
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

Our code is provided in the supplementary material to facilitate reproducibility.

A THEORETICAL RESULTS

In this section, we will present the proofs for all the Theorems and Corollaries stated in Section 4 and
6.

A.1 PROOF OF THEOREM 4.1

Theorem 4.1. All possible state-action visitation distributions in an MDP form an affine set.

Proof. Any state-action visitation distribution, dπ(s, a) must satsify the Bellman Flow equation:∑
a

dπ(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P(s|s′, a′)dπ(s′, a′). (11)

This equation can be written in matrix notation as:∑
a

dπ = (1− γ)µ+ γPT dπ. (12)

Rearranging the terms,
(S − γPT)dπ = (1− γ)µ, (13)

where S is the matrix for
∑
a of size |S| × |S||A| with only |A| entries set to 1 corresponding to the

state denoted by the row. This equation is an affine equation of the form Ax = b whose solution set
forms an affine set. Hence all state-visitation distributions dπ form an affine set.

A.2 PROOF OF COROLLARY 4.2

Corollary 4.2. Any successor measure, Mπ , in an MDP forms an affine set and so can be represented
as

∑d
i ϕiw

π
i + b where ϕi and b are independent of the policy π and d is the dimension of the affine

space.

Proof. Using Theorem 4.1, we have shown that state-action visitation distributions form affine sets.
Similarly, successor measures, Mπ(s, a, s+, a+) are solutions of the Bellman Flow equation:
Mπ(s, a, s+, a+) = (1−γ)1[s = s+, a = a+]+γ

∑
s′,a′∈SA

P (s+|s′, a′)Mπ(s, a, s′, a′)π(a+|s+).

(14)
Taking summation over a+ on both sides gives us an equation very similar to Equation 11 and so can
be written by rearranging as,

(S − γPT)Mπ = (1− γ)1[s = s+]. (15)
With similar arguments as in Lemma 4.1, Mπ also forms an affine set. Any element x of an affine
set can be written as

∑d
i ϕiwi + b where ⟨ϕi⟩ are the basis and b is a bias vector. The basis is given

by the null space of the matrix operator (S − γPT). Since the operator (S − γPT) and the vector
(1− γ)1[s = s+] are independent of the policy, the basis Φ and the bias b are also independent of the
policy.

A.3 PROOF OF THEOREM 4.4

Theorem 4.4. For the same dimensionality, span{Φvf} represents the set of the value functions
spanned by Φvf and {span{Φ}r} represents the set of value functions using the successor measures
spanned by Φ, span{Φvf} ⊆ {span{Φ}r}.

Proof. We need to show that any element that belongs to the set {span{Φ}r} also belongs to the set
span{Φvf}.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

V π(s) =
∑
i

βπi Φ
vf
i (s).

If we assume a special Φi(s, s′) = σi(s)ηi(s
′),

V π(s) =
∑
i

wπi
∑
s′

Φ(s, s′)r(s′)

=
∑
i

[
wπi

∑
s′

ηi(s
′)r(s′)

]
σi(s).

The two equations match with βπi = wπi
∑
s′ ηi(s

′)r(s′) and σi(s) = Φvfi (s). This implies for every
instance in the span of Φvf , there exists some instance in the span of Φ.

A.4 PROOF OF THEOREM 6.1

Theorem 6.1. Successor Features ψπ(s, a) belong to an affine set and can be represented using a
linear combination of basis functions and a bias.

Proof. Given basic state features, φ : S → R|d|, the successor feature is defined as, ψπ(s, a) =
Eπ[

∑
t γ

tφ(st+1)]. It can be correspondingly connected to successor measures as ψπ(s, a) =∑
s′ M(s, a, s′)φ(s′) (replace

∑
s′ with

∫
s′

for continuous domains). In Linear algebra notations, let
Mπ be a (S ×A)× S dimensional matrix representing successor measure. Define Φs as the S × d
matrix containing φ for each state concatenated row-wise. The (S ×A)× d matrix representing Ψπ

can be given as,

Ψπ =MπΦs

=⇒ Ψπ =
∑
i

ϕiw
π
i Φs (Mπ is affine for basis ϕ)

=⇒ Ψπ =
∑
s′

∑
i

ϕi(·, ·, s′)wπi φ(s′)

=⇒ Ψπ =
∑
i

∑
s′

ϕi(·, ·, s′)φ(s′)wπi

=⇒ Ψπ =
∑
i

ϕψ,iw
π
i (ϕψ =

∑
s′

ϕi(·, ·, s′)φ(s′))

=⇒ Ψπ = Φψw
π

Hence, the successor features are affine with policy independent basis Φψ .

A.5 PROOF OF THEOREM 6.3

Theorem 6.3. If Mπ(s, a, s+) = ϕ(s, a, s+)wπ and ϕ(s, a, s+) = ϕψ(s, a)
Tϕs(s

+), the successor
feature ψπ(s, a) = ϕψ(s, a)w

π for the basic feature ϕs(s)T (ϕsϕTs)
−1.

Proof. Consider ϕ(s, a, s+) ∈ Rd as the set of d− 1 basis vectors and the bias with wπ ∈ Rd being
the d− 1 weights to combine the basis and wπd = 1. Clearly from Theorem 4.2, Mπ(s, a, s+) can be
represented as ϕ(s, a, s+)wπ . Further, ϕ(s, a, s+) = ϕψ(s, a)

Tϕs(s
+) where ϕψ(s, a) ∈ Rd×d and

ϕs(s
+) ∈ Rd. So,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Mπ(s, a, s+) =
∑
i

∑
j

ϕψ(s, a)ijϕs(s
+)jw

π
i

=⇒ Mπ(s, a, s+) =
∑
j

∑
i

ϕψ(s, a)ijw
π
i ϕs(s

+)j

=⇒ Mπ(s, a, s+) =
∑
j

ϕψ(s, a)
T
j w

πϕs(s
+)j

=⇒ Mπ(s, a, s+) =
∑
j

ψπ(s, a)jϕs(s
+)j (Writing ϕψ(s, a)Twπ as ψπ(s, a))

=⇒ Mπ(s, a, s+) = ψπ(s, a)Tϕs(s
+)

From Lemma 6.2, ψπ(s, a) is the successor feature for the basic feature ϕs(s)T (ϕsϕTs)
−1.

Note: In continuous settings, we can use the dataset marginal density as described in Section 5. The
basic features become ϕs(s)T (Eρ[ϕsϕTs])−1.

A.6 DERIVING A BASIS FOR THE TOY EXAMPLE

Figure 5: The Toy MDP described in Section 4.

Consider the MDP shown in Figure 5. The state action visitation distribution is written as d =
(d(s0, a0), d(s1, a0), d(s0, a1), d(s1, a1))

T . The corresponding dynamics can be written as,

P =

s0, a0 s1, a0 s0, a1 s0, a1[]
s0 0 1 1 0
s1 1 0 0 1

The Bellman Flow equation thus becomes,

∑
a

d(s, a) = (1− γ)µ(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′)

=⇒
[
1 1 0 0
0 0 1 1

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = (1− γ)

(
µ(s0)
µ(s1)

)
+ γ

[
0 1 1 0
1 0 0 1

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)



=⇒
[
1 1− γ −γ 0
−γ 0 1 1− γ

]d(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = (1− γ)

(
µ(s0)
µ(s1)

)

This affine equation can be solved in closed form using Gauss Elimination to obtaind(s0, a0)d(s1, a0)
d(s0, a1)
d(s1, a1)

 = w1


−γ
1+γ
−1
1+γ

1
0

+ w2


−1
1+γ
−γ
1+γ

0
1

+


µ(s0)+γµ(s1)

1+γ
µ(s1)+γµ(s0)

1+γ

0
0

 . (16)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTS

B.1.1 GRIDWORLDS

We use https://github.com/facebookresearch/controllable_agent code-base
to build upon the gridworld and 4 room experiments. The task is to reach a goal state that is randomly
sampled at the beginning of every episode. The reward function is 0 at all non-goal states while 1 at
goal states. The episode length for these tasks are 200.

The state representation is given by (x, y) which are scaled down to be in [0, 1]. The action space
consists of five actions: {up, right, down, left, stay}.

B.1.2 FETCH

We build on top of https://github.com/ahmed-touati/controllable_agent
which contains the Fetch environments with discretized action spaces. The state space is unchanged
but the action space is discretized to produce manhattan style movements i.e. move one-coordinate at
a time. These six actions are mapped to the true actions of Fetch as: {0 : [1, 0, 0, 0], 1 : [0, 1, 0, 0], 2 :
[0, 0, 1, 0], 3 : [−1, 0, 0, 0], 4 : [0,−1, 0, 0], 5 : [0, 0,−1, 0]}. Fetch has an episode length of 50.

B.1.3 DM-CONTROL ENVIRONMENTS

Figure 6: DM Control Environments: Visual rendering of each of the four DM Control environments
we use: (from left to right) Walker, Cheetah, Quadruped, Pointmass

These continuous control environments have been discussed in length in DeepMind Control Suite
(Tassa et al., 2018). We use these environments to provide evaluations for PSM on larger and
continuous state and action spaces. The following four environments are used:

Walker: It has 24 dimensional state space consisting of joint positions and velocities and 6
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
planar walker. At test time, we test the following four tasks: Walk, Run, Stand and Flip, each with
complex dense rewards.

Cheetah: It has 17 dimensional state space consisting of joint positions and velocities and 6
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
planar biped “cheetah”. At test time, we test the following four tasks: Run, Run Backward, Walk and
Walk Backward, each with complex dense rewards.

Quadruped: It has 78 dimensional state space consisting of joint positions and velocities and 12
dimensional action space where each dimension of action lies in [−1, 1]. The system represents a
3-dimensional ant with 4 legs. At test time, we test the following four tasks: Walk, Run, Stand and
Jump, each with complex dense rewards.

Pointmass: The environment represents a 4-room planar grid with 4-dimensional state space
(x, y, vx, vy) and 2-dimensional action space. The four tasks that we test on are Reach Top Left,
Reach Top Right, Reach Bottom Left and Reach Bottom Right each being goal reaching tasks for the
four room centers respectively.

All DM Control tasks have an episode length of 1000.

18

https://github.com/facebookresearch/controllable_agent
https://github.com/ahmed-touati/controllable_agent

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.2 DATASETS

Gridworld: The exploratory data is collected by uniformly spawning the agent and taking a random
action. Each of the three method is trained on the reward-free exploratory data. At test time, a random
goal is sampled and the optimal Q function is inferred by each.

Fetch: The exploratory data is collected by running DQN (Mnih et al., 2013) training
with RND reward (Burda et al., 2019) taken from https://github.com/iDurugkar/
adversarial-intrinsic-motivation. 20000 trajectories, each of length 50, are collected.

DM Control: We use publically available datasets from ExoRL Suite [] collected using RND
exploration.

B.3 IMPLEMENTATION DETAILS

B.3.1 BASELINES

We consider a variety of baselines that represent different state of the art approaches for zero-shot
reinforcement learning. In particular, we consider Laplacian, Forward-Backward, and HILP.

1. Laplacian (Wu et al., 2018; Koren, 2003): This method constructs a graph Laplacian for the
MDP induced by a random policy. Eigenfunctions of this graph Laplacian gives a representation for
each state ϕ(s), or the state feature. These state-features are used to learn the successor features; and
trained to optimize a family of reward functions r(s) = ⟨ϕ(s) · z⟩, where z is usually sampled from a
unit hypersphere uniformly (same for all baselines). The reward functions are optimized via TD3.

2. Forward-Backward (Blier et al., 2021a; Touati & Ollivier, 2021; Touati et al., 2023): Forward-
backward algorithm takes a slightly different perspective: instead of training a state-representation
first, a mapping is defined between reward function to a latent variable (z =

∑
s ϕ(s).r(s)) and the

optimal policy for the reward function is set to πz , i.e the policy conditioned on the corresponding
latent variable z. Training for optimizing all reward functions in this class allows for state-features
and successor-features to coemerge. The reward functions are optimized via TD3.

3. HILP (Park et al., 2024a): Instead of letting the state-features coemerge as in FB, HILP proposes
to learn features from offline datasets that are sufficient for goal reaching. Thus, two states are close
to each other if they are reachable in a few steps according to environmental dynamics. HILP uses a
specialized offline RL algorithm with different discounting to learn these state features which could
explain its benefit in some datasets where TD3 is not suitable for offline learning.

Implementation: We build upon the codebase for FB https://github.com/
facebookresearch/controllable_agent and implement all the algorithms under
a uniform setup for network architectures and same hyperparameters for shared modules across
the algorithms. We keep the same method agnostic hyperparameters and use the author-suggested
method-specfic hyperparameters. The hyperparameters for all methods can be found here:

Proto Successor Measures (PSM): PSM differs from baselines in that we learn richer representations
compared to Laplacian or HILP as we are not biased by behavior policy or only learn representations
sufficient for goal reaching. Compared to FB, our representation learning phase is more stable as we
learn representations by Bellman evaluation backups and do not need Bellman optimality backups.
Thus, our approach is not susceptible to learning instabilities that arise from overestimation that is
common in Deep RL and makes stabilizing FB hard.The hyperparameters are discussed in Appendix
Table 2.

19

https://github.com/iDurugkar/adversarial-intrinsic-motivation
https://github.com/iDurugkar/adversarial-intrinsic-motivation
https://github.com/facebookresearch/controllable_agent
https://github.com/facebookresearch/controllable_agent

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameters for baselines and PSM.

Hyperparameter Value
Replay buffer size 5× 106 (10× 106 for maze)
Representation dimension 128
Batch size 1024
Discount factor γ 0.98 (0.99 for maze)
Optimizer Adam
Learning rate 3× 10−4

Momentum coefficient for target networks 0.99
Stddev σ for policy smoothing 0.2
Truncation level for policy smoothing 0.3
Number of gradient steps 2× 106

Batch size for task inference 104

Regularization weight for orthonormality loss (ensures diversity) 1
FB specific hyperparameters
Hidden units (F) 1024
Number of layers (F) 3
Hidden units (b) 256
Number of layers (b) 2
HILP specific hyperparameters
Hidden units (ϕ) 256
Number of layers (ϕ) 2
Hidden units (ψ) 1024
Number of layers (ψ) 3
Discount Factor for ϕ 0.96
Discount Factor for ψ 0.98 (0.99 for maze)
Loss type Q-loss
PSM specific hyperparameters
Hidden units (ϕ, b) 1024
Number of layers (ϕ, b) 3
Hidden units (w) 1024
Number of layers (w) 3
Double GD lr 1e-4

B.3.2 PSM REPRESENTATION LEARNING PSUEDOCODE

1 def psm_loss(
2 self,
3 obs: torch.Tensor,
4 action: torch.Tensor,
5 discount: torch.Tensor,
6 next_obs: torch.Tensor,
7 next_goal: torch.Tensor,
8 z: torch.Tensor,
9 step: int

10) -> tp.Dict[str, float]:
11 metrics: tp.Dict[str, float] = {}
12 # Create a batch_size x batch_size for learning Mˆ\pi(s,a,s+)
13 idx = torch.arange(obs.shape[0]).to(obs.device)
14 mesh = torch.stack(torch.meshgrid(idx, idx, indexing=’xy’)).T.

reshape(-1, 2)
15 m_obs = obs[mesh[:, 0]]
16 m_next_obs = next_obs[mesh[:, 0]]
17 m_action = action[mesh[:, 0]]
18 m_next_goal = next_goal[mesh[:, 1]]
19 perm = torch.randperm(obs.shape[0])
20

21 # compute PSM loss
22 with torch.no_grad():

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

23 target_phi, target_b = self.psm_target(m_next_obs,
m_next_goal)

24 target_w = self.w_target(z)
25 target_phi = target_phi[torch.arange(target_phi.shape[0]),

next_actions.squeeze(1)]
26 target_b = target_b[torch.arange(target_b.shape[0]),

next_actions.squeeze(1)]
27 target_M = torch.einsum("sd, sd -> s", target_phi, target_w)

+ target_b
28

29

30 phi, b = self.psm(m_obs, m_next_goal)
31 phi = phi[torch.arange(phi.shape[0]), m_action.squeeze(1)]
32 b = b[torch.arange(b.shape[0]), m_action.squeeze(1)]
33 M = torch.einsum("sd, sd -> s", phi, self.w(z)) + b
34 M = M.reshape(obs.shape[0], obs.shape[0])
35 target_M = target_M.reshape(obs.shape[0], obs.shape[0])
36 I = torch.eye(*M.size(), device=M.device)
37 off_diag = ˜I.bool()
38 psm_offdiag: tp.Any = 0.5 * (M - discount * target_M)[off_diag].

pow(2).mean()
39 psm_diag: tp.Any = -((1 - discount) * (M.diag().unsqueeze(1))).

mean()
40 psm_loss = psm_offdiag + psm_diag
41

42

43 # optimize PSM
44 self.opt.zero_grad(set_to_none=True)
45 self.actor_opt.zero_grad(set_to_none=True)
46 psm_loss.backward()
47 self.opt.step()
48 self.actor_opt.step()

Compute: All our experiments were trained on Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
CPUS and NVIDIA GeForce GTX TITAN GPUs. Each training run took around 10-12 hours.

21

	Theoretical Results
	Proof of Theorem 4.1
	Proof of Corollary 4.2
	Proof of Theorem 4.4
	Proof of Theorem 6.1
	Proof of Theorem 6.3
	Deriving a basis for the Toy Example

	Experimental Details
	Environments
	Gridworlds
	Fetch
	DM-control environments

	Datasets
	Implementation Details
	Baselines
	PSM representation learning psuedocode

