp = O(TQ* 3 + Q*"—3).
Then, the proof is complete.
A.4 PROOF OF REMARK 2
In terms of M-L20 generalization error, based on the Equation (14) in Appendix A.3, we have
g%(%vn{ - O‘V¢§%($zl\/u<)) - g+(¢3)
<My |Ohisc = Ohss + 01 — 0s + b2 — 62 + aVd1(Dhr.) — AVt (Shsxc) |
Mopl|0hrsc = Shall + Mg |61 = S1| + Myp | VoG (Shrxc) = Vodr(@hs) | + Moy d1,
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where 013 = || — ¢2|.
In terms of Transfer Learning L.20 generalization error with learned initial point 5 K, wWe have
919k — aVeit(9k)) — 97 (6)
<My, |0k — AV (9k) — o1l
Oy 1B — aVodh (k) — (Bhr. — aVadh(Bhr.) + 8L = 6
<My |0k = Ghrall + Myzll6k — S| + Myral| V37 (S) — Vigr(@hr)ll + Mz 613,

where (i) follows from ¢! = &5}%* - aV¢g}($}w*), 813 = ||¢L — #2||. Then, the proof is complete.

A.5 PROOF OF EQ. 8 IN SUBSECTION 5.3

We assume that % = ¢3,, — aV433.(¢3,, ), then we have
g%(gjl\/[K - @VM%(%}MK)) — g7(¢?)
<My, H(E}\/IK - aV¢g%(<EV[K) |
<My, ||Phrk — OV i7(Phr) — G + AVt (D3r) + 62 — 0|
<My, |Dhric = Ohrell + Mz |62 — 621 + Myp Vi3 (Dhric) — Vit (@31l
+ My, || G3rs — Bl

Then, the proof is complete.

A.6 ADDITIONAL EXPERIMENTS

New Optimizees: Rosenbrock We conduct additional experiments with substantially different

optimizees, i.e. Rosenbrock ( s ). In this case, the optimizes are required to minimize
a two-dimensional non-convex function taking the following formulation:

flz,y) = (z = 1)* +100(y — 27)%, (15)
which is challenging for algorithms to converge to the global minimum ( , ).

We specify Diygapt and Dieg to be the family of Rosenbrock optimizees with randomly sampled initial
points from standard normal distribution. In contrast, the training optimizees are still LASSO with a
mixture of uniform distribution from which the coefficient matrices are sampled. The experiments
are repeated for 10 times, with all the algorithms receiving identical adaptation and testing samples
in each run. Figure AS5a shows the curves of the logarithm of the objective values generated by
different methods, where our proposed M-L20 outperforms other baselines significantly. At 500-th
step, the (mean, standard deviation) of the logarithmic objective values for { Vanilla L20, TL, DT,
M-L2O}are {(0.977,0.225), (—2.170,1.312), (—4.864, 0.395), (—6.832,0.445) } , which provides
numerical supports of the advantage of our methods.

New Evaluation: Interpolation

To obtain new optimize weights, we employ a linear interpolation strategy between two adapted
optimizers. The first one is optimized on the optimizees that are similar to those used in training, and
the second is optimized on the optimizees that are similar to those used in testing. We introduce a
factor « to control the interpolation between the two weights, denoted by w; and w-, respectively,
and caluclate the new weights as follows:

w = aw; + (1 — a)wa,.

In Figure ASb, we present the mean values of the logarithmic loss, as well as the 95% confidence
interval. The results of TL and M-L20 validate our claim that adapting to training-like optimizees tend
to yield better performance than adapting to optimizees that more resemble the testing optimizees.
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(a) Convergence speeds on Rosenbrock optimizees. We (b) Convergence speeds on LASSO optimizees, with
repeat the experiments for 10 times, and present the different interpolation weights «. Both the mean and
95% confidence intervals are shown in the figure. the 95% confidence intervals are shown in the figure.

Figure AS: Visualization of additional experiment results.
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