Doubly Robust Augmented Transfer for Meta-Reinforcement Learning

A. Appendix
A.1. Related Work

Meta-Reinforcement Learning (Meta-RL). With the incorporation of meta-learning, meta-RL enables a fast adaptation in
RL problems through the idea of “learning to learn”. During meta-training, meta-RL learns an inductive bias from a set of
relative training tasks for quickly adapting to some new tasks, given only a small amount of samples at the meta-test time.
Current meta-RL methods can be classified in to two categories. One is the gradient-based method, which attempts to use a
few number of gradient updates to implement the adaptation on a new task, such as by using policy gradient methods to
directly update the policy parameters [12, 17, 18, 19]. The other is the context-based method, which builds up an inference
network to infer task-specific latent context variables from the input-sampled experience (i.e., context) of the training tasks.
A policy with both state and latent variable as input is also trained to maximize rewards on these training tasks, hence the
adaptation is conducted by the latent context inference first, followed by the policy adjustment with the inferred latent
context as input. These methods mainly differ in their ways of inference [3, 4, 20]. However, sparse reward remains a
challenge in meta-RL, where the sparse reward signals provide only scarce task-relevant information and make meta-training
and adaptation extremely difficult.

Sparse-Reward Meta-RL. To tackle the sparse reward problem in meta-RL, two main research lines have been developed
recently. One directly generates informative samples by exploration [21, 22, 23] or by directly using the demonstration
datasets [24]. For instance, training a separate exploration policy by maximizing the information gain or intrinsic rewards to
collect samples. The other line follows the technique of relabeling that enables sample reuse across tasks, i.e., learning a task
at hand by appropriately reusing the samples generated from other tasks. Compared with sample exploration, sample reuse
has several advantages, such as no extra exploration, high sample efficiency, and low sample risk. Following the direction of
relabeling, hindsight experience replay (HER) [5] has been studied as one typical method, which is originally designed for
the multi-goal setting and relabels a trajectory with a lower reward under its original goal to a goal that has higher reward.
Packer et al. apply hindsight relabeling for meta-RL, and propose hindsight task relabeling (HTR) to relabel the trajectories
sampled from one task to a task which can be accomplished in these trajectories with higher rewards [14]. However, like
its application on goal-conditioned tasks, this method can only cope with training tasks with different reward functions
that correspond to the goals. Taking a step further than hindsight relabelling, Wan et al. introduce additionally foresight
relabeling to meta-RL, and propose to relabel trajectories to new tasks with higher post-adaptation rewards [15].

Doubly Robust Estimator. Doubly robust (DR) is first presented in statistics [25, 26] and then brought into RL by Jiang et
al. for policy evaluation [7], which combines the direct learning of dynamics models and importance sampling to provide an
unbiased and lower-variance value estimate. The variance of DR in value evaluation can be further reduced by applying
lower-variance IS estimator [8, 27] and through learning an more accurate dynamics model [28]. For policy learning in RL,
Huang et al. derive a general form of policy gradient from DR value estimator [29], whereas a DR off-policy actor-critic
method is developed by Xu et al. [30]. Kallus et al. propose the doubly robust method to find a robust policy that can
achieve the near-optimum in the worst case under environment distribution shifts [31]. Similar to our work which aims at
optimizing MSE of the DR estimator, Su ef al. derive a shrinkaged importance weight of policy for bandit problem under
the assumption of known importance weights, while we do not have access to the true importance weight of dynamics.
Different from these works, we apply doubly robust (DR) to transfer the experience collected across a distribution of tasks,
for accelerating the value function learning under a challenging sparse-reward meta-RL setting.

Transfer Learning for Meta-RL. Our problem setting partly falls into the area of transfer in RL, which aims to accelerate
the learning process in a new target task by transferring knowledge learned from the source tasks. Depending on the
knowledge to be transferred, these methods in RL can be roughly divided into classes including sampled transitions [32,
33], learned policies or value networks [34, 35, 36, 37], features [38, 39, 40], and skills [41, 42]. Tirinzoni et al. apply
importance sampling (IS) to transfer samples from a set of source tasks [32], while multiple IS that has a lower variance is
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applied in [33]. Our method implements transition transfer by doubly robust methods, which can be proved to have a lower
variance than these IS methods.

A.2. Decomposition of MSE in Eq. (4) in the main text
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A.3. Doubly Robust Property for Direct Use of Doubly Robust Estimator
We show the doubly robust property of the DR estimator for value function in Eq. (5) in the main text, as follows.

1) In the first case when the importance weight p, and p, are correctly estimated and given the state s, at time step ¢, taking
the expectation on the RHS of Eq. (5) in the main text w.r.t. a; and s;4;, we have
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where the last equality follows Vi(st, 2j) = Ea,~mg(-|s,,2,) [Qo(5t, at, 2;)] and reduces to the Bellman equation, which is
the correct value for state s;’s value in the target task j.

2) In the other case when Qg (s, a, z;) is a correct estimate of the action-state value, namely,

Q(st, a1, 2) = 7(5¢, ar) + VEp; (ses1s6,ae) [Vi?R(StH)] ,

which makes the expectation of the second term in Eq. (5) in the main text become zero, then the remaining non-zero term
Vi(s¢, 2;) is a proper estimate for the state value since recursively expending Vi? R will result in the definition of Q-value
function.

A.4. Variance of biased DR estimator using p,

We firstly derive the variance of biased DR estimator VDR using an arbitrary importance weight pq. Let § = E, [VD R(sy) —
V9 (s;)] denote the difference between V;2 and V7, hence the bias of V;2* by using 4 can be denoted as Bias(p) = |0].
Then, the variance Var; [V;7F(s)] can be obtained by letting pg = pa. leen a certain state s;, namely, the distribution is
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conditioned on s;, we thus have
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We eliminate Var; [Vj (st)] in Eq. (A.1) since Vary [Vj (st)] = 0 when s; is given. The equivalence from Eq. (A.2)
to Eq. (A.3) uses the fact that Q7 (s;, a;) = R(sy,ar) + YEi11[V7(8141)]. The equivalence from Eq. (A.3) to Eq. (A.4)
follows the extension of the square of sum of the four terms, namely, the square of the first parentheses in Eq. (A.3) and
the following facts given s; and a;: 1) r(s¢, a:) — R(st, a¢) and Vi?R(stH) — Ey11[V7(s¢11)] are random variables with
zero mean and independent of each others, since R(s;,a;) and E;1[V7(s;41)] are the mean of r(s;, a;) and f/l? B(si11)
respectively ; 2) (s, ar) — R(s¢, a¢) and f/i?R(sH_l) are independent; 3) (—p% (t)A(sy, ar) + Vo(st, zj)) is constant.
The equivalence from Eq. (A.5) to Eq. (A.6) follows:
Eu [(= (DA (s1,00) + V(s 2) + p (Y (VE R (s041) = Buaa [V (s140)]) s
ij ¥, ij DR j 2
=Eu, [E: [(= o2 (0A(s1,a0) + Volst, 23) + o (1T (s041) = Eeia [V (se0)]) s ]|
=E,, [Va” {( — P (A (se, ar) + Va(se, ) + pZ (O)V(ViE R (s141) — Beqa [V (5041)))) It at”
- _ - - . 2
+ Ko, [E (= P0G @) + Valse, 25) + o2 (OUTE(s011) = Eesa [V (s040)])) st e } (A8)
—Ea, [(07 (07)2Var, (VR (sen)lsesan | + Ba, [(= 02 (0A(st,a0) + Vs, )] (A.9)

where the last step is obtained from the equivalence of the variance and the expectation in Eq. (A.8):

Varg [( — i () A(st,a0) + Vo(se, 25) + p?(t)7<‘7i?R(5t+1) —Eip1 [V (5041)])) e, at:|
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|

=Ea, | (= p (t)A(se, ar) + Vo(se, zj))ﬂ . // use fact 1) above

The equivalence from Eq. (A.6) to Eq. (A.7) is from the fact that Vp(s;, z;) is constant given s;. Given that Qg = 0,
Vi? R (s4) will degrade to the variance of IS estimator and its variance can be written as follows:

Var VS (s0] = Var, [0 (6)Qu(se, an)lse] + By (03 (6)2Vare [r(si a0)lac] [s:] + B [ (07 (057 (07755 (s041)

P (OQn(st,a0) + Vs, %) = o2 (OVEes1 [V (511))) ]| = Ea, (= o2 (D@ (s1,00) + Vals1, )
(A.10)

We further denote

V(o) = E¢ [(p% ())*Var[r;(se, ar)|a]

st] + Var, [p;j (t)A(se, at)

ij 2
st} —E, {( — P () A(se, ar) + Vo(se, z5)) } ,
which corresponds to the first, the second, and the third terms in Eq. (A.7).

A.5. Proof of Theorem 3.1

In this section, we derive the variance of unbiased DR estimator in Eq. (6) as shown in Theorem 3.1. Letting py = pg4 in Eq.
(A.7), we have 6 = 0 and the variance can be obtained as:

Var (VPR (s = )] =Vare [p () A(si, alsi] + B (08 (0)*Var [r(se,an)ad Isi] + Ee [ (0 (055 (007727 (s111)

—p% (t)A(st, ar) + Vo(se, zj) — Pfrj(t)VEtH[Vj(StH)])Q} — Eq, {( — pd (1) A(st, ar) + Vo(st, Zj))z] .
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A.6. Upper bound for MSE of biased DR estimator V7

Bias(p] ) =

Ea,~om, E [f/iJDR(st = s)] —Vi(s; = s)

St+1~Pi

B Bavyimps [107 (02 (OVE R (5000) = o OV (s141))] | (A1)

where the second equality is obtained by the unbiasedness of VZ? £ to V7. Following the decomposition in Section A.2,
MSE of the biased DR estimator VV° can be written as:

MSE(VER (s, = 5)) = Vary [0 (0A(se, an)lsi] + By [(p (0)2Var, [r(si, a0l [si] + Ex | (o5 (057 (0775 (s111)
P (DA (51, 00) + Valse, 25) = p2 (OB [V (5041)]) 7] = Ba, [(= 95 (A G50, a0) + Voo, %)) "] = 2BV (51)EL),
where the last term can be bounded as
—2R, VI (s)E[5] < (B,VI(s,))? + (B[6])? = (B V(s1))* + (Bias(p))?,

with the bias bounded according to the Jesen’s inequality

oo Al ij A1 (T ij 2
Blas(pdj) < \/Eat"'ﬂ'iEStJrlei [’Yp‘ﬂ'j (t) (pdj (t)‘/i?R(St-‘rl) - pd] (t)‘/z?R(st-‘rl))] .
Hence, we can obtain an upper bound for the MSE of VP (s, = s):

MSE(VP (s, = 8)) < Vary [0 () A(se,a0)|si] + Bo [(0 (0)2Vara [r(si, alad] si] +Bo | (o (057 (0772 R (s041)
P (DA (e, ae) + Vi(st, 23) = pZ (DVEa [V (s100)))° ]| = Ba, (= p2 (A (st,00) + Valse, 21))
+ Baprom By s [10% (0 (0] (V5 (501) = 0] OV P (s00)]" + (B VI (5))". (A1)

Note that V(p, ) also denote the terms that contains p, but without p4 in Eq. (A.12).

A.7. Reduction of MSE by optimizing upper bound w.r.t. o4

Optimization of the upper bound in Eq. (A.12) w.r.t. 54 can be formulated as:
) i TP y 9 y i ,
min B [yl () (pg (0)ViE T (50) — pid (0)Vi5 T (50)) ]+ KPWJ (O (pd (OViF T (s641) = ey [V (5641)])
g _ 2
— P2 (OA(star) + Valsesz)) .

This optimization problem is convex w.r.t. p4. By letting the first-order derivative of the objective function be zero, we have:

2B, [(70% ()2 ViE E (s141) (67 () VE R (s041) — p (1)ViEE (5041))]
+ 28, 10 (V2R (s110) (02 (071 (5 (VPR (5041) = B[V (s040)]) = o2 (DA (s, ) + Vs, 7)) | =0,

By eliminating the constant of 2 and merging the two expectations on the left-hand side into one expectation, we have:

Ee |70 (Vi (se41) - (27/)?@)/3? (Vi7" (se41)

— 1P ()pF (VPR (5141) — 702 () Eps1 [V (s141)] — o2 () A(51, a) + Va(se, Zj)ﬂ -
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Note that inside expectation on the left-hand side is the multiplication of yp () V27 (

b S¢+1) with a summation enclosed by
the parentheses, which can be rewritten as:

(%’Pi (A5 OVEF(s141) = 1o (0] (ViR (se41) = 102 (DB 1 [V (s141)] — 2 (DA (51, 1) + VG(SMZJ'))

=vpi (t) (2%]( VWP (s041) — p $)ViE R (s441) — Et+1[Vj(5t+1)}> — P () A(se, ar) + Vo(se, 25).

On the right-hand side of this equation, the first three terms are closely correlated to yp? (t)f/z? B(s441), while the last two
terms are loosely correlated to it. Furthermore, given that p 5 ./ (t) is inside an interval upper-bounded by its true value pfij (1),
the value of A”( )V;?R(stﬂ) is comparable to those of p ( )VUDR(stﬂ) and E; 4 [V7 (§t+1)]. Thus, the first three terms
will be compensated by each other, while value of the last two terms —p*/ (£)A(s¢, at) + Vp(s¢, z;) will dominate, which is
loosely correlated to v (t)V;PR(sy41).

Since yp% (t)f/z/]j B(s441) cannot dominate the value in the parentheses, we make assumption that it is loosely correlated to
the term in the parentheses and have

28, [ (00 (V5" (s00)] = B0 (00 OV (1)) + Ba (= 0¥ (07Besa [V (s010)] = 0 (08 (st 1) + Vo0, 2)) | =0,
2, (ol (8)5F ()Vi P (s141)] = By ssinmpy [VViF T (5041)]| = VBapmm, Beg1 [V (5041)] + V7 (s1) = 0,
2]EatN7rjE9t+1sz [’VV (St-‘rl)] ijij( ) + Eat,N‘fl'j [T(Sta at)] - rYEat,Nﬂ'jEst+le7, [Vj(st-‘rl)] =0.

Hence, we can get the optimal dynamics importance weight, as follows:

P10 = (Wi (sen) = ri(sa0) [ (29V) (s0) )

A.8. Proof of optimal dynamic weight that minimizing the variance

The variance can be rewritten as

Vare [V97s0)] =B (#2057 (07 (5012) = Eesa [V (se0))) = o201, 00) + Voo ) |
= E[Vi7T])? + (V(s0) + V(pn), (A.13)

—rj(st,a)

where the second term is always negative and will be zero under p;j = TR (31)’
i (St41

which is nearly zero especially under

the sparse-reward setting. Since the rest terms contain no [)zlj (t), we consider the optimization of the first term in Eq. (A.13)

W.IL.L. ﬁff (t), which is also the third term in Eq. (6) of Theorem 3.1 in the main text. We formulate the following optimization

problem

. . . _ 2
min | (07 (07 (07 (075 se1) = EualVI (ses0)]) = s 0AGwa0) + Valswoz)) |- A1)
Pd

whose first-order derivative can be given as
2B, (102 (V2 (s110) (0 (071 (55 (VVF R (5041) = Busa [V (s140)]) = 0 (DA (s, ar) + Valsi, 27) ) | = 0.

Under the assumption that v () V;P % (

st+1) 18 loosely correlated to the term in the parentheses, we have:
Ee[ (07 07155 (VR (s041) = B[V (s40)]) = o7 (DA, ) + Valse, 25) ) | =0,
Ed[ 0 (099 (V5 R (5041) = 0 (VB [V (s041)]] + Vilsi) = 0,

B [ (00 (072 (s5011) = pi3 (OB sa [V (s04)] + Vi (0)] = 0.
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Hence, we can get the optimal importance weight as:

Py () = (2 (VB2 [V (se51)] = V7 (s0)) / (702 () V.2 P (5041))
=(VBe1 [V (s001)] = V7 (s0) /0 () | (V7 (5041)) -

] (Sfaaf)

We now review the variance in Eq. (A.13). When the increase of p/ (¢) results in that py°"(t) > PR (ss1)’
P

continuously

—rj(st,at)

reducing ﬁld (t) from prer(¢) to PRt

will enlarge the variance, since the first and the second terms in Eq. (A.13) will

both increase. And reducing p; I to near puer (t) will reduce the variance.

A.9. Proof of the upper bound for error of MSE

Following the decomposition of MSE, we have

MSE(VPE 59%) = Bias(pi™)? + Var (VPR 577,
MSE(VPE 519 = Bias(p)? + Var(VPE p7).

Computing the bias of DR estimator using p}; and py*" separately and letting € = Eq,r,Es,  ~p, [nyj (5t+1)} -
Eg,nm; Esyyymop; [nyJ (5t+1)], we have

Bias(5]") = [Bagrr,Bocimp [02 () (V7 (s041) = 15(50,00)) /2 = 30 (09 OV (5041) |
Eaynm,Esppimp: [TV (541)] /2 = Bayor, [15(56,06) | /2 = Bayor, By, [YV? (8t+1)]‘
= B, B [V (5140)] /2 + Bayrm, [r5(s1,00)] /2 = VI (s1)]
Eqor, E [

aemm; Bspsrmps [V (5141)] /2 + Bayror, [15(525 a2)] /2 = V7 (s¢)

e Vis)
2

€ , ,
=3 + Eqynom; Esy 1 mop, I:’YVJ(St+1):| [2+Eanr, [rj(st, at)] /2 =V (s)

b

Bias(py*") =

Ea,mm By s mp, [0 (VB2 [V (s041)] — V7 (5¢) — wiﬁ(t)pzj(t)%?R(sM)]\

atNﬂ'j]ESt+1~Pi [,yvj (StJrl)} - Eat'\'ﬂ'j]ESt+1~Pj [ij (StJrl)} - Vj(st)‘ = ‘6 - Vj(st)"

Hence, we have

2

, 1 _
’Bzas (p7*)? Bzas(w‘")Q‘ = Z €— Vj(st =qle- VIi(se)|

‘Bms (p7*)? fBias(pfijf‘

and

€— Vj<st) EatNTFjEStJrlN;Di [ij(StJrl)] - EatNﬂ'jESt+1~pj [’yvj(sﬂrl)] - Vj(st)

1 ‘
Eg,mm;Esyy1np; [ (U - 2) % (5t+1)} — Eaymom; [15 (50 a1)] ‘
pd (1)
For the difference of variance, we have an upper bound as:
‘V(ZT’t VDR A”*) VaTt(VDRvﬁZdJ)’

< max (‘Vart(f/DR, pAff*) Var, (VPE, pser)|,

=max ( [(AA”*()—QB)ﬂ,

(VPR 5i7*) = Var (VPR o))

)

(VPR 5f) = Var( VPR, )
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Table A.1. Values set for the constant pair (A, B) to generate random environment parameters.

ALGORITHM BoDY MASs  BODY INERTIA  JOINT DAMPING  FRICTION
POINT-ROBOT-PARAMS-SPARSE (1.5,1.0) (1.5,1.0) (1.3,1.0) (1.5,1.0)
ANT-PARAMS-SPARSE (1.5,3.0) (1.5,3.0) (1.3,3.0) (1.5,3.0)
HUMANOID-PARAMS-SPARSE (1.5,3.0) (1.5,3.0) (1.3,3.0) (1.5,3.0)
HOPPER-PARAMS (1.5,3.0) (1.5,3.0) (1.3,3.0) (1.5,3.0)
WALKER-2D-PARAMS (1.5,3.0) (1.5,3.0) (1.3,3.0) (1.5,3.0)
POINT-ROBOT-PARAMS (1.5,1.0) (1.5,1.0) (1.3,1.0) (1.5,1.0)
SAWYER-PUSH-PARAMS-SPARSE  (1.5,2.5) (1.5,2.5) (1.3,2.5) (1.5,2.5)

Let A = ypi (t)ViPT (s141) and B = —p¥ (t)Eeq1 [V (s141)] — pi (£) Ay, ar) + Vo(se, 2;). Hence, we have the upper
bound for the MSE difference between biased DR estimators using 5} and pg as

(MSE(WVPR, 5i7) ~ MSE(V2R, 5)

_‘bzas ”*) + Vart(VDR7ﬁZJ*) - bias(ﬁfij)Q —Var (VPR ﬁilj)‘

<|bias(py")? - biaé’(ﬁgj)Ql + 'Vart(VDR, i) — VaTt(VDRvﬁZJ)’
3 1 ; 2
SZ‘anmEuspj [ e el d (5t+1)} = Eaynr, [Tj(Stvat)]‘
pd (t)

+ max (Et[(A”J*( ) — 23)2},‘1/@” (VPR 5i%) — Vary (VPR pid)

)

B. Experimental Setup
B.1. Hyper-Parameters and Implementation Details

In our experiments, we utilize the same hyper-parameters for meta-training as in the open-sourced code of the baseline
meta-RL approach, PEARL [4]. For our proposed DRT, we build up networks of predicting state transition for each task that
has two layers with 500 units at each layer. The learning rate for the prediction network is 1e~3. We update the lower bound
/351 at the end of each training epoch. Since negative transfer brought by reusing samples that may be inappropriately chosen
by strategy Sy could result in a significantly lower target value as computed by DRaE for training, in practice, we take the
maximum state value V( ) estimated by the value network Vp and our DRaE VDR o further alleviate this issue.

B.2. Generation of Varying Dynamics

The randomization of dynamics on all the environments in our experiments is implemented by generating different
environment parameters through:
param;; = B x init_params, (A.15)

where §; = A%, x; ~ Uniform(—B,B), A and B are the constants which control the generation of 3; for each
environment parameter of task j, and init_param; is the initial value of the i-th environment parameter. Overall, these
randomly sampled environment parameters include the body mass, body inertia, joint damping, and body component’s
friction, for which the values of constant pair (A, B) are listed in Table A.1. With the initial values init_param; loaded
directly from the original file of “mujoco_py”, the randomized environment parameter param;; is then obtained and set on
the MuJoCo simulation engine to generate various environment dynamics.

B.3. Reward Functions

For the dense-reward environments in Section 5.2, we use the same implementation as in PEARL’s open-sourced code. For
the sparse-reward environments with varying rewards and dynamics in Section 5.1, we modify their reward functions as:

—dist(robot, goal) + C if dist(robot, goal) < D,

0 otherwise. (A.16)

reward = {
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In the Point-Robot-Params-Sparse environment, we generate the goals in a cubic space, where we uniformly sample
the goal coordinates in (0.2,0.5), (—0.4,0.4), and (0.5,1.5), and set C' = 1.0 and D = 0.2. In the Ant-Params-Sparse
environment, we uniformly generate the goals on a semi-circle with radius 2.0, and set C' = 4.0 and D = 0.8. In the
Humanoid-Params-Sparse environment, we uniformly generate the goals on a semi-circle with radius 3.0, and set C' = 3
and D = 0.8. For all the environments, we keep the additional proprioceptive reward signal, which are control cost, contact
cost, and survive bonus.
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