
Appendix for
On Contrastive Representations

of Stochastic Processes

Appendix A Broader impact

The work presented in this paper focuses on the learning of representations for stochastic processes.
Applications in the field of computer vision could lead to better understanding of 3D scenes. Such
applications could in turns lead to improved safety in products such as self-driving cars, as well as
improved performance in areas such as medical imaging. Nonetheless, as with any computer vision
technique, it might also be used in a way that carries societal risk. As a foundational method, our
work inherits the broader ethical aspects and future societal consequences of machine learning in
general.

Appendix B Additional background

Neural Processes Neural processes (NPs) learn a neural approximation q
(
y?|x?, (xi,yi)Ci=1

)
to

the posterior predictive distributions for stochastic processes given in Eq. (2). To create an efficient
neural network architecture, the NP family use the fact that the posterior predictive distribution
is unchanged under a permutation of the order 1, ..., C of the context points. The CNP combines
representations of the observed data x1:C ,y1:C into a context representation c. To respect the
permutation-invariance property, the CNP representation is of the form c =

∑
c genc(xc,yc) where

genc : X × Y → C is an encoder. The CNP predictions are then given by

q
(
y?|x?, (xi,yi)Ci=1

)
= pθ(y

?|c,x?) (7)

where pθ(·|c,x) is an explicit likelihood, conventionally a Gaussian with mean and variance given
by a neural network applied to c,x. The CNP model is then trained by maximum likelihood, i.e. by
minimizing the following conditional log probability

LCNP = −EF
[
Ex,y

[
log q(y?|(xi,yi)Ci=1,x

?)
]]
. (8)

Recall that the NP, unlike the CNP, includes an additional random variable u. We can in fact view u
as a finite dimensional approximation to F in (2). In NPs, the random variable u is sampled from an
approximate posterior q

(
u|(xi,yi)Ci=1

)
. The NP constructs the approximate posterior so that it is

invariant to the order of the context, by using a sum pooling approach to aggregate the context. In
order to learn this distribution, the NP introduces a modified training objective. Considering a context
set (xi,yi)Ci=1 and target set (x?i ,y

?
i)
T
i=1, the NP training loss (Garnelo et al., 2018b) is

− E

[
Eq(u|(xi,yi)Ci=1,(x

?
i ,y

?
i)

T
i=1)

[
T∑
i=1

log q (y?i |x?i ,u) + log
q
(
u|(xi,yi)Ci=1

)
q
(
u|(xi,yi)Ci=1, (x

?
i ,y

?
i)
T
i=1

)]]
(9)

where q (y?|x?,u) is the explicit likelihood model, typically a Gaussian, as in the CNP. The outer
expectation is with respect to the data F,x,y.

Attentive Neural Processes The ANP (Kim et al., 2019) introduced attention into the NP family
in two different ways: self-attention applies to the context to create context-aware representations
of each context pair (xi,yi); cross-attention allows the ANP to attend to different components of
the context depending on the target covariate x?. These result in a representation ĉ(x1:C ,y1:C ,x

?
i)

that depends on x?. As with the NP, the ANP can include a latent variable u to be sampled under
a distribution that depends on (xi,yi)

C
i=1, self-attention can be used to generate the approximate

1

posterior for u in this case. The overall training loss for the ANP is

LANP = −EF,x,y
[
Eq(u|(xi,yi)Ci=1)

[
T∑
i=1

log q (y?i |x?i ,u, ĉ(x1:C ,y1:C ,x
?
i))

]

−KL
[
q
(
u|(x?i ,y?i)Ti=1

)
‖q
(
u|(xi,yi)Ci=1

)]] (10)

where q (y?i |x?i ,u, ĉ(x1:C ,y1:C ,x
?
i)) is the explicit likelihood model in this case. We refer to the

ANP model without the latent u as the ACNP, for which the training loss is simply

LACNP = −EF,x,y

[
T∑
i=1

log q (y?i |x?i , ĉ(x1:C ,y1:C ,x
?
i))

]
. (11)

Transformer attention The Image Transformer (Parmar et al., 2018) used an attention mechansim
based on multi-head self-attention (Vaswani et al., 2017). To describe this attention using our notation,
suppose that r1, . . . , rC are intermediate representations of pairs (x1,y1), . . . , (xC ,yC). Then the
ith representation r′i in the next layer of representations is computed as follows. We apply a query
linear operator Wq to ri and a key linear operator Wk to rj for j = 1, . . . , C. We form a normalized
set of weights

wij =
exp

(
Wqri ·Wkrj/

√
d
)

∑
j exp

(
Wqri ·Wkrj/

√
d
) (12)

where d is the dimension of ri. We then form a value as a weighted sum of existing representations,
transformed with a value linear operator Wv to give

r̃i =
∑
j

wijWvrj . (13)

To convert r̃i to r′i, we apply dropout, a residual connection (i.e. we add the original ri) and
layer normalization (Ba et al., 2016). Then we apply a second fully connected layer with residual
connection and layer norm to give r′i.

Appendix C Method details

C.1 Downstream Tasks for Stochastic Processes

We provide some additional details on targeted and untargeted tasks. For a targeted task, we extend
the stochastic process of Section 2 by introducing a second conditional distribution p(`|F,x). We
assume that the joint distribution over observations y1:C and labels `1:C is given by

p (y1:C , `1:C |x1:C) =

∫
p(F)

C∏
i=1

p(yi|F,xi)p(`i|F,x) dF, (14)

implying that the predictive density of the label `? at x? given the context {(xi,yi)Ci=1} is

p
(
`?|x?, (xi,yi)Ci=1

)
=

∫
p(F)p(`?|F,x?)

∏C
i=1 p(yi|F,xi) dF∫

p(F)p(`?|F,x?) dF
. (15)

In CRESP, we estimate this by forming a targeted representation ĉ of (xi,yi)Ci=1 and x?, and fitting
a linear model q(`|ĉ).
For untargeted tasks, there is one ` sampled along with the entire realization F via a conditional
distribution p(`|F), giving the joint distribution

p(y1:C , `|x1:C) =

∫
p(F)p(`|F)

C∏
i=1

p(yi|F,xi) dF. (16)

This means that we can predict ` using the context {(xi,yi)Ci=1} using the predictive distribution

p
(
`?|(xi,yi)Ci=1

)
=

∫
p(F)p(`?|F)

∏C
i=1 p(yi|F,xi) dF∫

p(F)p(`?|F) dF
. (17)

In CRESP, we estimate this using a representation c of (xi,yi)Ci=1; we fit a linear model q(`|c).

2

Appendix D Experimental details

We provide below all necessary details to understand and reproduce the empirical results obtain in
Sec. 5. Hyperparameters are summarized in Tab. 4. Models were implemented in PyTorch (Paszke
et al., 2017). For downstream tasks we fit linear models with L-BFGS (Liu and Nocedal, 1989), we
applied L2 regularization to the weights. Our code is available at github.com/ae-foster/cresp.

Table 4: Hyperparameters used for the different experiments.
Parameter Sinusoids ShapeNet Snooker

Covariate space X R R15 R
Observation space Y R RBG 64x64 images RBG 28x28 images
Dataset sizes 17.6k/2.2k/2.2k 26270/8756/8756 15k/3k/20k
Observation Net Id CNN ResNet18
Covariate Net Id Id Id
Encoder Net MLP Gated Gated
Decoder model MLP CNN DCGAN
Attention 2 transformer layers 2 transformer layers
Target network Gated MLP
Training views 10 3 5
Test views 20 10 9
Representation dim 512 512 512
Projection dim 128 128 128
Training batch size 256 512 256
Training epochs 200 10 200
Optimizer Adam LARS Adam
Scheduler Cosine Cosine + Ramp Cosine + Ramp
Scheduler Ramp length 10 10
Learning rate 3e-4 2e-1 2e-3
Momentum 0.9 0.9 0.9
Weight decay 1e-6 1e-6 1e-6
Temperature τ 0.5 0.5 0.5
Downstream L2 regularization 1e-6 1e-3 1e-3

D.1 CO2 emissions

Experiments were conducted using a private infrastructure, which has an estimated carbon efficiency
of 0.188 kgCO2eq/kWh 2. An estimated cumulative 1000 hours of computation was performed on
hardware of type RTX 2080 Ti (TDP of 250W), or similar such as RTX 1080 Ti. Total emissions
are estimated to be 47 kgCO2eq. Estimations were conducted using the Machine Learning Impact
calculator presented in Lacoste et al. (2019).

D.2 Sinusoids dataset

Data We sample unidimensional functions F ∼ p(F) such that F (x) = α sin(2π/T · x + ϕ)
with random amplitude α ∼ U([0.5, 2.0]), phase ϕ ∼ U([0, π]) and period T = 8. We assume a
bimodal likelihood: p(y|F, x) = 0.5 δF (x)(y)+0.5 δF (x)+σ(y). Context points x ∈ X are uniformly
sampled in [−5, 5].

Architectures Since both the covariate and observation variables are unidimensional, we do not
preprocess them, i.e. gcov = Id and gobs = Id. For the encoder–processing genc(gcov(x), gobs(y))–we
rely on an multilayer perceptron (MLP) with 3 hidden layer of 512 hidden units. For reconstructive
methods (CNP and ACNP), the decoder is also parametrized by an MLP with 512 hidden units and 3
hidden layers.

2Average carbon intensity in March, April and June in the Great Britain. Source https://
electricityinfo.org/carbon-intensity-archive.

3

github.com/ae-foster/cresp
https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute
https://electricityinfo.org/carbon-intensity-archive
https://electricityinfo.org/carbon-intensity-archive

D.3 Shapenet dataset

Data We utilize the renderings of ShapeNet objects provided in 3D-R2N2 (Choy et al., 2016).
These renderings are constructed from different orientations. We also apply a random crop to each
image to simulate a random proximity to the object. Specifically, we choose a random area from
U(0.08, 1) and then a random crop of that area. This process is summarized by the PyTorch snippet

bounding_box = list(transforms.RandomResizedCrop.get_params(
img, (0.08, 1), (1., 1.)

))
img = transforms.functional.resized_crop(

img, *bounding_box, 64, Image.LANCZOS
)

This means that the covariate x representing the view consists of the angles describing the orientation
of the render, and the bounding box. We apply additional featurization to x described in the next
section. We also apply random colour distortion of strength s as a noise process on the images y.
Inspired by the colour distortion of Chen et al. (2020) we apply randomized brightness, contrast,
saturation, hue and gamma adjustment (see our code for the exact implementation).

Feature processing We process the covariate x as follows. For the azimuthal angle θ, we use
sin(nθ), cos(nθ) for n = 1, 2, 3 and the original angle (7 features). We include the elevation and
distance of the R2N2 render without additional features (2 features): in practice these vary little in
this dataset. We include the bounding box mid-point and area as additional features, along with the
four corners of the bounding box (6 features). All told, this gives a covariate of dimension 15. We
finally apply normalization to the covariate so that each component has mean 0 and variance 1 over
the entire dataset. To images y we apply a linear rescaling that means each channel has mean 0 over
the dataset.

Learning set-up and downstream tasks For unsupervized learning, we resample the view and
distortion randomly each time an object is encountered. For learning on downstream tasks, we fix a
dataset of covariates, observations and labels, and learn exclusively from this fixed dataset without
resampling views, providing a more realistic semi-supervised test case. The labels are included in
the dataset, but only utilized by our algorithm when we train downstream linear classifiers (except
for the supervised baseline). The following 13 categories are represented in our dataset: display
(1095), watercraft (1939), bench (1816), telephone (1052), cabinet (1572), sofa (3173), rifle (2373),
loudspeaker (1618), airplane (4045), table (8509), chair (6778), car (7496), lamp (2318).

Architectures For the observation network, we use a CNN described by the following PyTorch
snippet

nn.Sequential(
nn.Conv2d(num_channels, ngf // 8, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ngf // 8),
nn.LeakyReLU(),
nn.Conv2d(ngf // 8, ngf // 4, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ngf // 4),
nn.LeakyReLU(),
nn.Conv2d(ngf // 4, ngf // 2, 3, stride=4, padding=1, bias=False),
nn.BatchNorm2d(ngf // 2),
nn.LeakyReLU(),
nn.Conv2d(ngf // 2, ngf, 3, stride=4, padding=1),
nn.BatchNorm2d(ngf),
nn.LeakyReLU(),

)

and we set ngf= 512. For reconstructive methods (CNP and ACNP), we use a convolutional decoder
of the following form

nn.Sequential(

4

nn.UpsamplingNearest2d(scale_factor=2),
nn.ConvTranspose2d(nz, ngf // 2, 2, stride=2, padding=0, bias=False),
nn.BatchNorm2d(ngf // 2),
nn.LeakyReLU(),
nn.UpsamplingNearest2d(scale_factor=2),
nn.ConvTranspose2d(ngf // 2, ngf // 4, 2, stride=2, padding=0, bias=False),
nn.BatchNorm2d(ngf // 4),
nn.LeakyReLU(),
nn.ConvTranspose2d(ngf // 4, ngf // 8, 2, stride=2, padding=0, bias=False),
nn.BatchNorm2d(ngf // 8),
nn.LeakyReLU(),
nn.ConvTranspose2d(ngf // 8, nc, 2, stride=2, padding=0),

)

where nz= 512 + 15, ngf= 512, nc= 6. Finally, we extract three means and three standard
deviations from the output at each pixel location for three colour channels, applying a sigmoid to
the means (to put them in the correct range for image data) and a softplus transform to the standard
deviations.

The gated unit that we use is as follows

class Gated(nn.Module):

def __init__(self, in_dim, representation_dim):
super(Gated, self).__init__()
self.fc1 = nn.Linear(in_dim, representation_dim)
self.fc2 = nn.Linear(in_dim, representation_dim)
self.activation = nn.Sigmoid()

def forward(self, x):
representation = self.fc1(x)
multiplicative = self.activation(self.fc2(x))
return multiplicative * representation

inspired by gated units that appear in Hochreiter and Schmidhuber (1997); Cho et al. (2014). The
gated unit is utilized in two places: as the pair encoding (Sec. 3.2) that processes the covariate
and observation features after concatenation, and as the target network for our targeted CRESP
implementation on ShapeNet. We found that it slightly outperformed an MLP with a similar number
of parameters.

D.4 Snooker dataset

Data This synthetic dataset simulates a dynamical system with two objects evolving through time
with constant velocities. Formally, let’s consider two objects at positions si at time t. A free object
moving at velocity vi has position si(t) = si(0) + vit. We now consider both objects constrained
so that 0 ≤ si ≤ 1 and assume that collisions with the boundaries result in a perfect reflection. The
position of the particle can be expressed by the following formula

s̃i(t) = si(0) + vit, (18)
si(t) = (bs̃i(t)c mod 2)(1− s̃i(t) + bs̃i(t)c) + (1− bs̃i(t)c mod 2)(s̃i(t)− bs̃i(t)c) (19)

for i = 1, 2.

We then assume that we only have access to a 2D image y of the state at time x = t for a given
realization F . We sample realizations F ∼ p(F) such that si(0) ∼ U([0, 1]2), and vi = v0α with
α ∼ U(S1) and v0 = 0.4. The objects are assumed to be non-interacting discs of radius 0.15.

The downstream task is to predict whether the two objects are overloading at a given time, i.e.
Ep(`|F,x?=t)[`] with ` = 1 if there is an overlap. The objects position can be expressed at any time in
closed-form (cf Eq. (18)), yet it is quite challenging to predict the 2D image at a specific time given a
collection of snapshots.

5

Architectures For the observation network, we use a CNN described by the following PyTorch
snippet

nn.Sequential(
nn.Conv2d(nc, ngf, kernel_size=2, stride=2, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
nn.Conv2d(ngf, 2 * ngf, kernel_size=2, stride=2, bias=False),
nn.BatchNorm2d(2 * ngf),
nn.ReLU(True),
nn.Conv2d(2 * ngf, 4 * ngf, kernel_size=2, stride=2, bias=False),
nn.BatchNorm2d(4 * ngf),
nn.ReLU(True),
nn.Conv2d(4 * ngf, nz, kernel_size=2, stride=2),

)

where ngf= 64 and nc= 3. For reconstructive methods (CNP and ACNP), we use a convolutional
decoder inspired by DCGAN (Radford et al., 2016), of the form

nn.Sequential(
nn.ConvTranspose2d(nz, ngf * 4, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
nn.ConvTranspose2d(ngf, 2 * nc, 4, 2, 1),

)

where nz= 512 + 1, ngf= 64 and nc= 2 ∗ 3. Similarly to Appendix D.3, we extract three means
and three standard deviations from the output at each pixel location.

For the encoder–processing genc(gcov(x), gobs(y))–we rely on the gated architecture described above
in Appendix D.3. For the target network h, which outputs the predictive representation ĉ = h([x?, c]),
we rely on an MLP with 3 hidden layers of 512 units each.

6

