
A Further Explanation of the Training Procedure1

Compared with previous GAN-based SR methods [11, 24, 23], our training procedure has two distinct2

parts: identity degradation initialization and adversarial degradation perturbation. In this section, we3

provide a detailed explanation of these two components.4

A.1 Identity Degradation Initialization5

Figure 1: Illustration of the identity degradation initialization method in our training procedure. Only
the convolution layers in the degradation network are shown in the figure.

The process of identity degradation initialization is illustrated in Fig. 1. Please note that in each6

initialization procedure, we first set the negative slopes of all LeakyReLU layers [20] to one and7

set additive noises in all noise injection layers [8] to zero. Thus, these two types of layers can be8

removed from the degradation network and are not shown in Fig.1. Then we initialize the center9

slices of all but the last convolution kernels (conv 1 to n) with Xavier Initialization [4] of 1 × 110

convolutional fan mode. We set all other values of these kernels to zero and leave the last convolution11

kernel (output conv) uninitialized. We can simplify these initialized 3 × 3 convolutions (conv 112

to n) to 1 × 1 convolutions and merge them into one 1 × 1 convolution, taking advantage of the13

associativity of convolution. Finally, we squeeze the merged 1 × 1 convolution filter (4-D tensor)14

into a 2-D matrix of the same size, compute the Moore-Penrose pseudoinverse of the merged matrix,15

fill the result into the center slice of the last 3× 3 convolution kernel (output conv), and set all other16

values of the kernel to zero. This way, each output pixel of the degradation network is only affected17

by the counterpart pixel of the HR input. Computing the output pixel is equivalent to performing a18

matrix multiplication of the input pixel, a randomly initialized matrix, and its pseudoinverse. Thus,19

the property of the pseudoinverse guarantees that the entire degradation network is initialized to the20

identity transformation.21

Please note that the anti-aliased average pooling layer [30] is not shown in Fig. 1. Since it is a strictly22

defined linear operator and we claim it as a visually identity transformation, as long as the remaining23

part of the network is a strictly defined identity transformation, the entire network would be a visually24

identity transformation or, in other words, the ideal downsampling.25

Due to overparameterization of neural networks, there are infinitely many parameter solutions to26

make the degradation network represent the identity transformation. Our initialization method only27

takes n − 1 matrix multiplications, and one Moore-Penrose pseudoinverse by using the singular28

value decomposition (SVD). Our method strikes a nice balance between randomness in the network29

neighborhood and initialization speed.30
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Algorithm 1 The general algorithm for AND training

Require: epoch number N , batch size m, step size α, perturbation bound ε, perturbation steps K,
learning rate η

Require: initial generator parameters θG, initial discriminator parameters θD.
for epoch = 1 to N do

Initialize θF which makes the degradation network F represent the identity transformation.
Initialize perturbation on parameters of the degradation network δ ← 0
Sample a minibatch {xi}mi=1 from the high-resolution images IHR.
for k = 1 to K do

gF ← ∇θF [ 1m
∑m
i=1(Lcont(x

i; θG, θF + δ) + λLGAN (xi; θG, θD, θF + δ))]
δ ← δ + α gF

‖gF ‖2

if ‖δ‖2 > ε then
δ ← ε δ

‖δ‖2

end if
end for
θF ← θF + δ
gG ← ∇θG [ 1m

∑m
i=1(Lcont(x

i; θG, θF ) + λLGAN (xi; θG, θD, θF ))]
θG ←Adam(−gG, θG, η)
gD ← ∇θD [ 1m

∑m
i=1 λLGAN (xi; θG, θD, θF )]

θD ←Adam(gD, θD, η)
end for

A.2 Adversarial Degradation Perturbation and Training31

The purpose of the entire training procedure is to solve the optimization problem proposed in Section32

3.4, which we restate here for convenience:33

min
θG
{EIHR [max

θF∈S
Lcont(I

HR; θG, θF )]

+ λmax
θD

EIHR [max
θF∈S

LGAN (IHR; θG, θD, θF )]}
(1)

where S = {θ|‖θ − θid‖2 < ε, and Fθid is the identity transformation}. G and D are generator34

(restoration network) and discriminator of the SR model respectively. F is the degradation network.35

θ stands for parameter of network. IHR represents the high-resolution images. Lcont and LGAN are36

the content loss and the GAN loss [11] respectively. λ is the coefficient to balance the two loss terms.37

We present the general algorithm for AND training, which includes the adversarial degradation38

perturbation method, in Algorithm 1. The algorithm is more complicated than the training algorithms39

of previous GAN-based SR methods [11, 24, 23], because there are not two, but three players in the40

minimax problem, i.e., the degradation network F , the generatorG, and the discriminatorD. For each41

single optimization step of the entire network, we first initialize the degradation network to the identity42

transformation. Next, we adversarially perturb the degradation network within a small neighborhood.43

The degradation network takes HR images as input and generates LR images with moderate yet44

complex image degradations. The restoration network, also known as the generator, aims to restore45

SR images from the degraded LR images. The adversarial degradation perturbation is designed to46

cause the restoration network to produce unsatisfactory results, characterized by low PSNR and47

easy distinguishability as fake images by the discriminator network. This adversarial degradation48

perturbation is accomplished through K = 5 projected perturbation steps [21]. Finally, we optimize49

the restoration network and the discriminator network using the adversarial LR images. We repeat the50

optimization steps of the entire network multiple times during training until the restoration network51

becomes robust enough to generate perceptually satisfying SR results, even when the LR input images52

are affected by complex degradations.53
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B Limitations54

There is no single SR model that can handle every possible image degradation. This is a simple55

deduction drawn from the "no free lunch" theorem [27], and our method is certainly not an exception.56

Our SR method relies on the proposed neural degradation prior, which is inspired by the commonalities57

observed in various image degradations. Therefore, naturally, our SR model cannot effectively deal58

with a specific image degradation that deviates significantly from the two summarized commonalities.59

When an image degradation introduces artifacts containing strong structures that are not accounted60

for in the neural degradation prior, our SR model struggles to handle the degradation. An illustrative61

degradation example is extreme JPEG compression [32], which produces severe block artifacts62

characterized by strong spatial structures in 8× 8 blocks. While networks trained specifically for this63

task can utilize such structures, they are not explicitly captured in our proposed neural degradation64

prior. As a result, our SR model would not outperform an expert network in this case. Another similar65

degradation example is halftoning [9]. Halftone printing is a technique that uses ink dots of different66

sizes to simulate different grayscale levels, and it is used in old publications such as newspapers67

or books. Since the positions of the ink dots of a halftone image always have a very strong spatial68

pattern, which is not included in the neural degradation prior, our method cannot restore the halftone69

image well compared to an expert network.70

The prior assumes that image degradations can be viewed as small deviations from the identity71

transformation. If this assumption fails for a specific image degradation, our SR model cannot handle72

the degradation well. A notable degradation example is the conversion of truecolor images to grayscale73

images [6]. This particular degradation is not a small deviation from the identity transformation, and74

thus, our SR model would not be able to colorize the input grayscale images in such cases. For the75

same reason, our method is also not suitable for directly enhancing low-light images [17]. Since the76

image degradations used in our SR training are slightly deviated from identity degradation networks,77

our trained model would not automatically adjust the image brightness, contrast, and color.78

For certain image degradations, both assumptions in our neural degradation prior can fail simultane-79

ously, representing the most challenging cases for our method. An example of such a case is image80

degradation in the image inpainting task [16]. In this task, the missing pixels often exhibit strong81

spatial structures, such as forming holes and stripes on the image. Moreover, the signal of these pixels82

is entirely absent, rather than being a small deviation from the identity transformation. Consequently,83

our image restoration method is unable to address this type of degradation.84

C More Experimental Results85

We utilize four quantitative metrics to assess the quality of SR images: PSNR, SSIM [25], LPIPS [31],86

and NIQE [22]. PSNR and SSIM primarily focus on low-level pixel-wise image differences, making87

them suitable metrics for PSNR-oriented SR models. On the other hand, LPIPS and NIQE align88

better with human visual perception, making them more suitable for perceptual quality-oriented SR89

models. Due to limited space, we only present PSNR and LPIPS results in Section 4.4. Here we90

provide the remaining SSIM and NIQE results in Table 1. Additionally, we offer visual comparisons91

with state-of-the-art methods in Fig.2. The LR images in Fig. 2 are obtained from the DRealSR [26]92

dataset.93
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SwinIR-Real [14] DCLS [19] FeMaSR [3] DASR [13] ANDGAN

DSC_1454 (4×)
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P1140177 (4×)

HR Bicubic KernelGAN [1] DAN [5] BSRGAN [29]

SwinIR-Real [14] DCLS [19] FeMaSR [3] DASR [13] ANDGAN

Figure 2: Qualitative comparisons on real-world images from DRealSR [26] dataset with scale factor
of 4.
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