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APPENDIX

Our code is provided in the supplementary material to facilitate reproducibility.

A THEORETICAL RESULTS

In this section, we will present the proofs for all the Theorems and Corollaries stated in Section 4 and
6.

A.1 PROOF OF THEOREM 4.1

Theorem 4.1. All possible state-action visitation distributions in an MDP form an affine set.

Proof. Any state-action visitation distribution, dπ(s, a) must satsify the Bellman Flow equation:∑
a

dπ(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P(s|s′, a′)dπ(s′, a′). (11)

This equation can be written in matrix notation as:∑
a

dπ = (1− γ)µ+ γPT dπ. (12)

Rearranging the terms,
(S − γPT )dπ = (1− γ)µ, (13)

where S is the matrix for
∑
a of size |S| × |S||A| with only |A| entries set to 1 corresponding to the

state denoted by the row. This equation is an affine equation of the form Ax = b whose solution set
forms an affine set. Hence all state-visitation distributions dπ form an affine set.

A.2 PROOF OF COROLLARY 4.2

Corollary 4.2. Any successor measure, Mπ , in an MDP forms an affine set and so can be represented
as

∑d
i ϕiw

π
i + b where ϕi and b are independent of the policy π and d is the dimension of the affine

space.

Proof. Using Theorem 4.1, we have shown that state-action visitation distributions form affine sets.
Similarly, successor measures, Mπ(s, a, s+, a+) are solutions of the Bellman Flow equation:
Mπ(s, a, s+, a+) = (1−γ)1[s = s+, a = a+]+γ

∑
s′,a′∈SA

P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+).

(14)
Taking summation over a+ on both sides gives us an equation very similar to Equation 11 and so can
be written by rearranging as,

(S − γPT )Mπ = (1− γ)1[s = s+]. (15)
With similar arguments as in Lemma 4.1, Mπ also forms an affine set. Any element x of an affine
set can be written as

∑d
i ϕiwi + b where ⟨ϕi⟩ are the basis and b is a bias vector. The basis is given

by the null space of the matrix operator (S − γPT ). Since the operator (S − γPT ) and the vector
(1− γ)1[s = s+] are independent of the policy, the basis Φ and the bias b are also independent of the
policy.

A.3 PROOF OF THEOREM 4.4

Theorem 4.4. For the same dimensionality, span{Φvf} represents the set of the value functions
spanned by Φvf and {span{Φ}r} represents the set of value functions using the successor measures
spanned by Φ, span{Φvf} ⊆ {span{Φ}r}.

Proof. We need to show that any element that belongs to the set {span{Φ}r} also belongs to the set
span{Φvf}.
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V π(s) =
∑
i

βπi Φ
vf
i (s).

If we assume a special Φi(s, s′) = σi(s)ηi(s
′),

V π(s) =
∑
i

wπi
∑
s′

Φ(s, s′)r(s′)

=
∑
i

[
wπi

∑
s′

ηi(s
′)r(s′)

]
σi(s).

The two equations match with βπi = wπi
∑
s′ ηi(s

′)r(s′) and σi(s) = Φvfi (s). This implies for every
instance in the span of Φvf , there exists some instance in the span of Φ.

A.4 PROOF OF THEOREM 6.1

Theorem 6.1. Successor Features ψπ(s, a) belong to an affine set and can be represented using a
linear combination of basis functions and a bias.

Proof. Given basic state features, φ : S → R|d|, the successor feature is defined as, ψπ(s, a) =
Eπ[

∑
t γ

tφ(st+1)]. It can be correspondingly connected to successor measures as ψπ(s, a) =∑
s′ M(s, a, s′)φ(s′) (replace

∑
s′ with

∫
s′

for continuous domains). In Linear algebra notations, let
Mπ be a (S ×A)× S dimensional matrix representing successor measure. Define Φs as the S × d
matrix containing φ for each state concatenated row-wise. The (S ×A)× d matrix representing Ψπ

can be given as,

Ψπ =MπΦs

=⇒ Ψπ =
∑
i

ϕiw
π
i Φs (Mπ is affine for basis ϕ)

=⇒ Ψπ =
∑
s′

∑
i

ϕi(·, ·, s′)wπi φ(s′)

=⇒ Ψπ =
∑
i

∑
s′

ϕi(·, ·, s′)φ(s′)wπi

=⇒ Ψπ =
∑
i

ϕψ,iw
π
i (ϕψ =

∑
s′

ϕi(·, ·, s′)φ(s′))

=⇒ Ψπ = Φψw
π

Hence, the successor features are affine with policy independent basis Φψ .

A.5 PROOF OF THEOREM 6.3

Theorem 6.3. If Mπ(s, a, s+) = ϕ(s, a, s+)wπ and ϕ(s, a, s+) = ϕψ(s, a)
Tϕs(s

+), the successor
feature ψπ(s, a) = ϕψ(s, a)w

π for the basic feature ϕs(s)T (ϕsϕTs )
−1.

Proof. Consider ϕ(s, a, s+) ∈ Rd as the set of d− 1 basis vectors and the bias with wπ ∈ Rd being
the d− 1 weights to combine the basis and wπd = 1. Clearly from Theorem 4.2, Mπ(s, a, s+) can be
represented as ϕ(s, a, s+)wπ . Further, ϕ(s, a, s+) = ϕψ(s, a)

Tϕs(s
+) where ϕψ(s, a) ∈ Rd×d and

ϕs(s
+) ∈ Rd. So,
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Mπ(s, a, s+) =
∑
i

∑
j

ϕψ(s, a)ijϕs(s
+)jw

π
i

=⇒ Mπ(s, a, s+) =
∑
j

∑
i

ϕψ(s, a)ijw
π
i ϕs(s

+)j

=⇒ Mπ(s, a, s+) =
∑
j

ϕψ(s, a)
T
j w

πϕs(s
+)j

=⇒ Mπ(s, a, s+) =
∑
j

ψπ(s, a)jϕs(s
+)j (Writing ϕψ(s, a)Twπ as ψπ(s, a))

=⇒ Mπ(s, a, s+) = ψπ(s, a)Tϕs(s
+)

From Lemma 6.2, ψπ(s, a) is the successor feature for the basic feature ϕs(s)T (ϕsϕTs )
−1.

Note: In continuous settings, we can use the dataset marginal density as described in Section 5. The
basic features become ϕs(s)T (Eρ[ϕsϕTs ])−1.

A.6 DERIVING A BASIS FOR THE TOY EXAMPLE

Figure 5: The Toy MDP described in Section 4.

Consider the MDP shown in Figure 5. The state action visitation distribution is written as d =
(d(s0, a0), d(s1, a0), d(s0, a1), d(s1, a1))

T . The corresponding dynamics can be written as,

P =

s0, a0 s1, a0 s0, a1 s0, a1[ ]
s0 0 1 1 0
s1 1 0 0 1

The Bellman Flow equation thus becomes,

∑
a

d(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′)

=⇒
[
1 1 0 0
0 0 1 1

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = (1− γ)

(
µ(s0)
µ(s1)

)
+ γ

[
0 1 1 0
1 0 0 1

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)



=⇒
[
1 1− γ −γ 0
−γ 0 1 1− γ

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = (1− γ)

(
µ(s0)
µ(s1)

)

This affine equation can be solved in closed form using Gauss Elimination to obtaind(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = w1


−γ
1+γ
−1
1+γ

1
0

+ w2


−1
1+γ
−γ
1+γ

0
1

+


µ(s0)+γµ(s1)

1+γ
µ(s1)+γµ(s0)

1+γ

0
0

 . (16)
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B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTS

B.1.1 GRIDWORLDS

We use https://github.com/facebookresearch/controllable_agent code-base
to build upon the gridworld and 4 room experiments. The task is to reach a goal state that is randomly
sampled at the beginning of every episode. The reward function is 0 at all non-goal states while 1 at
goal states. The episode length for these tasks are 200.

The state representation is given by (x, y) which are scaled down to be in [0, 1]. The action space
consists of five actions: {up, right, down, left, stay}.

B.1.2 FETCH

We build on top of https://github.com/ahmed-touati/controllable_agent
which contains the Fetch environments with discretized action spaces. The state space is unchanged
but the action space is discretized to produce manhattan style movements i.e. move one-coordinate at
a time. These six actions are mapped to the true actions of Fetch as: {0 : [1, 0, 0, 0], 1 : [0, 1, 0, 0], 2 :
[0, 0, 1, 0], 3 : [−1, 0, 0, 0], 4 : [0,−1, 0, 0], 5 : [0, 0,−1, 0]}. Fetch has an episode length of 50.

B.1.3 DM-CONTROL ENVIRONMENTS

Figure 6: DM Control Environments: Visual rendering of each of the four DM Control environments
we use: (from left to right) Walker, Cheetah, Quadruped, Pointmass

These continuous control environments have been discussed in length in DeepMind Control Suite
(Tassa et al., 2018). We use these environments to provide evaluations for PSM on larger and
continuous state and action spaces. The following four environments are used:

Walker: It has 24 dimensional state space consisting of joint positions and velocities and 6
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
planar walker. At test time, we test the following four tasks: Walk, Run, Stand and Flip, each with
complex dense rewards.

Cheetah: It has 17 dimensional state space consisting of joint positions and velocities and 6
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
planar biped “cheetah”. At test time, we test the following four tasks: Run, Run Backward, Walk and
Walk Backward, each with complex dense rewards.

Quadruped: It has 78 dimensional state space consisting of joint positions and velocities and 12
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
3-dimensional ant with 4 legs. At test time, we test the following four tasks: Walk, Run, Stand and
Jump, each with complex dense rewards.

Pointmass: The environment represents a 4-room planar grid with 4-dimensional state space
(x, y, vx, vy) and 2-dimensional action space. The four tasks that we test on are Reach Top Left,
Reach Top Right, Reach Bottom Left and Reach Bottom Right each being goal reaching tasks for the
four room centers respectively.

All DM Control tasks have an episode length of 1000.
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B.2 DATASETS

Gridworld: The exploratory data is collected by uniformly spawning the agent and taking a random
action. Each of the three method is trained on the reward-free exploratory data. At test time, a random
goal is sampled and the optimal Q function is inferred by each.

Fetch: The exploratory data is collected by running DQN (Mnih et al., 2013) training
with RND reward (Burda et al., 2019) taken from https://github.com/iDurugkar/
adversarial-intrinsic-motivation. 20000 trajectories, each of length 50, are collected.

DM Control: We use publically available datasets from ExoRL Suite [] collected using RND
exploration.

B.3 IMPLEMENTATION DETAILS

B.3.1 BASELINES

We consider a variety of baselines that represent different state of the art approaches for zero-shot
reinforcement learning. In particular, we consider Laplacian, Forward-Backward, and HILP.

1. Laplacian (Wu et al., 2018; Koren, 2003): This method constructs a graph Laplacian for the
MDP induced by a random policy. Eigenfunctions of this graph Laplacian gives a representation for
each state ϕ(s), or the state feature. These state-features are used to learn the successor features; and
trained to optimize a family of reward functions r(s) = ⟨ϕ(s) · z⟩, where z is usually sampled from a
unit hypersphere uniformly (same for all baselines). The reward functions are optimized via TD3.

2. Forward-Backward (Blier et al., 2021a; Touati & Ollivier, 2021; Touati et al., 2023): Forward-
backward algorithm takes a slightly different perspective: instead of training a state-representation
first, a mapping is defined between reward function to a latent variable (z =

∑
s ϕ(s).r(s)) and the

optimal policy for the reward function is set to πz , i.e the policy conditioned on the corresponding
latent variable z. Training for optimizing all reward functions in this class allows for state-features
and successor-features to coemerge. The reward functions are optimized via TD3.

3. HILP (Park et al., 2024a): Instead of letting the state-features coemerge as in FB, HILP proposes
to learn features from offline datasets that are sufficient for goal reaching. Thus, two states are close
to each other if they are reachable in a few steps according to environmental dynamics. HILP uses a
specialized offline RL algorithm with different discounting to learn these state features which could
explain its benefit in some datasets where TD3 is not suitable for offline learning.

Implementation: We build upon the codebase for FB https://github.com/
facebookresearch/controllable_agent and implement all the algorithms under
a uniform setup for network architectures and same hyperparameters for shared modules across
the algorithms. We keep the same method agnostic hyperparameters and use the author-suggested
method-specfic hyperparameters. The hyperparameters for all methods can be found here:

Proto Successor Measures (PSM): PSM differs from baselines in that we learn richer representations
compared to Laplacian or HILP as we are not biased by behavior policy or only learn representations
sufficient for goal reaching. Compared to FB, our representation learning phase is more stable as we
learn representations by Bellman evaluation backups and do not need Bellman optimality backups.
Thus, our approach is not susceptible to learning instabilities that arise from overestimation that is
common in Deep RL and makes stabilizing FB hard.The hyperparameters are discussed in Appendix
Table 2.
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Table 2: Hyperparameters for baselines and PSM.

Hyperparameter Value
Replay buffer size 5× 106 (10× 106 for maze)
Representation dimension 128
Batch size 1024
Discount factor γ 0.98 (0.99 for maze)
Optimizer Adam
Learning rate 3× 10−4

Momentum coefficient for target networks 0.99
Stddev σ for policy smoothing 0.2
Truncation level for policy smoothing 0.3
Number of gradient steps 2× 106

Batch size for task inference 104

Regularization weight for orthonormality loss (ensures diversity) 1
FB specific hyperparameters
Hidden units (F ) 1024
Number of layers (F ) 3
Hidden units (b) 256
Number of layers (b) 2
HILP specific hyperparameters
Hidden units (ϕ) 256
Number of layers (ϕ) 2
Hidden units (ψ) 1024
Number of layers (ψ) 3
Discount Factor for ϕ 0.96
Discount Factor for ψ 0.98 (0.99 for maze)
Loss type Q-loss
PSM specific hyperparameters
Hidden units (ϕ, b) 1024
Number of layers (ϕ, b) 3
Hidden units (w) 1024
Number of layers (w) 3
Double GD lr 1e-4

B.3.2 PSM REPRESENTATION LEARNING PSUEDOCODE

1 def psm_loss(
2 self,
3 obs: torch.Tensor,
4 action: torch.Tensor,
5 discount: torch.Tensor,
6 next_obs: torch.Tensor,
7 next_goal: torch.Tensor,
8 z: torch.Tensor,
9 step: int

10 ) -> tp.Dict[str, float]:
11 metrics: tp.Dict[str, float] = {}
12 # Create a batch_size x batch_size for learning Mˆ\pi(s,a,s+)
13 idx = torch.arange(obs.shape[0]).to(obs.device)
14 mesh = torch.stack(torch.meshgrid(idx, idx, indexing=’xy’)).T.

reshape(-1, 2)
15 m_obs = obs[mesh[:, 0]]
16 m_next_obs = next_obs[mesh[:, 0]]
17 m_action = action[mesh[:, 0]]
18 m_next_goal = next_goal[mesh[:, 1]]
19 perm = torch.randperm(obs.shape[0])
20

21 # compute PSM loss
22 with torch.no_grad():
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23 target_phi, target_b = self.psm_target(m_next_obs,
m_next_goal)

24 target_w = self.w_target(z)
25 target_phi = target_phi[torch.arange(target_phi.shape[0]),

next_actions.squeeze(1)]
26 target_b = target_b[torch.arange(target_b.shape[0]),

next_actions.squeeze(1)]
27 target_M = torch.einsum("sd, sd -> s", target_phi, target_w)

+ target_b
28

29

30 phi, b = self.psm(m_obs, m_next_goal)
31 phi = phi[torch.arange(phi.shape[0]), m_action.squeeze(1)]
32 b = b[torch.arange(b.shape[0]), m_action.squeeze(1)]
33 M = torch.einsum("sd, sd -> s", phi, self.w(z)) + b
34 M = M.reshape(obs.shape[0], obs.shape[0])
35 target_M = target_M.reshape(obs.shape[0], obs.shape[0])
36 I = torch.eye(*M.size(), device=M.device)
37 off_diag = ˜I.bool()
38 psm_offdiag: tp.Any = 0.5 * (M - discount * target_M)[off_diag].

pow(2).mean()
39 psm_diag: tp.Any = -((1 - discount) * (M.diag().unsqueeze(1))).

mean()
40 psm_loss = psm_offdiag + psm_diag
41

42

43 # optimize PSM
44 self.opt.zero_grad(set_to_none=True)
45 self.actor_opt.zero_grad(set_to_none=True)
46 psm_loss.backward()
47 self.opt.step()
48 self.actor_opt.step()

Compute: All our experiments were trained on Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
CPUS and NVIDIA GeForce GTX TITAN GPUs. Each training run took around 10-12 hours.
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