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1 ARCHITECTURE DETAILS AND TRAINING
SETTINGS

This section detailed introduce the architecture of the different
components of the proposed BasicGEBD and EfficientGEBD. We
also provide how to transform the boundary detection task to a
binary classification one, based on which we further show how to
train the model.

1.1 Architecture details
The overview architecture of the proposed BasicGEBD and Effi-
cientGEBD are shown in Figure 1 (a) and (b), respectively. We first
describe the overall of EfficientGEBD based on inference procedure
Figure 1 (c), then more details about the architecture towards four
different components will be provided in the following.

Figure 1 (c) illustrates the detailed overall architecture. Given a
video sequence with 𝑇 frames, we aim to detect the event bound-
aries. The backbone model will be first used to extract the features
from the input video and generate the corresponding features at
different layers. For example, the features from the layer-1 will be
denoted as V1 ∈ R𝑇×𝐶1×𝐻1×𝑊1 , where the 𝐶1, 𝐻1 and𝑊1 are the
number of channels, and spatial resolutions, respectively. Then an
AvgPooling layer will squeeze the V1 to the dimension of𝑇 ×𝐶1×1,
and then a fully connected linear projection (FC) will be used to
transform the 𝐶1 to 𝐶 , resulting in the features of R1. We then
concatenate all R𝑖 and unfold the features to generate 𝑇 different
small clips, where the length of each small clip is 𝑡𝑤 . In our experi-
ments, 𝑡𝑤 = 17 is used. Then the boundary detection problem can
be transformed to the binary classification problem identifying if
the median frame of the small clip is a boundary. After we have
all predictions for all timestamps, we can collect them to generate
the final predictions, where the boundary can be explored using a
given threshold 𝜖 .

During training, all these final predictions will be considered
as binary classification results, which can be trained by the cross-
entropy loss effectively.

All the backbone models used in our research follow the design
in the original paper [6, 19]. As we described before, the output
features from different layers will be processed by an AvgPool Layer
and an FC projection. In our experiments, the 𝐶 is set as 512.

Besides the encoder we mentioned in the main paper, we also
test its variants, which are shown in Figure 2 (a,b,c,d). These results
can be found in Table 2. Moreover, Figure 2 (e,f) provide the detailed
architecture of the fusion model. We use 𝑟 = 4 in for the Cross Att.
in our experiments.

We also provide the details about how the similarity maps are
generated in our methods. Specifically, we calculate the frame-level
pairwise similarity as below:

S𝑡 (𝑖, 𝑗) = Sim(D𝑖
𝑡 ,D

𝑗
𝑡 ), 𝑖, 𝑗 ∈ [1, . . . , 𝑡𝑤], 𝑡 ∈ [1, . . . ,𝑇 ], (1)

where S𝑡 ∈ R𝑛𝑙×𝑡𝑤×𝑡𝑤 is the similarity map of the features from
encoder, D𝑡

𝑖
and D𝑡

𝑗
are features inside the given snippet and Sim is

the cosine similarity function.
As for the decoder, a ResNet10 has 4 residual layers, where each

layer contains 1 residual block, consisting of two convolution layers
with residual connection is used. We omit the final FC of ResNet10
and the dimensionality of the output features from the decoder is
𝐶 × 𝑡𝑤 .

1.2 Training details.
1.2.1 Gaussian Smoothing. As mentioned before, we follow the
continuous paradigm that each frame-wise prediction is merged to
obtain the final predictions with length 𝑇 . Since the annotations
for GEBD are subjective and ambiguous, directly using these hard
labels to optimize the network could lead to poor generalization
ability. Therefore, we smoothed the one-hot labels with a Gaussian
kernel to generate soft labels ỹ. The window size of the Gaussian
kernel remains the same as the length of the video snippet and
𝜎 = 1 in all experiments.

1.3 Loss Function.
After obtaining the predictions from detectors, we calculate the
binary cross entropy loss for each one. The total training loss can
be written as:

L =

𝑁∑︁
𝑛

[−ỹ𝑛 log(p𝑛) − (1 − ỹ𝑛) log(1 − p𝑛)], (2)

where p𝑛 is the collection of all predictions for 𝑇 , 𝑁 is the number
of all training samples.

2 BASELINE MODEL ANALYSIS

Table 1: The architectures of three representativeGEBDmeth-
ods and the propose models in this paper.

Mehtods Backbone Encoder Sim. Map Decoder Fusion

SboCo [10] ResNet50 1d-Conv CosSim. or ResNet + -L2-Sim. Transformer
DDM-Net [18] ResNet50 Differences L2-Sim. FCN Pro. Att.
SC-Trans. [12] ResNet50 Transformer CosSim. FCN -
LightGEBD [5] X3D-XS 1d-Conv CosSim. Transformer -

BasicGEBD ResNet50 1d-Conv CosSim. FCN -

SBoCo [10], DDM-Net [18], and SC-Transformer [12] (SC-Trans.),
aside with the LightGEBD [5] are selected as the representative
supervised GEBD networks. We here detailed state how their ar-
chitectures share strong similarities.

For backbone networks, expect the recently proposed Light-
GEBDusing a video backbone, X3D [4], all the rest use the ResNet50 [6]
as the backbone for feature extraction.
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Figure 1: Overview of the proposed BasicGEBD (a) and EfficientGEBD (b). We further proposed the detailed architectures of
EfficientGEBD with ResNet50-L2* in (c).

Figure 2: The illustrations of the encoder (a) Conv encoder, (b) Diff Mixer encoder, (c) Diff former encoder, (d) self-Attention
encoder. The fusion module with concatenation fusion (e) and cross attention fusion (f).

We also find that all these methods contain an encoder module
to process the extracted features from backbones. The LightGEBD
and SBoCo directly use a 1-d Conv layer for encoding. While SC-
Transformer selects a more complex encoder built based on the
Transformer architecture. DDM-Net uses the dense difference map
for encoding the extracted features. Although with different forma-
tions, an encoder seems a necessary component for all these GEBD
models.

The implementation of the similarity maps as well as the 2-d FCN
decoder can be seen as a sign of recent outperforming supervised
GEBD methods. DDM-Net selects the L2-norm of the difference
maps to represent the similarity maps, which show an inverse ratio
to that using Cosine similarity. We see that the rest of them all
use Cosine similarity. The recent research [12] further investigates
the effectiveness of different similarity metrics, including Cheby-
shev, Manhattan, L2-norm, and Cosine, where the Cosine similarity
shows the best performance in GEBD tasks.

The fusion module is the unique one proposed in DDM-Net
which fuses the features from the decoder and encoder to enhance
the motion cues for GEBD models. In our research, we find that
using a small fusion module can bring significant performance
improvement for GEBD.

From the about analysis, we can abstract the general architecture
of a GEBD model, which contains: (1) The backbone for feature
extraction; (2) The encoder for temporal modeling; (3) The similarity
map (Sim. Map); (4) The decoder processing the similarity map. As
only DDM-Net applies the fusion module, we do not use it in our
baseline model.

3 FULLY ROADMAP RESULTS
In this section, we provide a full trajectory going from a basic GEBD
model to an efficient GEBD model. The results shown in the main
paper only select some of our milestone results due to the limitation
of pages. The complete results are shown in Table 2. In the Table,
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different study sections are marked by different colors. Moreover,
we denote the EfficientGEBD with low efficiency by red, which
is not considered as the outcome of our exploration. We only use
these results for architecture studies.

As we have stated in the main paper, using a large backbone net-
work does not significantly improve the performance of BasicGEBD
in GEBD tasks. We also show that such a scenario still happens but
not as severe as that in BasicGEBD when we use EfficientGEBD. For
example, the BasicGEBD with ResNet18-L4* can already achieve a
high detection performance of 78.2%, while the use of ResNet152-
L4* only increasing the performance by 0.7% while largely affecting
the efficiency of the model. However, 0.7% is still larger than the
performance gain when using ResNet152 and ResNet18 as the back-
bones for BasicGEBD, demonstrating the effectiveness of our design
and further showing the importance of introducing additional tem-
poral modeling ability for GEBD models. This also confirms the
correctness of using video backbone to conduct the spatiotemporal
feature learning throughout the whole architecture.

4 VISUALIZATION OF SIMILARITY MAPS
This section shows the effectiveness of using the difference of Effi-
cientGEBD when detecting different kinds of boundaries. Actually,
using a difference map design meets our intuition in boundary
detection tasks: To detect these motion-related boundaries, motion
information plays a principal role in perceiving temporal varia-
tions and can be effectively modeled by using feature differences at
different timestamps. The results are shown in Figure 3.

We show the changes of the feature norms at different times-
tamps, and further present examples with 𝑡𝑤 frames and visualize
their pairwise similarity maps of 𝑡𝑤 × 𝑡𝑤 captured by detectors.
The red lines present the ground-truth boundaries. The pairwise
similarity maps are then sent to the contrast module to amplify the
discriminatives. Therefore, the diagonal pattern (similarity within
the same side of frame groups and dissimilarity between groups) is
essential to maximizing the boundary information as discussed in
[10]. From the results, we can see that samples like shot changes
have distinctive background changes rather than the main objects.
These low appearance-level features can be preserved in the origi-
nal extracted features, X𝐼 . Moreover, as these characteristics also
have fewer temporal dependencies, the discriminative information
is not clear in the similarity maps of X𝐷 . However, samples like
event-level changes can contain complex temporal change patterns,
resulting in ambiguous boundaries in the map ofX𝐼 . The crucial dis-
criminative information is found mainly in the map of X𝐷 . Overall,
the visualizations demonstrate the demands using the differences
map of the proposed EfficientGEBD.We also found that using differ-
ence maps might not always obtain the discriminative information
in similarity map.

5 VISUALIZATION OF DISTRACTION ISSUE
We hypothesize that conducting the spatiotemporal representation
learning in such a greedy way can lead to several inefficiency is-
sues in GEBD tasks. As the image domain backbones are usually
designed to identify the main objects in an image, learning the
spatial features without the guide from temporal information can
result in the attention of the backbone distracting from the objects

Table 2: The complete results on Kinetic-GEBD during our
architecture ablation.

Method F1@0.05GFLOPs FPS

SC-Transformer 77.7 10.36 971
DDM-Net 76.4 46.52 39

BasicGEBD (Res50-L4) 77.1 4.36 1562
BasicGEBD (Res50-L3) 77.0 3.57 1783
BasicGEBD (Res50-L2) 76.8 2.08 2325
BasicGEBD (Res50-L1) 75.3 1.05 2699
BasicGEBD (Res34-L2) 76.6 1.94 2495
BasicGEBD (Res34-L4) 77.0 3.92 2386
BasicGEBD (Res18-L2) 76.1 1.24 2480
BasicGEBD (Res18-L4) 77.2 2.07 2380
BasicGEBD (Res152-L2) 76.3 2.94 1783
BasicGEBD (Res152-L4) 77.2 11.77 847

Conv 76.4 2.09 2257
Diff Mixer x1 77.0 2.09 2257
Diff former x1 76.3 2.09 2257
Diff Mixer x2 76.9 2.09 2257
Diff former x2 76.2 2.09 2257

Cat. fuse 77.6 2.09 2208
Cross Att. 77.7 2.09 2208

no 2d-FCN 64.4 1.85 2426
FCN-Res10 77.7 2.09 2208
FCN-Res18 77.8 2.42 2181

EfficientGEBD (Res18-L2*) 77.3 1.28 2348
EfficientGEBD (Res18-L4*) 78.2 2.11 2384
EfficientGEBD (Res34-L2*) 77.8 1.97 2352
EfficientGEBD (Res34-L4*) 78.5 3.96 2376
EfficientGEBD (Res50-L2*) 78.3 2.10 2097
EfficientGEBD (Res50-L4*) 78.7 4.39 1541
EfficientGEBD (Res152-L2*) 77.9 2.97 1692
EfficientGEBD (Res152-L4*) 78.9 11.80 816

EfficientGEBD (CSNR50-L2*) 79.7 1.57 2281
EfficientGEBD (CSNR50-L4*) 81.1 2.83 1748
EfficientGEBD (CSNR152-L2) 80.4 1.98 2029
EfficientGEBD (CSNR152-L4) 82.0 6.37 1050
EfficientGEBD (CSNR152-L2*) 80.6 2.00 1215
EfficientGEBD (CSNR152-L4*) 82.9 6.40 1025
BasicGEBD (CSNR50-L4) 81.6 2.79 1889
BasicGEBD (CSNR152-L4) 82.5 6.36 1054

most related to the boundaries, and getting stuck in some areas
containing the other objects in each frame. We refer to such an
issue as distraction issue.

This section provides more visualization results using Grad-
CAM++ [1] in Figure 4. The event boundary in (a) is defined by
the changes of action during arm wrestling. The high activations
of the ResNet backbone get stuck in the spatial areas that contain
the head of the person in the center of the frame. With the arm
wrestling-related spatial areas missing features extracted from the
backbone, the subsequent modules will have difficulties conducting
the following temporal modeling, resulting in the failure detection
of this boundary.
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Figure 3: In the figure, we calculate the L2-norm and the cosine similarity map of the features at different timestamps to see
whether the discriminative boundary features can be captured.

Table 3: Comparisons in terms o F1 score (%) on Kinetics-GEBD with Rel.Dis. threshold from 0.05 to 0.5.

Method Backbone F1 @ Rel. Dis.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

BMN [14] ResNet50 18.6 20.4 21.3 22.0 22.6 23.0 23.3 23.7 23.9 24.1 22.3
BMN-StartEnd [14] ResNet50 49.1 58.9 62.7 64.8 66.0 66.8 67.4 67.8 68.1 68.3 64.0
TCN-TAPOS [11] ResNet50 46.4 56.0 60.2 62.8 64.5 65.9 66.9 67.6 68.2 68.7 62.7
TCN [11] ResNet50 58.8 65.7 67.9 69.1 69.8 70.3 70.6 70.8 71.0 71.2 68.5
PC [16] ResNet50 62.5 75.8 80.4 82.9 84.4 85.3 85.9 86.4 86.7 87.0 81.7
PC+OF [16] ResNet50 62.5 75.8 80.4 82.9 84.4 85.3 85.9 86.4 86.7 87.0 81.7
SBoCo [10] ResNet50 73.2 - - - - - - - - - 86.6
Temporal Perceiver [17] ResNet50 74.8 82.8 85.2 86.6 87.4 87.9 88.3 88.7 89.0 89.2 86.0
CVRL [13] ResNet50 74.3 83.0 85.7 87.2 88.0 88.6 89.0 89.3 89.6 89.8 86.5
CVRL+ [20] ResNet50 76.8 84.8 87.2 88.5 89.2 89.6 89.9 90.1 90.3 90.6 87.7
DDM-Net [18] ResNet50 76.4 84.3 86.6 88.0 88.7 89.2 89.5 89.8 90.0 90.2 87.3
SC-Transformer [12] ResNet50 77.7 84.9 87.3 88.6 89.5 90.0 90.4 90.7 90.9 91.1 88.1
BasicGEBD ResNet50 76.8 83.4 85.7 87.1 87.9 88.5 88.8 89.1 89.4 89.6 86.6
EfficientGEBD ResNet50 78.3 85.1 87.4 88.7 89.6 90.1 90.5 90.8 91.1 91.3 88.3
SBoCo [10] TSN 78.7 - - - - - - - - - 89.2
CLA [9] TSN 79.1 - - - - - - - - - -
CASTANet [7] CSN 78.1 - - - - - - - - - -
CVRL [13] CSN 78.6 - - - - - - - - - -
CVRL+ [20] CSN 81.2 - - - - - - - - - -
BasicGEBD CSN 82.5 87.7 89.6 90.7 91.4 91.9 92.2 92.4 92.6 92.8 90.4
EfficientGEBD CSN 82.9 87.9 89.7 90.9 91.5 92.0 92.3 92.6 92.8 93.0 90.5
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Table 4: Comparison with others in terms of F1 score (%) on TAPOS with Rel.Dis. threshold from 0.05 to 0.5 with 0.05 interval.

Method F1 @ Rel. Dis.
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

ISBA [3] 10.6 17.0 22.7 26.5 29.8 32.6 34.8 36.9 38.2 39.6 30.2
TCN [11] 23.7 31.2 33.1 33.9 34.2 34.4 34.7 34.8 34.8 34.8 64.0
CTM [8] 24.4 31.2 33.6 35.1 36.1 36.9 37.4 38.1 38.3 38.5 35.0
TransParser [15] 28.9 38.1 43.5 47.5 50.0 51.4 52.7 53.4 54.0 54.5 47.4
PC [16] 52.2 59.5 62.8 64.6 65.9 66.5 67.1 67.6 67.9 68.3 64.2
Temporal Perceiver [17] 55.2 66.3 71.3 73.8 75.7 76.5 77.4 77.9 78.4 78.8 73.2
DDM-Net [18] 60.4 68.1 71.5 73.5 74.7 75.3 75.7 76.0 76.3 76.7 72.8
SC-Transformer [12] 61.8 69.4 72.8 74.9 76.1 76.7 77.1 77.4 77.7 78.0 74.2
EfficientGEBD (Res50-L3*) 62.6 70.1 73.4 75.6 76.7 77.2 77.5 77.9 78.1 78.4 74.7
EfficientGEBD (Res50-L4*) 63.1 70.5 73.7 75.9 76.9 77.4 77.6 78.0 78.2 78.6 74.8

For the child in (b), the issue is similar to that in (a), where the
high activations of the ResNet backbone get stuck in the spatial
areas that contain the head of the child, rather than the boundary-
related spatial areas. These high activations around the head will
harm the detection procedure of the swing action, where the swing-
ing object and the arm should be what needs to be focused.

As the image domain backbone is usually pre-trained on the
ImageNet dataset [2], where the objects at the center of the image
can be viewed as the main objects of the image, using ResNet50 pre-
trained on ImageNet can result in too many attention on the area
contain the most identified features of the central object. Therefore,
these image backbones focus on the head of the person in each
frame. The results in (c) further confirm our findings. In such a case,
the GEBD model will be distracted by the features most identified
features of the central objects, resulting in the distraction issue.

6 ADDITIONAL EXPERIMENTAL RESULTS
6.1 Main results
We provide the full results with Rel.Dis. threshold from 0.05 to 0.5
with 0.05 interval on both Kinetics-GEBD and TAPOS. The results
are shown in Table 3 and Table 4. Overall, we see that our methods
achieve promising performance compared to previous methods in
different Rel. Dis.

6.2 Hyper-parameter studies
We further provide the hyper-parameter studies of the proposed
EfficientGEBD. All the experiments are conducted on the Kinetic-
GEBD dataset using the EfficientGEBD with ResNet50-L2*.

Table 5: Study onwindow size.

#win 𝑡𝑤 0.05 avg.
11 77.7 88.2
17 78.3 88.3
23 77.9 88.2

Table 6: Study on 𝑇 .

#inp 𝑇 0.05 avg.
80 76.4 87.8
100 78.3 88.3
120 78.3 88.0

Table 7: Performance with different thresholds.

𝜖 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F1 scoare 51.2 70.5 78.3 75.5 65.2 50.4 34.7 20.2 7.9

6.2.1 Window Size. We conduct ablations on different lengths of
the local window size 𝑡𝑤 for generating local small video clips pro-
cessed by the encoder, as it is in Figure 1. The results are shown in
Table 5. The larger window size 𝑡𝑤 means a larger temporal respec-
tive field for boundary detection. However, as most boundaries are
only relative to the local frames rather than long-term information,
we see that increasing the window size does not necessarily bring
performance growth with additional computations. Also, using
small window sizes can slightly affect the performance of boundary
detection.

6.2.2 Study on input length 𝑇 . We also conduct ablations on input
length 𝑇 which represents the sampling frequency of a video. A
larger𝑇 means a high sampling rate of the video. The local window
size 𝑡𝑤 is fixed to 17. From the results in 6, we can conclude that
the performance tends to be saturated when 𝑇 is larger than 100
(around 10fps in Kinetics-GEBD).

6.2.3 Study on the threshold 𝜖 . We also provide the study for our
method with different detecting thresholds, 𝜖 . The results are pro-
vided in Table 7 with the local window size 𝑡𝑤 = 17 and temporal
length 𝑇 = 100. From the results we see that the choice of thresh-
olds can affect the final results, therefore we should select it during
the inference.
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Figure 4: The activations captured by GradCAM++ [1] using ResNet [6] and CSN [19] as the backbones for GEBD models. The
median frame is the boundary frame.

Figure 5: Detection results on Kinetics-GEBD for (a) shot-level changes, (b) event-level changes and (c) failure cases.

6.3 More visualizations
In this subsection, we provide more visualization results for the
proposed EfficientGEBD in GEBD tasks.

The provided qualitative results of shot- and event-level bound-
ary detection on Kinetics-GEBD in Figure 5 show the effectiveness
of our method. We see that most predictions of our method are
accurate.

Here we further provide more additional failure cases of our
method. From the illustrations, we see that most of the failure
cases share a similar property: Containing multiple objects with a
complex sense. This meets our intuition since the changes of each
object can be viewed as the boundary, which might distract the

GEBD model and increase the complexity of detecting the event
boundaries.
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