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Doubly Robust Augmented Transfer for Meta-Reinforcement Learning

A. Appendix
A.1. Related Work

Meta-Reinforcement Learning (Meta-RL). With the incorporation of meta-learning, meta-RL enables a fast adaptation in
RL problems through the idea of “learning to learn”. During meta-training, meta-RL learns an inductive bias from a set of
relative training tasks for quickly adapting to some new tasks, given only a small amount of samples at the meta-test time.
Current meta-RL methods can be classified in to two categories. One is the gradient-based method, which attempts to use a
few number of gradient updates to implement the adaptation on a new task, such as by using policy gradient methods to
directly update the policy parameters [12, 17, 18, 19]. The other is the context-based method, which builds up an inference
network to infer task-specific latent context variables from the input-sampled experience (i.e., context) of the training tasks.
A policy with both state and latent variable as input is also trained to maximize rewards on these training tasks, hence the
adaptation is conducted by the latent context inference first, followed by the policy adjustment with the inferred latent
context as input. These methods mainly differ in their ways of inference [3, 4, 20]. However, sparse reward remains a
challenge in meta-RL, where the sparse reward signals provide only scarce task-relevant information and make meta-training
and adaptation extremely difficult.

Sparse-Reward Meta-RL. To tackle the sparse reward problem in meta-RL, two main research lines have been developed
recently. One directly generates informative samples by exploration [21, 22, 23] or by directly using the demonstration
datasets [24]. For instance, training a separate exploration policy by maximizing the information gain or intrinsic rewards to
collect samples. The other line follows the technique of relabeling that enables sample reuse across tasks, i.e., learning a task
at hand by appropriately reusing the samples generated from other tasks. Compared with sample exploration, sample reuse
has several advantages, such as no extra exploration, high sample efficiency, and low sample risk. Following the direction of
relabeling, hindsight experience replay (HER) [5] has been studied as one typical method, which is originally designed for
the multi-goal setting and relabels a trajectory with a lower reward under its original goal to a goal that has higher reward.
Packer et al. apply hindsight relabeling for meta-RL, and propose hindsight task relabeling (HTR) to relabel the trajectories
sampled from one task to a task which can be accomplished in these trajectories with higher rewards [14]. However, like
its application on goal-conditioned tasks, this method can only cope with training tasks with different reward functions
that correspond to the goals. Taking a step further than hindsight relabelling, Wan et al. introduce additionally foresight
relabeling to meta-RL, and propose to relabel trajectories to new tasks with higher post-adaptation rewards [15].

Doubly Robust Estimator. Doubly robust (DR) is first presented in statistics [25, 26] and then brought into RL by Jiang et
al. for policy evaluation [7], which combines the direct learning of dynamics models and importance sampling to provide an
unbiased and lower-variance value estimate. The variance of DR in value evaluation can be further reduced by applying
lower-variance IS estimator [8, 27] and through learning an more accurate dynamics model [28]. For policy learning in RL,
Huang et al. derive a general form of policy gradient from DR value estimator [29], whereas a DR off-policy actor-critic
method is developed by Xu et al. [30]. Kallus et al. propose the doubly robust method to find a robust policy that can
achieve the near-optimum in the worst case under environment distribution shifts [31]. Similar to our work which aims at
optimizing MSE of the DR estimator, Su et al. derive a shrinkaged importance weight of policy for bandit problem under
the assumption of known importance weights, while we do not have access to the true importance weight of dynamics.
Different from these works, we apply doubly robust (DR) to transfer the experience collected across a distribution of tasks,
for accelerating the value function learning under a challenging sparse-reward meta-RL setting.

Transfer Learning for Meta-RL. Our problem setting partly falls into the area of transfer in RL, which aims to accelerate
the learning process in a new target task by transferring knowledge learned from the source tasks. Depending on the
knowledge to be transferred, these methods in RL can be roughly divided into classes including sampled transitions [32,
33], learned policies or value networks [34, 35, 36, 37], features [38, 39, 40], and skills [41, 42]. Tirinzoni et al. apply
importance sampling (IS) to transfer samples from a set of source tasks [32], while multiple IS that has a lower variance is
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DRT: Doubly Robust Augmented Transfer for Meta-RL

applied in [33]. Our method implements transition transfer by doubly robust methods, which can be proved to have a lower
variance than these IS methods.

A.2. Decomposition of MSE in Eq. (4) in the main text

MSE(V̂ ) =Eτi|t:T

[(
Vj(st)− V̂j(st)

)2 ∣∣st = s

]
=Eτi|t:T

[
(Vj(st))

2 − 2Vj(st)V̂j(st) + (V̂j(st))
2
∣∣st]

=Eτi|t:T
[
(Vj(st))

2 − 2Vj(st)V̂j(st) + (Eτi|t:T
[
V̂j(st)

∣∣st)2∣∣st]+ Eτi|t:T
[
(Vj(st))

2|st
]
−
(
Eτi|t:T

[
V̂j(st)

∣∣st])2
=
(
V j(st)− Eτi|t:T

[
V̂ j(st)

∣∣st])2 + Var(V̂ j(st)) = Bias(V̂ )2 + Var(V̂ j(st))

A.3. Doubly Robust Property for Direct Use of Doubly Robust Estimator

We show the doubly robust property of the DR estimator for value function in Eq. (5) in the main text, as follows.

1) In the first case when the importance weight ρπ and ρd are correctly estimated and given the state st at time step t, taking
the expectation on the RHS of Eq. (5) in the main text w.r.t. at and st+1, we have

E πθ(at|st,zi)
pi(st+1|st,at)

[
Vθ(st, zj) + ρijπ (t)

[
rj(st, at) + ρijd (t+ 1)γV DR

ij (st+1)−Qθ(s, a, zj)
]]

=Vθ(st, zj) + E πθ(at|st,zi)
pi(st+1|st,at)

[
ρijπ (t)

(
rj(st, at) + ρijd (t+ 1)γV DR

ij (st+1)−Qθ(s, a, zj)
)]

=Vθ(st, zj) + E πθ(at|st,zj)
pj(st+1|st,at)

[
rj(st, at) + γV DR

ij (st+1)−Qθ(st, at, zj)
]

=Eπθ(at|st,zj)
[
rj(st, at) + γEpj(st+1|st,at)V

DR
ij (st+1)

]
,

where the last equality follows Vθ(st, zj) = Eat∼πθ(·|st,zj) [Qθ(st, at, zj)] and reduces to the Bellman equation, which is
the correct value for state st’s value in the target task j.

2) In the other case when Qθ(st, at, zj) is a correct estimate of the action-state value, namely,

Q̂(st, at, zj) = rj(st, at) + γEpj(st+1|st,at)

[
V DR
ij (st+1)

]
,

which makes the expectation of the second term in Eq. (5) in the main text become zero, then the remaining non-zero term
Vθ(st, zj) is a proper estimate for the state value since recursively expending V DR

ij will result in the definition of Q-value
function.

A.4. Variance of biased DR estimator using ρ̂d

We firstly derive the variance of biased DR estimator Ṽ DR using an arbitrary importance weight ρ̂d. Let δ = Et[Ṽ
DR
ij (st)−

V j(st)] denote the difference between Ṽ DR
ij and V j , hence the bias of Ṽ DR

ij by using ρ̂d can be denoted as Bias(ρ̂) = |δ|.
Then, the variance V art

[
V DR
ij (st)

]
can be obtained by letting ρ̂d = ρd. Given a certain state st, namely, the distribution is
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conditioned on st, we thus have

V art

[
Ṽ DR
ij (st)

]
=Et[Ṽ

DR
ij (st)

2]− (Et[Ṽ
DR
ij (st)])

2

=Et[Ṽ
DR
ij (st)

2]− (Et[V
j(st)] + Et[δ])

2

=Et[Ṽ
DR
ij (st)

2]− (Et[V
j(st)])

2 − 2EtV
j(st)E[δ]−

(
E[δ]

)2
=Et

[(
V̄θ(st, zj) + ρijπ (t)ρ̂

ij
d (t)γṼ

DR
ij (st+1) + ρijπ (t)(r(st, at)− Q̄θ(st, at, zj))

)2 − V j(st)
2
]

+ V art
[
V j(st)

]
− 2EtV

j(st)E[δ]−
(
E[δ]

)2
=Et

[(
V̄θ(st, zj) + ρijπ (t)γṼ

DR
ij (st+1) + ρijπ (t)(r(st, at)− Q̄θ(st, at, zj))

+ ρijπ (t)(ρ̂
ij
d (t)− 1)γṼ DR

ij (st+1)
)2 − V j(st)

2
]
− 2EtV

j(st)E[δ]−
(
E[δ]

)2
(A.1)

=Et

[(
ρijπ (t)Q

j(st, at)− ρijπ (t)Q̄θ(st, at, zj) + V̄θ(st, zj) + ρijπ (t)(r(st, at) + γṼ DR
ij (st+1)−Qj(st, at))

+ρijπ (t)(ρ̂
ij
d (t)− 1)γṼ DR

ij (st+1)
)2

− V j(st)
2

]
− 2EtV

j(st)E[δ]−
(
E[δ]

)2
(A.2)

=Et

[(
(−ρijπ (t)∆(st, at) + V̄θ(st, zj)) + ρijπ (t)(r(st, at)−R(st, at)) + ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])

+ρijπ (t)(ρ̂
ij
d (t)− 1)γṼ DR

ij (st+1)
)2

− V j(st)
2

]
− 2EtV

j(st)E[δ]−
(
E[δ]

)2
(A.3)

=Et

[
(−ρijπ (t)∆(st, at) + V̄θ(st, zj))

2 − V j(st)
2
]
+ Et

[
(ρijπ (t)(r(st, at)−R(st, at))

2
]

+ Et

[(
ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])
)2]

+ Et

[(
ρijπ (t)

(
ρ̂ijd (t)− 1

)
γṼ DR

ij (st+1)
)2]

+ 2Et

[
(−ρijπ (t)∆(st, at) + V̄θ(st, zj))(ρ

ij
π (t)

(
ρ̂ijd (t)− 1

)
γṼ DR

ij (st+1))
]

+ 2Et

[
ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])ρ
ij
π (t)

(
ρ̂ijd (t)− 1

)
γṼ DR

ij (st+1)
]
− 2EtV

j(st)E[δ]−
(
E[δ]

)2
(A.4)

=V art
[
−ρijπ (t)∆(st, at) + V̄θ(st, zj)|st

]
+ Et

[
(ρijπ (t))

2V art [r(st, at)|at] |st
]

+ Et

[
(ρijπ (t))

2γ2V art+1(Ṽ
DR
ij (st+1)|at)|st

]
+ Et

[(
ρijπ (t)

(
ρ̂ijd (t)− 1

)
γṼ DR

ij (st+1)
)2]

+ 2Et

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj) + ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])
)(
ρijπ (t)(ρ̂

ij
d (t)− 1)γṼ DR

ij (st+1)
)]

+ Eat

[
(ρijπ (t)γ)

2V art+1

[
(Ṽ DR

ij (st+1))|st, at
]]

+ Eat

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]
− Eat

[
(ρijπ (t)γ)

2V art+1

[
(Ṽ DR

ij (st+1))|st, at
]]

− Eat

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]− 2EtV
j(st)E[δ]−

(
E[δ]

)2
(A.5)

=V art
[
−ρijπ (t)∆(st, at) + V̄θ(st, zj)|st

]
+ Et

[
(ρijπ (t))

2V art [r(st, at)|at] |st
]

+ Et

[
(ρijπ (t))

2γ2V art+1(Ṽ
DR
ij (st+1)|at)|st

]
+ Et

[(
ρijπ (t)

(
ρ̂ijd (t)− 1

)
γṼ DR

ij (st+1)

−ρijπ (t)∆(st, at) + V̄θ(st, zj) + ρijπ (t)γ(Ṽ
DR
ij (st+1)− Et+1[V

j(st+1)])
)2]

− Eat

[
(ρijπ (t)γ)

2V art+1

[
(Ṽ DR

ij (st+1))|st, at
]]

− Eat

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]− 2EtV
j(st)E[δ]−

(
E[δ]

)2
(A.6)

=V art
[
ρijπ (t)∆(st, at)|st

]
+ Et

[
(ρijπ (t))

2V art [r(st, at)|at] |st
]
+ Et

[(
ρijπ (t)ρ̂

ij
d (t)γṼ

DR
ij (st+1)

−ρijπ (t)∆(st, at) + V̄θ(st, zj)− ρijπ (t)γEt+1[V
j(st+1)]

)2]− Eat

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]− 2EtV
j(st)E[δ]−

(
E[δ]

)2
.

(A.7)
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We eliminate V art
[
V j(st)

]
in Eq. (A.1) since V art

[
V j(st)

]
= 0 when st is given. The equivalence from Eq. (A.2)

to Eq. (A.3) uses the fact that Qj(st, at) = R(st, at) + γEt+1[V
j(st+1)]. The equivalence from Eq. (A.3) to Eq. (A.4)

follows the extension of the square of sum of the four terms, namely, the square of the first parentheses in Eq. (A.3) and
the following facts given st and at: 1) r(st, at)−R(st, at) and Ṽ DR

ij (st+1)− Et+1[V
j(st+1)] are random variables with

zero mean and independent of each others, since R(st, at) and Et+1[V
j(st+1)] are the mean of r(st, at) and Ṽ DR

ij (st+1)

respectively ; 2) r(st, at)−R(st, at) and Ṽ DR
ij (st+1) are independent; 3) (−ρijπ (t)∆(st, at) + V̄θ(st, zj)) is constant.

The equivalence from Eq. (A.5) to Eq. (A.6) follows:

Et

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj) + ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])
)2|st]

=Eat

[
Et

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj) + ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])
)2|st, at]]

=Eat

[
V art

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj) + ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])
)
|st, at

]]
+ Eat

[
Et

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj) + ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])
)
|st, at

]2]
(A.8)

=Eat

[
(ρijπ (t)γ)

2V art

[
(Ṽ DR

ij (st+1))|st, at
]]

+ Eat

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]
, (A.9)

where the last step is obtained from the equivalence of the variance and the expectation in Eq. (A.8):

V art

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj) + ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])
)
|st, at

]
=V art

[
ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])|st, at
]

=(ρijπ (t)γ)
2V art

[
(Ṽ DR

ij (st+1))|st, at
]
,

Eat

[
Et

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj) + ρijπ (t)γ(Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)])
)
|st, at

]2]
=Eat

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]
. // use fact 1) above

The equivalence from Eq. (A.6) to Eq. (A.7) is from the fact that V̄θ(st, zj) is constant given st. Given that Qθ = 0,
Ṽ DR
ij (st) will degrade to the variance of IS estimator and its variance can be written as follows:

V art[Ṽ
IS
ij (st)] = V art

[
ρijπ (t)Qπ(st, at)|st

]
+ Et

[
(ρijπ (t))

2V art [r(st, at)|at] |st
]
+ Et

[(
ρijπ (t)ρ̂

ij
d (t)γṼ

IS
ij (st+1)

−ρijπ (t)Qπ(st, at) + V̄θ(st, zj)− ρijπ (t)γEt+1[V
j(st+1)]

)2]− Eat

[(
− ρijπ (t)Qπ(st, at) + V̄θ(st, zj)

)2]
.

(A.10)

We further denote

V(ρπ) = Et

[
(ρijπ (t))

2V art
[
rj(st, at)|at

] ∣∣∣st]+ V art

[
ρijπ (t)∆(st, at)

∣∣∣st]− Et

[(
− ρijπ (t)∆(st, at) + Vθ(st, zj)

)2]
,

which corresponds to the first, the second, and the third terms in Eq. (A.7).

A.5. Proof of Theorem 3.1

In this section, we derive the variance of unbiased DR estimator in Eq. (6) as shown in Theorem 3.1. Letting ρ̂d = ρd in Eq.
(A.7), we have δ = 0 and the variance can be obtained as:

V art[V
DR
ij (st = s)] =V art

[
ρijπ (t)∆(st, at)|st

]
+ Et

[
(ρijπ (t))

2V art [r(st, at)|at] |st
]
+ Et

[(
ρijπ (t)ρ̂

ij
d (t)γṼ

DR
ij (st+1)

−ρijπ (t)∆(st, at) + V̄θ(st, zj)− ρijπ (t)γEt+1[V
j(st+1)]

)2]− Eat

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]
.
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A.6. Upper bound for MSE of biased DR estimator Ṽ DR

Bias(ρ̂ijd ) =
∣∣∣Eat∼πi

Est+1∼pi

[
Ṽ DR
ij (st = s)

]
− V j(st = s)

∣∣∣
=
∣∣∣Eat∼πi

Est+1∼pi

[
γρijπ (t)

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− ρijd (t)V

DR
ij (st+1)

)]∣∣∣, (A.11)

where the second equality is obtained by the unbiasedness of V DR
ij to V j . Following the decomposition in Section A.2,

MSE of the biased DR estimator Ṽ DR can be written as:

MSE(Ṽ DR
ij (st = s)) = V art

[
ρijπ (t)∆(st, at)|st

]
+ Et

[
(ρijπ (t))

2V art [r(st, at)|at] |st
]
+ Et

[(
ρijπ (t)ρ̂

ij
d (t)γṼ

DR
ij (st+1)

−ρijπ (t)∆(st, at) + V̄θ(st, zj)− ρijπ (t)γEt+1[V
j(st+1)]

)2]− Eat

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]− 2EtV
j(st)E[δ],

where the last term can be bounded as

−2EtV
j(st)E[δ] ≤

(
EtV

j(st)
)2

+
(
E[δ]

)2
=
(
EtV

j(st)
)2

+
(
Bias(ρ̂ijd )

)2
,

with the bias bounded according to the Jesen’s inequality

Bias(ρ̂ijd ) ≤
√
Eat∼πi

Est+1∼pi

[
γρijπ (t)

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− ρijd (t)V

DR
ij (st+1)

)]2
.

Hence, we can obtain an upper bound for the MSE of Ṽ DR
ij (st = s):

MSE(Ṽ DR
ij (st = s)) ≤ V art

[
ρijπ (t)∆(st, at)|st

]
+ Et

[
(ρijπ (t))

2V art [r(st, at)|at] |st
]
+ Et

[(
ρijπ (t)ρ̂

ij
d (t)γṼ

DR
ij (st+1)

−ρijπ (t)∆(st, at) + V̄θ(st, zj)− ρijπ (t)γEt+1[V
j(st+1)]

)2]− Eat

[(
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]
+ Eat∼πiEst+1∼pi

[
γρijπ (t)

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− ρijd (t)V

DR
ij (st+1)

)]2
+
(
EtV

j(st)
)2
. (A.12)

Note that V(ρπ) also denote the terms that contains ρπ but without ρ̂d in Eq. (A.12).

A.7. Reduction of MSE by optimizing upper bound w.r.t. ρ̂d

Optimization of the upper bound in Eq. (A.12) w.r.t. ρ̂d can be formulated as:

min
ρ̂d

Et

[
γρijπ (t)

(
ρ̂ijd (t)Ṽ

DR
ij (st)− ρijd (t)V

DR
ij (st)

)]2
+Et

[(
ρijπ (t)γ

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)]
)

− ρijπ (t)∆(st, at) + V̄θ(st, zj)
)2]

.

This optimization problem is convex w.r.t. ρ̂d. By letting the first-order derivative of the objective function be zero, we have:

2Et

[
(γρijπ (t))

2Ṽ DR
ij (st+1)

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− ρijd (t)V

DR
ij (st+1)

)]
+ 2Et

[
γρijπ (t)Ṽ

DR
ij (st+1)

(
ρijπ (t)γ

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)]
)
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)]
= 0.

By eliminating the constant of 2 and merging the two expectations on the left-hand side into one expectation, we have:

Et

[
γρijπ (t)Ṽ

DR
ij (st+1) ·

(
2γρijπ (t)ρ̂

ij
d (t)Ṽ

DR
ij (st+1)

− γρijπ (t)ρ
ij
d (t)V

DR
ij (st+1)− γρijπ (t)Et+1[V

j(st+1)]− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)]
= 0.
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Note that inside expectation on the left-hand side is the multiplication of γρijπ (t)Ṽ
DR
ij (st+1) with a summation enclosed by

the parentheses, which can be rewritten as:(
2γρijπ (t)ρ̂

ij
d (t)Ṽ

DR
ij (st+1)− γρijπ (t)ρ

ij
d (t)V

DR
ij (st+1)− γρijπ (t)Et+1[V

j(st+1)]− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)

=γρijπ (t)

(
2ρ̂ijd (t)Ṽ

DR
ij (st+1)− ρijd (t)V

DR
ij (st+1)− Et+1[V

j(st+1)]

)
− ρijπ (t)∆(st, at) + V̄θ(st, zj).

On the right-hand side of this equation, the first three terms are closely correlated to γρijπ (t)Ṽ
DR
ij (st+1), while the last two

terms are loosely correlated to it. Furthermore, given that ρ̂ijd (t) is inside an interval upper-bounded by its true value ρijd (t),
the value of ρ̂ijd (t)Ṽ

DR
ij (st+1) is comparable to those of ρijd (t)V

DR
ij (st+1) and Et+1[V

j(st+1)]. Thus, the first three terms
will be compensated by each other, while value of the last two terms −ρijπ (t)∆(st, at) + V̄θ(st, zj) will dominate, which is
loosely correlated to γρijπ (t)Ṽ

DR
ij (st+1).

Since γρijπ (t)Ṽ
DR
ij (st+1) cannot dominate the value in the parentheses, we make assumption that it is loosely correlated to

the term in the parentheses and have

2Et

[
γρijπ (t)ρ̂

ij
d (t)Ṽ

DR
ij (st+1)

]
− Et

[
γρijπ (t)ρ

ij
d (t)V

DR
ij (st+1)

]
+ Et

[(
− ρijπ (t)γEt+1[V

j(st+1)]− ρijπ (t)∆(st, at) + V̄θ(st, zj)
)]

= 0,

2Et

[
γρijπ (t)ρ̂

ij
d (t)Ṽ

DR
ij (st+1)

]
− Eat∼πj ,st+1∼pj

[
γV DR

ij (st+1)
]
− γEat∼πj

Et+1

[
V j(st+1)

]
+ V j(st) = 0,

2Eat∼πj
Est+1∼pi

[
γṼ DR

ij (st+1)
]
ρ̂ijd (t) + Eat∼πj

[
r(st, at)

]
− γEat∼πj

Est+1∼pi

[
V j(st+1)

]
= 0.

Hence, we can get the optimal dynamics importance weight, as follows:

ρ̂ijd (t) = (γVj(st+1)− rj(st, at))
/(

2γṼ DR
ij (st+1)

)
.

A.8. Proof of optimal dynamic weight that minimizing the variance

The variance can be rewritten as

V art

[
Ṽ DR
ij (st)

]
=Et

[(
ρijπ (t)γ

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)]
)
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]
− (E

[
Ṽ DR
ij

]
)2 + (V (st))

2 + V(ρπ), (A.13)

where the second term is always negative and will be zero under ρ̂ijd =
−rj(st,at)

γṼ DR
ij (st+1)

, which is nearly zero especially under

the sparse-reward setting. Since the rest terms contain no ρ̂ijd (t), we consider the optimization of the first term in Eq. (A.13)
w.r.t. ρ̂ijd (t), which is also the third term in Eq. (6) of Theorem 3.1 in the main text. We formulate the following optimization
problem

min
ρ̂ij
d (t)

Et

[(
ρijπ (t)γ

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)]
)
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)2]
, (A.14)

whose first-order derivative can be given as

2Et

[
γρijπ (t)Ṽ

DR
ij (st+1)

(
ρijπ (t)γ

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)]
)
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)]
= 0.

Under the assumption that γρijπ (t)Ṽ
DR
ij (st+1) is loosely correlated to the term in the parentheses, we have:

Et

[(
ρijπ (t)γ

(
ρ̂ijd (t)Ṽ

DR
ij (st+1)− Et+1[V

j(st+1)]
)
− ρijπ (t)∆(st, at) + V̄θ(st, zj)

)]
= 0,

Et

[
ρijπ (t)γρ̂

ij
d (t)Ṽ

DR
ij (st+1)− ρijπ (t)γEt+1[V

j(st+1)]
]
+ Vj(st) = 0,

Et

[
ρijπ (t)γρ̂

ij
d (t)Ṽ

DR
ij (st+1)− ρijπ (t)γEt+1[V

j(st+1)] + Vj(st)
]
= 0.
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Hence, we can get the optimal importance weight as:

ρ̂vard (t) =
(
ρijπ (t)γEt+1[V

j(st+1)]− V j(st)
)
/
(
γρijπ (t)Ṽ

DR
ij (st+1)

)
=
(
γEt+1[V

j(st+1)]− V j(st)/ρ
ij
π (t)

)
/
(
γṼ DR

ij (st+1)
)
.

We now review the variance in Eq. (A.13). When the increase of ρijπ (t) results in that ρ̂vard (t) >
−rj(st,at)

γṼ DR
ij (st+1)

, continuously

reducing ρ̂ijd (t) from ρ̂varπ (t) to −rj(st,at)

γṼ DR
ij (st+1)

will enlarge the variance, since the first and the second terms in Eq. (A.13) will

both increase. And reducing ρ̂ijd to near ρ̂varπ (t) will reduce the variance.

A.9. Proof of the upper bound for error of MSE

Following the decomposition of MSE, we have

MSE(Ṽ DR, ρ̂ij∗d ) = Bias(ρ̂ij∗d )2 + V art(Ṽ
DR, ρ̂ij∗d ),

MSE(Ṽ DR, ρ̂ijd ) = Bias(ρ̂ijd )
2 + V art(Ṽ

DR, ρ̂ijd ).

Computing the bias of DR estimator using ρ̂∗d and ρ̂vard separately and letting ϵ = Eat∼πj
Est+1∼pi

[
γV j(st+1)

]
−

Eat∼πj
Est+1∼pj

[
γV j(st+1)

]
, we have

Bias(ρ̂ij∗d ) =
∣∣∣Eat∼πiEst+1∼pi

[
ρijπ (t)

(
γV j(st+1)− rj(st, at)

)
/2− γρijπ (t)ρ

ij
d (t)V

DR
ij (st+1)

]∣∣∣
=
∣∣∣Eat∼πjEst+1∼pi

[
γV j(st+1)

]
/2− Eat∼πj

[
rj(st, at)

]
/2− Eat∼πjEst+1∼pj

[
γV j(st+1)

]∣∣∣
=
∣∣∣Eat∼πjEst+1∼pi

[
γV j(st+1)

]
/2 + Eat∼πj

[
rj(st, at)

]
/2− V j(st)

∣∣∣
=
∣∣∣Eat∼πjEst+1∼pi

[
γV j(st+1)

]
/2 + Eat∼πj

[
rj(st, at)

]
/2− V j(st)

∣∣∣
=
∣∣∣ ϵ
2
+ Eat∼πj

Est+1∼pj

[
γV j(st+1)

]
/2 + Eat∼πj

[
rj(st, at)

]
/2− V j(st)

∣∣∣ = ∣∣∣ ϵ
2
− V j(st)

2

∣∣∣,
Bias(ρ̂vard ) =

∣∣∣Eat∼πi
Est+1∼pi

[
ρijπ (t)γEt+1[V

j(st+1)]− V j(st)− γρijπ (t)ρ
ij
d (t)V

DR
ij (st+1)

]∣∣∣
=
∣∣∣Eat∼πj

Est+1∼pi

[
γV j(st+1)

]
− Eat∼πj

Est+1∼pj

[
γV j(st+1)

]
− V j(st)

∣∣∣ = ∣∣∣ϵ− V j(st)
∣∣∣.

Hence, we have∣∣∣Bias(ρ̂ij∗d )2 −Bias(ρ̂vard )2
∣∣∣ = 3

4

∣∣∣ϵ− V j(st)
∣∣∣2, ∣∣∣Bias(ρ̂ij∗d )2 −Bias(ρijd )

2
∣∣∣ = 1

4

∣∣∣ϵ− V j(st)
∣∣∣2,

and ∣∣∣ϵ− V j(st)
∣∣∣ = ∣∣∣Eat∼πj

Est+1∼pi

[
γV j(st+1)

]
− Eat∼πj

Est+1∼pj

[
γV j(st+1)

]
− V j(st)

∣∣∣
=
∣∣∣Eat∼πj

Est+1∼pj

[( 1

ρijd (t)
− 2

)
γV j(st+1)

]
− Eat∼πj

[
rj(st, at)

]∣∣∣.
For the difference of variance, we have an upper bound as:∣∣∣V art(Ṽ

DR, ρ̂ij∗d )− V art(Ṽ
DR, ρ̂ijd )

∣∣∣
≤max

(∣∣∣V art(Ṽ
DR, ρ̂ij∗d )− V art(Ṽ

DR, ρ̂vard )
∣∣∣, ∣∣∣V art(Ṽ

DR, ρ̂ij∗d )− V art(Ṽ
DR, ρijd )

∣∣∣)
=max

(
Et

[(
Aρ̂ij∗d (t)− 2B

)2]
,
∣∣∣V art(Ṽ

DR, ρ̂ij∗d )− V art(V
DR, ρijd )

∣∣∣).



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

DRT: Doubly Robust Augmented Transfer for Meta-RL

Table A.1. Values set for the constant pair (A,B) to generate random environment parameters.

ALGORITHM BODY MASS BODY INERTIA JOINT DAMPING FRICTION

POINT-ROBOT-PARAMS-SPARSE (1.5, 1.0) (1.5, 1.0) (1.3, 1.0) (1.5, 1.0)
ANT-PARAMS-SPARSE (1.5, 3.0) (1.5, 3.0) (1.3, 3.0) (1.5, 3.0)
HUMANOID-PARAMS-SPARSE (1.5, 3.0) (1.5, 3.0) (1.3, 3.0) (1.5, 3.0)
HOPPER-PARAMS (1.5, 3.0) (1.5, 3.0) (1.3, 3.0) (1.5, 3.0)
WALKER-2D-PARAMS (1.5, 3.0) (1.5, 3.0) (1.3, 3.0) (1.5, 3.0)
POINT-ROBOT-PARAMS (1.5, 1.0) (1.5, 1.0) (1.3, 1.0) (1.5, 1.0)
SAWYER-PUSH-PARAMS-SPARSE (1.5, 2.5) (1.5, 2.5) (1.3, 2.5) (1.5, 2.5)

Let A = γρijπ (t)Ṽ
DR
ij (st+1) and B = −γρijπ (t)Et+1[V

j(st+1)]− ρijπ (t)∆(st, at) + Vθ(st, zj). Hence, we have the upper
bound for the MSE difference between biased DR estimators using ρ̂∗d and ρ̂d as∣∣∣MSE(Ṽ DR

ij , ρ̂ij∗d )−MSE(Ṽ DR
ij , ρ̂ijd )

∣∣∣
=
∣∣∣bias(ρ̂ij∗d )2 + V art(Ṽ

DR, ρ̂ij∗d )− bias(ρ̂ijd )
2 − V art(Ṽ

DR, ρ̂ijd )
∣∣∣

≤
∣∣∣bias(ρ̂ij∗d )2 − bias(ρ̂ijd )

2
∣∣∣+ ∣∣∣V art(Ṽ

DR, ρ̂ij∗d )− V art(Ṽ
DR, ρ̂ijd )

∣∣∣
≤3

4

∣∣∣Eat∼πjEst+1∼pj

[( 1

ρijd (t)
− 2

)
γV j(st+1)

]
− Eat∼πj

[
rj(st, at)

]∣∣∣2
+max

(
Et

[(
Aρ̂ij∗d (t)− 2B

)2]
,
∣∣∣V art(Ṽ

DR, ρ̂ij∗d )− V art(V
DR, ρijd )

∣∣∣).
B. Experimental Setup
B.1. Hyper-Parameters and Implementation Details

In our experiments, we utilize the same hyper-parameters for meta-training as in the open-sourced code of the baseline
meta-RL approach, PEARL [4]. For our proposed DRT, we build up networks of predicting state transition for each task that
has two layers with 500 units at each layer. The learning rate for the prediction network is 1e−3. We update the lower bound
ρ̂ld at the end of each training epoch. Since negative transfer brought by reusing samples that may be inappropriately chosen
by strategy SI could result in a significantly lower target value as computed by DRaE for training, in practice, we take the
maximum state value V̂ (s) estimated by the value network Vθ and our DRaE Ṽ DR to further alleviate this issue.

B.2. Generation of Varying Dynamics

The randomization of dynamics on all the environments in our experiments is implemented by generating different
environment parameters through:

paramij = βj ∗ init parami, (A.15)

where βj = Axj , xj ∼ Uniform(−B,B), A and B are the constants which control the generation of βj for each
environment parameter of task j, and init parami is the initial value of the i-th environment parameter. Overall, these
randomly sampled environment parameters include the body mass, body inertia, joint damping, and body component’s
friction, for which the values of constant pair (A,B) are listed in Table A.1. With the initial values init parami loaded
directly from the original file of “mujoco py”, the randomized environment parameter paramij is then obtained and set on
the MuJoCo simulation engine to generate various environment dynamics.

B.3. Reward Functions

For the dense-reward environments in Section 5.2, we use the same implementation as in PEARL’s open-sourced code. For
the sparse-reward environments with varying rewards and dynamics in Section 5.1, we modify their reward functions as:

reward =

{
−dist(robot, goal) + C if dist(robot, goal) < D,
0 otherwise.

(A.16)
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In the Point-Robot-Params-Sparse environment, we generate the goals in a cubic space, where we uniformly sample
the goal coordinates in (0.2, 0.5), (−0.4, 0.4), and (0.5, 1.5), and set C = 1.0 and D = 0.2. In the Ant-Params-Sparse
environment, we uniformly generate the goals on a semi-circle with radius 2.0, and set C = 4.0 and D = 0.8. In the
Humanoid-Params-Sparse environment, we uniformly generate the goals on a semi-circle with radius 3.0, and set C = 3
and D = 0.8. For all the environments, we keep the additional proprioceptive reward signal, which are control cost, contact
cost, and survive bonus.
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