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APPENDIX

A GRADIENT DESCENT IN LINEAR REGRESSION

Theorem 4. Let (X, y) ⊂ Rd×n × Rn with X of rank r and X = UΣV T its singular value
decomposition (SVD). Given an initialization w(0) = 0, gradient descent used to solve:

arg min
w∈Rd

1

2
‖y − wX‖2.

with learning rate η < 1
λmax(XXT )

converges to:

w(∞) = yV Σ†UT , where Σ† =


1
σ1

0 . . . 0

0 1
σ2

. . . 0 0r×d−r

0 . . . 1
σr

0d−r×r 0d−r×d−r

 .

Proof. Let S = XXT and S′ = yXT . Then, w(t+1) = w(t)(I− ηS) + ηS′. Now we directly solve
the recurrence relation; namely,

w(t) = ηS′((I − ηS)t−1 + (I − ηS)t−2 + ...+ (I − ηS)1 + I).

Let X = UΣV T denote the singular value decomposition of X where {σ1, . . . , σr} are the non-
zero entries of Σ and r is the rank of X . Then, S = UΣ2UT , and S′ = yV ΣUT . Thus, we can
simplify the recurrence relation:

w(t) = ηS′U((I − ηΣ2)t−1 + (I − ηΣ2)t−2 + ...+ (I − ηΣ2)1 + I)UT .

Since (I − ηΣ2)t−1 + (I − ηΣ2)t−2 + ...+ (I − ηΣ2)1 + I is a geometric series, for η < 1
σ2
1

, we
have:

w(t) = ηS′UΣ+UT ,

Σ+ =


1−(1−ησ2

1)
t

ησ2
1

0 . . . 0

0
1−(1−ησ2

2)
t

ησ2
2

. . . 0 0r×d−r

0 . . .
1−(1−ησ2

r)
t

ησ2
r

0d−r×r tId−r×d−r

 .

Now substituting in S′ = yV ΣUT gives us:

w(t) = yV Σ†UT ,

Σ† =


1−(1−ησ2

1)
t

σ1
0 . . . 0

0
1−(1−ησ2

2)
t

σ2
. . . 0 0r×d−r

0 . . .
1−(1−ησ2

r)
t

σr

0d−r×r 0d−r×d−r

 .

Lastly, we can take the limit as t→∞ to conclude that

w(∞) = lim
t→∞

w(t) = yV Σ†UT , where Σ† =


1
σ1

0 . . . 0

0 1
σ2

. . . 0 0r×d−r

0 . . . 1
σr

0d−r×r 0d−r×d−r

 .

Note that the proof above can be easily extended to the setting of a random initialization w(0).
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B DISTRIBUTION OF SINGULAR VECTORS OF A RANDOM MATRIX

Proof. We use the rotational invariance of the multivariate isotropic Gaussian. If A is an orthonor-
mal matrix, then we have:

xT I−1x = xTAT I−1Ax = (Ax)T I−1(Ax).

Now, suppose A,B are both orthonormal matrices, then we have:

AXBT = (A⊗B)Xv,

where Xv ∈ Rdn is the row-major vectorization of X and ⊗ is the Kronecker product. Now, since
A,B are orthonormal, we have that A ⊗ B is orthonormal. Hence, AXBT must have the same
distribution as X , and thus the singular vectors of AXBT must have the same distribution as those
of X . Since singular vectors lie on Sd−1 and since the distribution is rotation invariant, we conclude
that the singular vectors are uniformly distributed on Sd−1.

C TRAINING DETAILS

We now describe the training methodology we used to train pre-trained models on ImageNet32 and
CIFAR10. The optimizer, initialization, learning rate, and seeds used to train the ResNets in Figure 2
and 3 are presented in Figure 4. Note that all of our models were trained with mean squared error,
as discussed in (16). We trained models on ImageNet32 for 150 epochs and on CIFAR10 for 50
epochs. We then saved the model with the highest validation accuracy.

Dataset Optimizer,	 Learning	Rate Initialization Seed

Classes	1	and	2,	ImageNet32 Adam,	1e-4 Default	Pytorch Initialization 200

CIFAR10 Adam,	1e-4 Default	Pytorch Initialization 200

Figure 4: An overview of the optimizer, learning rate, initialization, and seeds used to fine-tune
pre-trained models on ImageNet32 and CIFAR10.

For all experiments, we used the PyTorch deep learning library (25). We trained our models on a
shared server with 1 Titan Xp and 2 GeForce GTX 1080 Ti’s. We only used 1 GPU at a time for
training neural networks and applying LLBoost.

D ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide the following additional details regarding the experiments in Figure 2
and 3:

1. The number of components used in the low-rank approximations for a full rank training
feature matrix (Figure 5).

2. The size of the perturbation produced by LLBoost and the values of γ used for the models
in Figure 2 (Figure 6).

3. A comparison between training time and the time taken for LLBoost to improve the models
in Figure 2 (Figure 7).

E PERFORMANCE OF PROJECTED STANDARD NORMAL PERTURBATIONS

In Figure 2, we demonstrated that perturbing the last layer without projecting to the space orthogonal
to the feature matrix provided a drastic decrease in the training and validation accuracy. In Figure
8, we illustrate the impact of using a perturbation that is randomly sampled from a standard normal
and then projected to the space orthogonal to the feature matrix. Again, we see that the validation
accuracies can drop significantly for larger datasets in this case. Note that including the projection
operator preserves the training accuracy in all cases, as is guaranteed by Lemma 1.

F LOW RANK APPROXIMATIONS FOR FEATURE MATRICES

As discussed in Section 4, when the feature matrix, X , is full rank, we needed to use a low-rank
approximation such that the space orthogonal to X . In this section, we discuss our method of
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Dataset Model Number	of	Components

2600	Ex.	ImageNet-32 ResNet-18 12

2600	Ex.	Imagenet-32 ResNet-34 12

2600	Ex.	Imagenet-32 ResNet-50 1548

CIFAR10 ResNet-18 212

ImageNet FixResNext-101 1000

Figure 5: The rank of the approximation used for the training feature matrix, X , when X was full
rank.

Dataset Model 𝛾 Train/Val.	Acc.	(Original) Train/Val.	Acc.	(Ours) Perturbation

100	Ex.	ImageNet32 ResNet-18 0.226 100%/80% 100%/84% 0.21

2600	Ex.	ImageNet32 ResNet-18* 11.314 99.96%/95% 99.96%/97% 11.210

100	Ex.	ImageNet32 ResNet-34 2.263 100%/85% 100%/87% 2.263

2600	Ex.	ImageNet32 ResNet-34* 4.525 99.77%/95% 99.77%/98% 4.474

100	Ex.	ImageNet32 ResNet-50 0.453 100%/83% 100%/89% 0.440

200	Ex.	ImageNet32 ResNet-50 0.453 100%/87% 100%/93% 0.431

500	Ex.	ImageNet32 ResNet-50 4.525 99.6%/91% 99.6%/93% 3.962

800	Ex.	ImageNet32 ResNet-50 9.051 100%/94% 100%/98% 7.215

1000	Ex.	ImageNet32 ResNet-50 33.941 100%/93% 100%/97% 23.784

2000	Ex.	ImageNet32 ResNet-50 45.255 99.85%/95% 99.85%/97% 6.338

2600	Ex.	ImageNet32 ResNet-50* 36.204 99.88%/95% 99.88%/99% 17.364

ImageNet FixResNext-101* 10 94.924%/86.26% 94.924%/86.34% 0.4428

CIFAR10 ResNet-18* 2.0 99.99%/95.05% 99.99%/95.25% 1.724

Figure 6: An extended version of Figure 2 that includes the choice of γ considered and the size
of the perturbation (in Frobenius norm) produced by LLBoost. ∗’s indicate the use of low-rank
approximations for full rank training feature matrices.

choosing the number of components of the SVD to keep for producing the low-rank approximation
forX . We then present how the number of components selected affects the performance of LLBoost.

In Figure 9, we visualize the normalized singular values of the feature matrix for models from Figure
2. In Figure 9A, we do not use a low-rank approximation as the size of the dataset is already smaller
than the number of features. In Figure 9B, the feature matrices are full rank, and so we use a low-
rank approximation for the feature matrix with the number of components selected shown red. In
particular, we chose a number of components that is well past the elbow in the curve so that there
was not a significant drop in training accuracy.

In Figure 10, we demonstrate how the number of components selected for the low-rank approx-
imation affects the validation accuracy of LLBoost. In particular, we observe that using a lower
rank approximation generally increases the improvement provided by LLBoost. This matches the
intuition provided by Proposition 2: when the space orthogonal to the training feature matrix, X , is
large, there is no reason to believe that the best linear solution lies in the span ofX . Hence, sampling
the space orthogonal to X yields an improvement. We note that since only a few singular values of
X are large, there is no impact to the training accuracy when using a low-rank approximation for X
(shown in the second column of the tables in Figure 10).

G LLBOOST APPLIED TO TRAIN, VALIDATION, TEST SPLITS

In Figure 2 and Figure 3, we demonstrated that LLBoost improves the validation accuracy of pre-
trained models without impacting the training accuracy. To ensure that LLBoost is not overfitting
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Dataset Model Training	Time Correction	Time	(s)

100	Ex.	ImageNet32 ResNet-18 77.753	sec 0.116	sec

2600	Ex.	ImageNet32 ResNet-18* 1020.413	sec 0.112	sec

100	Ex.	ImageNet32 ResNet-34 122.85	sec 0.111	sec

2600	Ex.	ImageNet32 ResNet-34* 1397.989	sec	 0.098	sec

100	Ex.	ImageNet32 ResNet-50 164.07	sec	 0.113	sec

200	Ex.	ImageNet32 ResNet-50 190.473	sec	 0.111	sec

500	Ex.	ImageNet32 ResNet-50 407.454	sec	 0.105	sec

800	Ex.	ImageNet32 ResNet-50 628.997	sec 0.137	sec

1000	Ex.	ImageNet32 ResNet-50 1054.061	sec	 0.087	sec

2000	Ex.	ImageNet32 ResNet-50 1996.991	sec	 0.129	sec	

2600	Ex.	ImageNet32 ResNet-50* 2488.621	sec	 0.11	sec	

ImageNet FixResNext-101* ~1 day/epoch 7.59	hr

CIFAR10 ResNet-18* 1.35	hr 15.36 min

Figure 7: A comparison between the training time and LLBoost correction time for models from
Figure 2. For the ImageNet32 models, the third column represents the time to compute the valida-
tion accuracy for 100, 000 samples from LLBoost. For CIFAR10 and ImageNet, the time addition-
ally includes the cost of computing the perturbation for LLBoost. ∗’s indicate the use of low-rank
approximations for full rank training feature matrices.

Dataset Model Train/Val.	Acc.	(Original) Train/Val.	Acc.	(Standard	Normal	@	Perp)

100	Ex.	ImageNet32 ResNet-18 100%/80% 100%/76%

2600	Ex.	ImageNet32 ResNet-18* 99.96%/95% 99.96%/96%

100	Ex.	ImageNet32 ResNet-34 100%/85% 100%/75%

2600	Ex.	ImageNet32 ResNet-34* 99.77%/95% 99.77%/88%

100	Ex.	ImageNet32 ResNet-50 100%/83% 100%/76%

200	Ex.	ImageNet32 ResNet-50 100%/87% 100%/77%

500	Ex.	ImageNet32 ResNet-50 99.6%/91% 99.6%/79%

800	Ex.	ImageNet32 ResNet-50 100%/94% 100%/87%

1000	Ex.	ImageNet32 ResNet-50 100%/93% 100%/96%

2000	Ex.	ImageNet32 ResNet-50 99.85%/95% 99.85%/97%

2600	Ex.	ImageNet32 ResNet-50* 99.88%/95% 99.88%/99%

ImageNet FixResNext-101* 94.924%/86.26% 94.924/18.54%

CIFAR10 ResNet-18* 99.99%/95.05% 99.99%/92.35%

Figure 8: A demonstration that using samples from a standard normal projected onto the space
orthogonal to the training data leads to a decrease in validation accuracy but has no impact on
training accuracy. ∗’s indicate the use of low-rank approximations for full rank training feature
matrices.

the validation set, we additionally split the validation data into validation and test data and check
that LLBoost improves validation and test accuracy without impacting training accuracy3.

3For ImageNet32, the validation set size is only 100 examples, and so we split the training set and re-train.
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Figure 9: Visualizations of the singular values of training feature matrices for models from 2. (A)
The singular values of the training feature matrices for small datasets. (B) The singular values of
full rank training feature matrices from large datasets. The red vertical line indicates the size of the
approximation used for Figure 2.

ImageNet32	(2600	Ex.),	
ResNet-50

Train	Acc.	(Original) Train	Acc.	(Approx.) Val.	Acc.

Original	Feature	Matrix 99.88% 99.88% 95%

Rank	1548	Approx. 99.88% 99.88% 99%

Rank	1648	Approx. 99.88% 99.88% 99%

Rank	1748	Approx. 99.88% 99.88% 98%

Rank	1848	Approx. 99.88% 99.88% 98%

Rank	1898	Approx. 99.88% 99.88% 97%

Rank	1948	Approx. 99.88% 99.88% 97%

Rank	1973	Approx. 99.88% 99.88% 96%

Rank	1998	Approx. 99.88% 99.88% 96%

Rank	2023	Approx. 99.88% 99.88% 96%

CIFAR10,	
ResNet-18

Train	Acc.	(Original) Train	Acc.	(Approx.) Val.	Acc.

Original	Feature	Matrix 99.99% 99.99% 95.05%

Rank	50	Approx. 99.99% 99.99% 95.25%

Rank	75	Approx. 99.99% 99.99% 95.25%

Rank	100	Approx. 99.99% 99.99% 95.24%

Rank	150	Approx. 99.99% 99.99% 95.24%

Rank	200	Approx. 99.99% 99.99% 95.23%

Rank	212	Approx. 99.99% 99.99% 95.25%

Rank	300	Approx. 99.99% 99.99% 95.2%

Rank	400	Approx. 99.99% 99.99% 95.19%

Rank	500	Approx. 99.99% 99.99% 95.13%

Figure 10: The impact of using approximations of varying rank for full rank training feature ma-
trices. The first row provides the training accuracy and validation of the original model. The first
column is the training accuracy of the model on the original dataset, the second column is the training
accuracy on the training data reconstructed from the low-rank approximation, and the third column
is the validation accuracy. We see that the validation accuracy generally increases when lowering
the rank of the approximation. Since only a few singular values of the training feature matrix are
large, there is no impact to the training accuracy when using a low-rank approximation for X .

In Figures 11 and 12, we present examples of how LLBoost (which selects the perturbation that
improves validation accuracy) improves both validation and test accuracy without impacting training
accuracy.
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Dataset Model Train/Val./Test Acc..	(Original) Train/Val./Test	Acc.	(Ours)

2600	Ex.	ImageNet32	(80/20	split) ResNet-18 99.9%/91.7%/93% 99.9%/92.5%/94%

CIFAR10	(20/80 split) ResNet-18 99.99%/95.2%/94.9% 99.99%/95.3%/94.93%

CIFAR10 (50/50	split) ResNet-18 99.99%/95.1%/94.82% 99.99%/95.16	%/94.84%

CIFAR10	(90/10	split) ResNet-18 99.99%/95.01%/94.50% 99.99%/95.04	%/94.60%

Figure 11: Using LLBoost to improve validation accuracy also leads to an improvement in test
accuracy (i.e. LLBoost does not overfit the validation set). We split the original validation set
of CIFAR10 into a validation and test set according to the splits indicated in parentheses. As the
validation set of ImageNet32 for 2 classes only has 100 images, we perform an 80/20 train/validation
split of the training set, use the 100 validation images as test data, and re-train our models on the
smaller training set.

Dataset Model Train/Val./Test	Acc.	(Original) Train/Val./Test	Acc.	(Ours)

200	Dogs/Cats
CIFAR10

ResNet-18 100%/78%/75.50% 100%/79%/75.53%

1000	Dogs/Cats
CIFAR10

ResNet-18 100%/84.5%/86.37% 100%/86%/86.54%

2000 Dogs/Cats
CIFAR10

ResNet-18 100%/88.65%/89.32% 100%/89.15%/89.42%

Figure 12: Using LLBoost to improve validation accuracy also leads to an improvement in test
accuracy (i.e. LLBoost does not overfit the validation set). In our experiments, we use the same
number of examples for training and validation and use the entirety of the remaining examples for
testing. For example, in row 1, we use 200 examples for training, 200 for validation and 11600 for
testing.

H PROOF OF PROPOSTION 1
Proof. We first consider ŵ − w∗:

ŵ − w∗ = yV Σ†UT − w∗

= w∗XV Σ†UT − w∗ (since y = w∗X)

= w∗UΣΣ†UT − w∗(UΣ⊥UT + UΣ⊥
⊥
UT )

= w∗UΣ⊥
⊥
UT − w∗(UΣ⊥UT + UΣ⊥

⊥
UT )

= −w∗UΣ⊥UT

Thus, we have shown (1). Now for (2), we have:

ŵr − w∗ = w(0)UΣ⊥UT + ŵ − w∗ = w(0)UΣ⊥UT − w∗UΣ⊥UT = (w(0) − w∗)UΣ⊥UT .

Hence, (2) follows from (1).

I PROOF OF THEOREM 2
Proof. The proof follows from Lemma 1. Since the columns of X are drawn from N (0, Id×d),
Lemma 2 implies that the columns of U are drawn from the uniform distribution on the sphere in
Rd. Hence we have that:

EX [UΣ⊥UT ] = EX

[
d∑

i=n+1

uiu
T
i

]
=

d∑
i=n+1

EX [uiu
T
i ] = 1− n

d
.

This implies (1) since:

EX [‖ŵ − w∗‖2 = w∗EX [UΣ⊥UT ]w∗T = ‖w∗‖2
(

1− n

d

)
.

Similarly, we get (2), which completes the proof.
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J PROOF OF PROPOSITION 2
Proof. Let aT = w(0) − w∗. We need to find a such that:

(1) ‖aTUΣ⊥UT ‖2 =

d∑
i=r+1

|〈a, ui〉|2 = c22,

(2) aTa = c21.

To do this, we instead first let a′ = c1a and show that there exists a solution to:

(1) ‖a′TUΣ⊥UT ‖2 =

d∑
i=r+1

|〈a′, ui〉|2 =
c22
c21
,

(2) a′Ta′ = 1.

We will show that there is a solution to the above system by using the intermediate value theorem.
First, note that the unit sphere is path connected in Rd. Now for a′ = ur+1, we have ‖a′‖ = 1 and
‖a′TUΣ⊥UT ‖2 = 1. Next, note that for a′ = u1, ‖a′‖ = 1 and |a′TUΣ⊥UT ‖2 = 0. Thus, by
the intermediate value theorem we conclude that there exists some a′ on the unit sphere such that
‖a′TUΣ⊥UT ‖2 =

c22
c21

, which completes the proof.

K PROOF OF PROPOSITION 3
Proof. Note that we have:

Pw(0)(Ex,X [(y − ŵrx)2] ≤ Ex,X [(y − ŵx)2])

⇐⇒ Pw(0)

(
‖w(0) − w∗‖2

(
1− n

d

)
≤ ‖w∗‖2

(
1− n

d

))
⇐⇒ Pw(0)

(
〈w(0),

w∗

‖w∗‖
〉 ≥ 1

2‖w∗‖

)
.

Since w(0) and w∗

‖w∗‖ are unit vectors on Sd−1, the desired probability is equivalent to that of the

ratio of the area of the spherical cap (19) defined by the co-latitude angle φ = cos−1
(

1
2‖w∗‖

)
to the

surface area of Sd−1, which completes the proof.

L PROOF OF THEOREM 3
Proof. We here present the proof for the case that γ = 1; however, the proof is easily extendable to
the case of arbitrary γ. The proof relies on the following inequalities, which are commonly used in
analysis.

Proposition 4 (Reduction Formula).∫
sind θdθ = −1

d
cos θ(sin θ)d−1 +

d− 1

d

∫
sind−2 θdθ

Proposition 5 (Gautschi’s Inequality).

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s ; s ∈ (0, 1) ; x > 0

Corollary 1. For s ∈ (0, 1) and x > 0:

(1)
√
x <

Γ(x+ 1)

Γ(x+ 1
2 )

<
√
x+ 1,

(2)
1√
x+ 1

<
Γ(x+ 1

2 )

Γ(x+ 1)
<

1√
x
.
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Proposition 6.
k∑
i=1

1√
i
≤
∫ k

0

1√
x
dx = 2

√
k

Let K =
∫ φ
0

(sin θ)d−2dθ. We will lower bound this integral. For convenience of notation, we will
skip writing the limits of integration. By using the reduction formula for the powers of

∫
(sin θ)ndθ,

and assuming d is even for convenience, we have:

K = − 1

d− 2
cosφ(sinφ)d−3 − 1

d− 2

d− 3

d− 4
cosφ(sinφ)d−5 − . . .− (d− 3)!!

(d− 2)!!
cosφ sinφ+

Γ(d−12 )
√
πΓ(d2 )

φ

= − 1

d− 2
cosφ sinφ

Γ(d−12 )
√
πΓ(d−22 )

[√
πΓ(d−22 )

Γ(d−12 )
(sinφ)d−4 +

√
πΓ(d−42 )

Γ(d−32 )
(sinφ)d−6 + . . .+

√
πΓ( 2

2 )

Γ( 3
2 )

]

+
Γ(d−12 )
√
πΓ(d2 )

φ

≥ − 1

d− 2
cosφ sinφ

Γ(d−12 )

Γ(d−22 )

 d−4
2∑
i=1

(sin2 φ)i√
2i+1
2

+ 1

+
Γ(d−12 )
√
πΓ(d2 )

φ (by Gautschi’s Inequality)

≥ − 1

d− 2
cosφ sinφ

Γ(d−12 )

Γ(d−22 )

 d−4
2∑
i=1

(sin2 φ)i√
2i
2

+ 1

+
Γ(d−12 )
√
πΓ(d2 )

φ

= − 1

d− 2
cosφ sinφ

Γ(d−12 )

Γ(d−22 )

 d−4
2∑
i=1

1√
i

+ 1

+
Γ(d−12 )
√
πΓ(d2 )

φ

≥ − 1

d− 2
cosφ sinφ

Γ(d−12 )

Γ(d−22 )

[
2

√
d− 4

2
+ 1

]
+

Γ(d−12 )
√
πΓ(d2 )

φ.

Since φ = cos−1
(

1+ε
2‖w∗‖

)
, then

K ≥ − 1

(d− 2)

1 + ε

2‖w∗‖

√
1− (1 + ε)2

4‖w∗‖2
Γ(d−12 )

Γ(d−22 )

[
2

√
d− 4

2
+ 1

]
+

Γ(d−12 )
√
πΓ(d2 )

cos−1
(

1 + ε

2‖w∗‖

)
.

Again by Gautschi’s Inequality we obtain:

Γ(d−12 )

Γ(d−22 )
<

√
d− 1

2
,

and hence,

K > − 1

(d− 2)

1 + ε

2‖w∗‖

√
1− (1 + ε)2

4‖w∗‖2

√
d− 1

2

[
2

√
d− 4

2
+ 1

]
+

Γ(d−12 )
√
πΓ(d2 )

cos−1
(

1 + ε

2‖w∗‖

)
.

Thus, we have that:

Γ
(
d
2

)
√
πΓ
(
d−1
2

) ∫ φ

0

sind−2 θdθ > −
√

d

2π

1

(d− 2)

1 + ε

2‖w∗‖

√
1− (1 + ε)2

4‖w∗‖2

√
d− 1

2

[
2

√
d− 4

2
+ 1

]

+
1

π
cos−1

(
1 + ε

2‖w∗‖

)
.

Hence, assuming ‖w∗‖ =
√
d
c , we obtain:

lim
d→∞

Γ
(
d
2

)
√
πΓ
(
d−1
2

) ∫ φ

0

sind−2 θdθ ≥ −c(1 + ε)

2
√

2π
+

1

π

π

2
=

1

2
− c(1 + ε)

2
√

2π
.
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Note that we have:

Pw(0)

(
〈w(0),

w∗

‖w∗‖
〉 ≥ (1 + ε)

2‖w∗‖

)
≤ Pw(0)

(
〈w(0),

w∗

‖w∗‖
〉 ≥ 0

)
=

1

2
,

and hence, we conclude that:

1

2
− c(1 + ε)

2
√

2π
≤ lim
d→∞

Γ
(
d
2

)
√
πΓ
(
d−1
2

) ∫ φ

0

sind−2 θdθ ≤ 1

2
.
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