Under review as a conference paper at ICLR 2025

APPENDIX

Our code is provided in the supplementary material to facilitate reproducibility.

A THEORETICAL RESULTS

In this section, we will present the proofs for all the Theorems and Corollaries stated in Section 4 and
6.

A.1 PROOF OF THEOREM 4.1

Theorem 4.1. All possible state-action visitation distributions in an MDP form an affine set.

Proof. Any state-action visitation distribution, d” (s, a) must satsify the Bellman Flow equation:

Z d"(s,a) = (1 —y)u(s) +~ Z P(s|s’,a")d"™(s',a"). (11)

This equation can be written in matrix notation as:
}:d“—- Y+ Pl (12)

Rearranging the terms, -
(8 —yPh)d"™ = (1—7)u, (13)

where S is the matrix for) of size |S| x |S||.A| with only |.A| entries set to 1 corresponding to the
state denoted by the row. This equation is an affine equation of the form Ax = b whose solution set
forms an affine set. Hence all state-visitation distributions d™ form an affine set.

O

A.2 PROOF OF COROLLARY 4.2

Corollary 4.2. Any successor measure, M ™, in an MDP forms an affine set and so can be represented

as Zf ¢;w] 4 b where ¢; and b are independent of the policy 7 and d is the dimension of the affine
space.

Proof. Using Theorem .1} we have shown that state-action visitation distributions form affine sets.
Similarly, successor measures, M ™ (s, a, sT, a*) are solutions of the Bellman Flow equation:
M7™(s,a,87,a") = (1—y)l[s =s",a=at]+~ Z P(st|s',a YM™(s,a,s,a)r(a™|sT).
s',a’€SA
(14)
Taking summation over a™ on both sides gives us an equation very similar to Equation|11|and so can
be written by rearranging as,
(S —yPT)M™ = (1 -7)1[s = s]. (15)
With similar arguments as in Lemma[4.1) M™ also forms an affine set. Any element x of an affine
set can be written as Zf ¢;w; + b where (¢;) are the basis and b is a bias vector. The basis is given
by the null space of the matrix operator (S — vPT). Since the operator (S — vPT) and the vector
(1 —~)1[s = s*] are independent of the policy, the basis ® and the bias b are also independent of the
policy. O

A.3 PROOF OF THEOREM 4.4
Theorem 4.4. For the same dimensionality, span{®“/} represents the set of the value functions

spanned by ®*/ and {span{®}r} represents the set of value functions using the successor measures
spanned by @, span{®*f} C {span{®}r}.

Proof. We need to show that any element that belongs to the set {span{®}r} also belongs to the set
span{®¥/}.

15

Under review as a conference paper at ICLR 2025

i s’
= [wi Y mls)r(s)]oils)
i s’
The two equations match with 57 = w] >, n;(s')r(s’) and 0;(s) = ®"/ (). This implies for every
instance in the span of ®*/, there exists some instance in the span of ®. O

A.4 PROOF OF THEOREM 6.1

Theorem 6.1. Successor Features ¢™ (s, a) belong to an affine set and can be represented using a
linear combination of basis functions and a bias.

Proof. Given basic state features, ¢ : S — RI9, the successor feature is defined as, ¥™ (s, a) =
Er Y, 7"¢(st+1)]- It can be correspondingly connected to successor measures as {7 (s,a) =
>y M(s,a,s")p(s") (replace), with [, for continuous domains). In Linear algebra notations, let
MT™bea (S x A) x S dimensional matrix representing successor measure. Define @ as the S x d
matrix containing ¢ for each state concatenated row-wise. The (S X A) x d matrix representing U™
can be given as,

U= M™P,
UT =3 ¢wi®, (M is affine for basis ¢)
= ZZM 8 wip(s')
U= ZZ¢(L 8)p(s)w]
V=D dpal (b= ail s els)

— U7 = <I>¢w”

bl

Hence, the successor features are affine with policy independent basis ®.. O

A.5 PROOF OF THEOREM 6.3

Theorem 6.3. If M™(s,a,s™) = ¢(s,a,sT)w™ and ¢(s,a,sT) = ¢y (s,a)T ¢5(sT), the successor
feature ¢ (s, a) = ¢y (s, a)w™ for the basic feature ¢5(s)T (dspl)71

Proof. Consider ¢(s,a,st) € R? as the set of d — 1 basis vectors and the bias with w™ € R being
the d — 1 weights to combine the basis and w); = 1. Clearly from Theorem M™(s,a,st) can be
represented as ¢(s, a, sT)w™. Further, ¢(s, a, sT) = ¢y (s, a)T ¢s(sT) where ¢y (s, a) € R4*? and
#s(sT) € R% So,

16

Under review as a conference paper at ICLR 2025

(s,a,s" Zz¢wsaw¢s)l
= MT"(s,a,s") ZZ(WSCLUU)%()i

J

= M"(s,a,s") Z%SG Wy (s);
= (s,a,st Z’l/) s,a);0s(sT); (Writing ¢y (s,a)Tw™ as ™ (s, a))

= M™(s,a,57) = 1/)”(57 a)lps(sT)
From Lemma[6.2] 47 (s,) is the successor feature for the basic feature ¢(s)7 (¢5¢T) !

Note: In continuous settings, we can use the dataset marginal density as described in Section[5} The
basic features become ¢ (s) (E,[¢s¢T]) ™ O

A.6 DERIVING A BASIS FOR THE TOY EXAMPLE

Qo

Qo
Figure 5: The Toy MDP described in Section
Consider the MDP shown in Figure 5] The state action visitation distribution is written as d =
(d(so,a0),d(s1,a0),d(s0,a1),d(s1,a1))T. The corresponding dynamics can be written as,
505 @0 1, a0 50, a1 S50, a1

_ S0 0 1 1 0
Pisl{l 0 0 1}

The Bellman Flow equation thus becomes,

o o0 (50) oo
1 1 0 0f(d(si,a0)| _ w(so 0| | d(s1,a9
= {0 0 1 1} d(so.ar) | =3 =) (u(sl) T 0 0 1| | d(so ar)
d(s1,a1) d(s1,a1)
o oo (30)
1 1—v —v 0 d(s1, a0 1(so0
= 1 —
— [v 0o 1 1- 7} d(so,a1) | =177 (u(sl)
d(s1,ar)
This affine equation can be solved in closed form using Gauss Elimination to obtain
_ — So0)+ S
Ellgso,aog ﬁ ﬁ ME Ozl_ﬂlyui 1;
S1, a0 . —1 - p(s1)+yu(so
d(SO) 1) o wl 14{,\/ + w2 167 + 16’Y ' (16)
d(s1,a1) 0 1 0

17

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTS
B.1.1 GRIDWORLDS

We use https://github.com/facebookresearch/controllable_agent code-base
to build upon the gridworld and 4 room experiments. The task is to reach a goal state that is randomly
sampled at the beginning of every episode. The reward function is O at all non-goal states while 1 at
goal states. The episode length for these tasks are 200.

The state representation is given by (x,y) which are scaled down to be in [0, 1]. The action space
consists of five actions: {up, right, down, left, stay}.

B.1.2 FETCH

We build on top of https://github.com/ahmed-touati/controllable_agent
which contains the Fetch environments with discretized action spaces. The state space is unchanged
but the action space is discretized to produce manhattan style movements i.e. move one-coordinate at
a time. These six actions are mapped to the true actions of Fetch as: {0 : [1,0,0,0],1:[0,1,0,0],2:
[0,0,1,0],3:[-1,0,0,0],4:[0,—1,0,0],5: [0,0,—1,0]}. Fetch has an episode length of 50.

B.1.3 DM-CONTROL ENVIRONMENTS

Figure 6: DM Control Environments: Visual rendering of each of the four DM Control environments
we use: (from left to right) Walker, Cheetah, Quadruped, Pointmass

These continuous control environments have been discussed in length in DeepMind Control Suite
(Tassa et all, 2018). We use these environments to provide evaluations for PSM on larger and
continuous state and action spaces. The following four environments are used:

Walker: It has 24 dimensional state space consisting of joint positions and velocities and 6
dimensional action space where each dimension of action lies in [—1, 1]. The system represents a
planar walker. At test time, we test the following four tasks: Walk, Run, Stand and Flip, each with
complex dense rewards.

Cheetah: It has 17 dimensional state space consisting of joint positions and velocities and 6
dimensional action space where each dimension of action lies in [—1, 1]. The system represents a
planar biped “cheetah”. At test time, we test the following four tasks: Run, Run Backward, Walk and
Walk Backward, each with complex dense rewards.

Quadruped: It has 78 dimensional state space consisting of joint positions and velocities and 12
dimensional action space where each dimension of action lies in [—1, 1]. The system represents a
3-dimensional ant with 4 legs. At test time, we test the following four tasks: Walk, Run, Stand and
Jump, each with complex dense rewards.

Pointmass: The environment represents a 4-room planar grid with 4-dimensional state space
(x,y,vs,vy) and 2-dimensional action space. The four tasks that we test on are Reach Top Left,
Reach Top Right, Reach Bottom Left and Reach Bottom Right each being goal reaching tasks for the
four room centers respectively.

All DM Control tasks have an episode length of 1000.

18

https://github.com/facebookresearch/controllable_agent
https://github.com/ahmed-touati/controllable_agent

Under review as a conference paper at ICLR 2025

B.2 DATASETS

Gridworld: The exploratory data is collected by uniformly spawning the agent and taking a random
action. Each of the three method is trained on the reward-free exploratory data. At test time, a random
goal is sampled and the optimal Q function is inferred by each.

Fetch: The exploratory data is collected by running DQN (Mnih et al), 2013) training
with RND reward (Burda et al] 2019) taken from https://github.com/iDurugkar/
adversarial-intrinsic-motivation, 20000 trajectories, each of length 50, are collected.

DM Control: We use publically available datasets from ExoRL Suite [] collected using RND
exploration.

B.3 IMPLEMENTATION DETAILS

B.3.1 BASELINES

We consider a variety of baselines that represent different state of the art approaches for zero-shot
reinforcement learning. In particular, we consider Laplacian, Forward-Backward, and HILP.

1. Laplacian (Wu et al}, 2018}; [Koren, [2003): This method constructs a graph Laplacian for the
MDP induced by a random policy. Eigenfunctions of this graph Laplacian gives a representation for
each state ¢(s), or the state feature. These state-features are used to learn the successor features; and
trained to optimize a family of reward functions r(s) = (¢(s) - z), where z is usually sampled from a
unit hypersphere uniformly (same for all baselines). The reward functions are optimized via TD3.

2. Forward-Backward (Blier ef al.,[2021a};[Touati & Ollivier} 2021} [Touati et al.,[2023): Forward-
backward algorithm takes a slightly different perspective: instead of training a state-representation
first, a mapping is defined between reward function to a latent variable (z =) ¢(s).r(s)) and the
optimal policy for the reward function is set to 7, i.e the policy conditioned on the corresponding
latent variable z. Training for optimizing all reward functions in this class allows for state-features
and successor-features to coemerge. The reward functions are optimized via TD3.

3. HILP (Park et all,[2024a): Instead of letting the state-features coemerge as in FB, HILP proposes
to learn features from offline datasets that are sufficient for goal reaching. Thus, two states are close
to each other if they are reachable in a few steps according to environmental dynamics. HILP uses a
specialized offline RL algorithm with different discounting to learn these state features which could
explain its benefit in some datasets where TD3 is not suitable for offline learning.

Implementation: =~ We build upon the codebase for FB |https://github.com/
facebookresearch/controllable_agent| and implement all the algorithms under
a uniform setup for network architectures and same hyperparameters for shared modules across
the algorithms. We keep the same method agnostic hyperparameters and use the author-suggested
method-specfic hyperparameters. The hyperparameters for all methods can be found here:

Proto Successor Measures (PSM): PSM differs from baselines in that we learn richer representations
compared to Laplacian or HILP as we are not biased by behavior policy or only learn representations
sufficient for goal reaching. Compared to FB, our representation learning phase is more stable as we
learn representations by Bellman evaluation backups and do not need Bellman optimality backups.
Thus, our approach is not susceptible to learning instabilities that arise from overestimation that is
common in Deep RL and makes stabilizing FB hard.The hyperparameters are discussed in Appendix
Table

19

https://github.com/iDurugkar/adversarial-intrinsic-motivation
https://github.com/iDurugkar/adversarial-intrinsic-motivation
https://github.com/facebookresearch/controllable_agent
https://github.com/facebookresearch/controllable_agent

0

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameters for baselines and PSM.

Hyperparameter Value
Replay buffer size 5 x 10° (10 x 10° for maze)
Representation dimension 128
Batch size 1024
Discount factor y 0.98 (0.99 for maze)
Optimizer Adam
Learning rate 3x 1074
Momentum coefficient for target networks 0.99
Stddev o for policy smoothing 0.2
Truncation level for policy smoothing 0.3
Number of gradient steps 2 x 106
Batch size for task inference 10%
Regularization weight for orthonormality loss (ensures diversity) 1

FB specific hyperparameters

Hidden units (F') 1024
Number of layers (F') 3
Hidden units (b) 256
Number of layers (b) 2
HILP specific hyperparameters

Hidden units (¢) 256
Number of layers (¢) 2
Hidden units (/) 1024
Number of layers () 3
Discount Factor for ¢ 0.96
Discount Factor for ¢ 0.98 (0.99 for maze)
Loss type Q-loss
PSM specific hyperparameters

Hidden units (¢, b) 1024
Number of layers (¢, b) 3
Hidden units (w) 1024
Number of layers (w) 3
Double GD Ir le-4

B.3.2 PSM REPRESENTATION LEARNING PSUEDOCODE

def psm_loss(
self,
obs:
action:
discount:

torch.Tensor,
torch.Tensor,
torch.Tensor,
next_obs: torch.Tensor,
next_goal: torch.Tensor,
z: torch.Tensor,
step: int
) —> tp.Dict[str, float]:

metrics: tp.Dict[str, float]

{}

Create a batch_size x batch_size for learning M"\pi(s,a,s+)

idx
2)

obs[mesh[:, 0]]
next_obs[mesh(:,
action[mesh[:, 0]]

reshape (-1,
m_obs
m_next_obs
m_action
m_next_goal

compute PSM loss
with torch.no_grad() :

torch.arange (obs.shape[0])
mesh = torch.stack (torch.meshgrid (idx,

next_goal[mesh|[:,
perm = torch.randperm(obs.shape[0]

.to(obs.device)
idx, indexing='xy’)).T.

01]

11]
)

20

Under review as a conference paper at ICLR 2025

target_phi, target_b = self.psm_target (m_next_obs,
m_next_goal)

target_w = self.w_target (z)

target_phi = target_phi[torch.arange (target_phi.shape[0]),
next_actions.squeeze (1)]

target_b = target_b[torch.arange (target_b.shape[0]),
next_actions.squeeze (1)]

target_M = torch.einsum("sd, sd -> s", target_phi, target_w)
+ target_Db

39

phi, b = self.psm(m_obs, m_next_goal)

phi = phi[torch.arange (phi.shape[0]), m_action.squeeze (1)]

b = b[torch.arange (b.shape[0]), m_action.squeeze (1)]

M = torch.einsum("sd, sd -> s", phi, self.w(z)) + b

M M.reshape (obs.shape[0], obs.shape[0])

target_M = target_M.reshape (obs.shape[0], obs.shape[0])

I = torch.eye(xM.size (), device=M.device)

off_diag = "I.bool()

psm_offdiag: tp.Any = 0.5 x (M - discount » target_M) [off_diag].

pow (2) .mean ()

psm_diag: tp.Any = —((1 - discount) * (M.diag() .unsqueeze(1l))).

mean ()

psm_loss = psm_offdiag + psm_diag

optimize PSM
self.opt.zero_grad(set_to_none=True)
self.actor_opt.zero_grad(set_to_none=True)
psm_loss.backward ()

self.opt.step()

self.actor_opt.step()

Compute: All our experiments were trained on Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
CPUS and NVIDIA GeForce GTX TITAN GPUs. Each training run took around 10-12 hours.

21

	Theoretical Results
	Proof of Theorem 4.1
	Proof of Corollary 4.2
	Proof of Theorem 4.4
	Proof of Theorem 6.1
	Proof of Theorem 6.3
	Deriving a basis for the Toy Example

	Experimental Details
	Environments
	Gridworlds
	Fetch
	DM-control environments

	Datasets
	Implementation Details
	Baselines
	PSM representation learning psuedocode

