
A Details for Counter Examples

A.1 Simple Linear Regression

We begin our exploration of assumptions with a rather simple problem. Let Z ∈ R be a random
variable such that E

[
Z2
]

= 1 and E
[
Z4
]

= 2. Moreover, let ε be an independent random variable
with mean zero and variance 1. Finally, let θ∗ ∈ R and define Y = Zθ∗ + ε. Consider the estimation
problem of minimizing F (θ) where

F (θ) =
1

2
E
[
(Zθ − Y )2

]
=

1

2
(θ − θ∗)2 +

1

2
. (14)

Letting X = (Y, Z), let f(θ,X) = 0.5(Zθ − Y )2. Now, the variance of ḟ(θ,X) is
E
[
((Z2 − 1)(θ − θ∗)− Zε)2

]
= E

[
(Z2 − 1)2

]
(θ − θ∗)2 − 2(θ − θ∗)E

[
(Z2 − 1)Zε

]
+ E

[
Z2ε2

]
(15)

= (θ − θ∗)2 + 1. (16)

Clearly, the variance scales with the error in the parameter, which violates the common bounded
noise model assumption. In particular, as |θ| → ∞, the variance diverges.

On the other hand, the simple linear regression problem does satisfy our assumptions. In particular,

1. Assumptions 1 and 3 are easily verified.

2. Given that Ḟ is globally Lipschitz continuous, it is locally Lipschitz continuous. Therefore,
Assumption 2 is satisfied.

3. From the variance calculation of ḟ(θ,X), we conclude

E
[
ḟ(θ,X)2

]
= 2(θ − θ∗)2 + 1, (17)

which is a continuous function. Hence, Assumption 4 is satisfied.

A.2 Feed Forward Network for Binary Classification

We now prove Proposition 1. Consider the binary classification problem with label Y and feature
Z where (Y, Z) = (0, 0) with probability 1/2 and (Y, Z) = (1, 1) with probability 1/2. We
solve this classification problem using the network shown in Fig. 1 with σ linear and ϕ sigmoid.
We will train this model using the binary cross entropy loss function. Letting X = (Y,Z) and
θ = (W1,W2,W3,W4),

f(θ,X) = −Y log(ŷ)− (1− Y ) log(1− ŷ) +
1

2

4∑
i=1

W 2
i , (18)

and

ŷ =

{
1
2 Z = 0

1
1+exp(−W4W3W2W1) Z = 1.

(19)

From this, we compute,

F (θ) =
1

2
log(2) +

1

2
log[1 + exp(−W4W3W2W1)] +

1

2

4∑
i=1

W 2
i . (20)

Moreover,

ḟ(θ,X) =




W1

W2

W3

W4

 (Y,Z) = (0, 0)

−1
1+exp(W4W3W2W1)


W4W3W2

W4W3W1

W4W2W1

W3W2W1

+


W1

W2

W3

W4

 (Y,Z) = (1, 1),

(21)
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and, consequently,

Ḟ (θ) =
−1/2

1 + exp(W4W3W2W1)

W4W3W2

W4W3W1

W4W2W1

W3W2W1

+

W1

W2

W3

W4

 . (22)

Finally, letting F̈ (θ) = ∇2F (ψ)|ψ=θ,

F̈ (θ) =
−0.5

1 + exp(W4W3W2W1)

 0 W4W3 W4W2 W3W2

W4W3 0 W4W1 W3W1

W4W2 W4W1 0 W2W1

W3W2 W3W1 W2W1 0



+
0.5 exp(W4W3W2W1)

[1 + exp(W4W3W2W1)]2

W4W3W2

W4W3W1

W4W2W1

W3W2W1


W4W3W2

W4W3W1

W4W2W1

W3W2W1


′

+ I4,

(23)

where I4 is the 4× 4 identity matrix.

We first establish that Ḟ (θ) is not globally Lipschitz continuous. With θ = (1,−1,W3,W3) and
φ = (1,−1,W3, 0), it is enough to find a lower bound for the first component of Ḟ (θ) − Ḟ (φ),
denoted by Ḟ1(θ)− Ḟ1(φ). To this end,

|Ḟ1(θ)− Ḟ1(φ)| = 0.5W 2
3

1 + exp(−W 2
3 )
≥ 1

4
|W3 − 0|2. (24)

Thus, Ḟ is not globally Lipschitz.

We now establish that F does not satisfy (L0, L1)-smoothness. That is, we show that there is no
L0, L1 ≥ 0 such that ‖F̈ (θ)‖ ≤ L0‖Ḟ (θ)‖+ L1, where the norms can be chosen arbitrarily owing
to the equivalence of norms in finite-dimensional vector spaces. To see this, note that the Frobenius
norm of F̈ (θ) is lower bounded by the absolute value of the [1, 1] entry. Using notation,

0.5 exp(W4W3W2W1)

[1 + exp(W4W3W2W1)]2
(W4W3W2)2 + 1 ≤

∥∥∥F̈ (θ)
∥∥∥
F
. (25)

Let θ = (0,W4,W4,W4), then the lower bound is

1

8
W 6

4 ≤
∥∥∥F̈ (θ)

∥∥∥
F
. (26)

Notice, for this same choice of θ, the l1 norm of the gradient is bounded above by∥∥∥Ḟ (θ)
∥∥∥

1
≤ 1

4
|W4|3 + 3|W4|. (27)

For any choice of L0, L1 > 0, we conclude that there is a W4 sufficiently large such that, for this
parametrization of θ,

L0

∥∥∥Ḟ (θ)
∥∥∥+ L1 ≤ L0[

1

4
|W4|3 + 3|W4|] + L1 <

1

8
W 6

4 ≤
∥∥∥F̈ (θ)

∥∥∥
F
. (28)

Thus, we see that no L0 nor L1 can exist that will satisfy the (L0, L1)-smooth assumption for all
choices of θ.

To show that the variance is not bounded, we study the variance of the first component of ḟ(θ,X)

which we denote by ḟ1(θ,X). By direct calculation,

E
[
(ḟ1(θ,X)− Ḟ1(θ))2

]
=

1

4

W 2
4W

2
3W

2
2

[1 + exp(W4W3W2W1)]2
. (29)
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We again consider θ = (1,−1,W3,W3), then the variance at this value of θ is

1

4

W 4
3

[1 + exp(−W 2
3 )]2

≥ 1

16
W 4

3 . (30)

Therefore, as W3 →∞, the variance goes to infinity. That is, the variance of the stochastic gradients
is unbounded.

On the other hand, the problem does satisfy our assumptions. In particular,

1. Assumptions 1 and 3 are easily verified.

2. Given that Ḟ is continuously differentiable, then compactness and continuity of the derivative
of Ḟ imply that it is locally Lipschitz continuous. Therefore, Assumption 2 is satisfied.

3. Given the computation of the variance for the first component, we have E[ḟ1(θ,X)2] is

1

4

W 2
4W

2
3W

2
2

[1 + exp(W4W3W2W1)]2
+ Ḟ1(θ)2, (31)

which is a continuous function. By repeating this argument for each component, we conclude
that Assumption 4 is satisfied.

A.3 Recurrent Neural Network for Binary Classification

Consider observing one of two sequences (1, 0, 0, 0) or (0, 0, 0, 0) with equal probabilities, and
suppose that each sequence corresponds to the label 1 or 0, respectively. Now consider Fig. 2 to be a
1-dimensional linear recurrent neural network which reads each element of the sequence and uses a
logistic output layer to predict either a label of one or zero. If we fix H0 = 0 and W3 = 1, then the
model predicts the probability of a 1 label as

ŷ(Z0, Z1, Z2, Z3) =
exp(W 3

1W2Z0)

1 + exp(W 3
1W2Z0)

. (32)

If we use the binary cross entropy loss with `2 regularization, and let X = (Y,Z0, Z1, Z2, Z3) and
θ = (W1,W2) then

f(θ,X) = −Y log ŷ(Z0, Z1, Z2, Z3)− (1− Y ) log[1− ŷ(Z0, Z1, Z2, Z3)] +
1

2
(W 2

1 +W 2
2 )

(33)

= −Y
[
W 3

1W2Z0 − log(1 + exp(W 3
1W2Z0))

]
+ (1− Y ) log(1 + exp(W 3

1W2Z0))

+
1

2
(W 2

1 +W 2
2 ) (34)

= −W 3
1W2Z0Y + log(1 + exp(W 3

1W2Z0)) +
1

2
(W 2

1 +W 2
2 ), (35)

and

ḟ(θ,X) =

−3W 2
1W2Z0Y +

3W 2
1W2Z0 exp(W 3

1W2Z0)

1+exp(W 3
1W2Z0)

+W1

−W 3
1Z0Y +

W 3
1Z0 exp(W 3

1W2Z0)

1+exp(W 3
1W2Z0)

+W2

 (36)

Taking the expectations, we compute

F (θ) =
1

2

[
log(2) + log(1 + exp(W 3

1W2))−W 3
1W2 +W 2

1 +W 2
2

]
, (37)

and

Ḟ (θ) =

−3W 2
1W2

2
1

1+exp(W 3
1W2)

+W1

−W 3
1

2
1

1+exp(W 3
1W2)

+W2

 . (38)
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Taking another derivative and letting F̈ (θ) = ∇2F (ψ)|ψ=θ,

F̈ (θ) =

 9W 4
1W

2
2 exp(W 3

1W2)

2(1+exp(W 3
1W2))2

− 3W1W2

1+exp(W 3
1W2)

+ 1
3W 5

1W2 exp(W 3
1W2)

2(1+exp(W 3
1W2))2

− 3W 2
1

2
1

1+exp(W 3
1W2)

3W 5
1W2 exp(W 3

1W2)

2(1+exp(W 3
1W2))2

− 3W 2
1

2
1

1+exp(W 3
1W2)

W 6
1 exp(W 3

1W2)

2(1+exp(W 3
1W2))2

+ 1

 .
(39)

We first establish that Ḟ is not globally Lipschitz continuous. Notice, if we set W2 = 1, then the
first and second component of Ḟ (θ) are proportional to −W 2

1 and −W 3
1 respectively, which are not

globally Lipschitz continuous functions.

We now show that F also does not satisfy (L0, L1)-smoothness. Notice that, using the bottom right
entry of F̈ (θ),

W 6
1 exp(W 3

1W2)

2(1 + exp(W 3
1W2))2

<
∥∥∥F̈ (θ)

∥∥∥
F
, (40)

and ∥∥∥Ḟ (θ)
∥∥∥

1
≤ 3W 2

1 |W2|+ |W1|3

2[1 + exp(W 3
1W2)]

+ |W1|+ |W2|. (41)

If we choose W2 = 0, then, for any L0, L1 ≥ 0 there exists a |W1| sufficiently large such that

W 6
1

8
<
∥∥∥F̈ (θ)

∥∥∥
F
6≤ L0

∥∥∥Ḟ (θ)
∥∥∥

1
+ L1 ≤ L0

(
|W1|3

4
+ |W1|

)
+ L1. (42)

Hence, F (θ) is not (L0, L1)-smooth.

Moreover, computing the trace of the variance of ḟ(θ,X), we recover

E
[∥∥∥ḟ(θ,X)− Ḟ (θ)

∥∥∥2

2

]
=

(
3W 2

1W2

2[1 + exp(W 3
1W2)]

)2

+

(
W 3

1

2[1 + exp(W 3
1W2)]

)2

, (43)

which does not satisfy a bounded variance assumption (choose W2 = 0 and let W1 →∞). Thus, any
work that makes either a global Lipschitz bound on the gradient or a global noise model bound fails
to apply to this simple recurrent neural network training problem.

On the other hand, the problem does satisfy our assumptions. In particular,

1. Assumptions 1 and 3 are easily verified.

2. Given that Ḟ is continuously differentiable, then compactness and continuity of the derivative
of Ḟ imply that it is locally Lipschitz continuous. Therefore, Assumption 2 is satisfied.

3. Moreover,

E
[∥∥∥ḟ(θ,X)

∥∥∥2

2

]
=

(
3W 2

1W2

2[1 + exp(W 3
1W2)]

)2

+

(
W 3

1

2[1 + exp(W 3
1W2)]

)2

+
∥∥∥Ḟ (θ)

∥∥∥2

2
,

(44)
which is a continuous function. Hence, Assumption 4 is satisfied.

A.4 Poisson Regression

Here, we consider the task of estimating a Poisson regression model for data X = (Y,Z) where Y
is a count response variable and Z is the covariate. To make this problem simpler, we will assume
that both Y and Z are independent Poisson random variables with mean 1, which implies that the
parameter in the model, θ∗ = 0. If we use a likelihood framework, then, up to a constant depending
on Y ,

f(θ,X) = −Y Zθ + exp(θZ), (45)
and

ḟ(θ,X) = −Y Z + Z exp(θZ). (46)

From this, we compute
F (θ) = −θ + exp(exp(θ)− 1), (47)
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Ḟ (θ) = −1 + exp(exp(θ) + θ − 1), (48)

and, letting∇2F (ψ)|ψ=θ = F̈ (θ),

F̈ (θ) = (exp(θ) + 1) exp(exp(θ) + θ − 1). (49)

We begin by showing that Ḟ (θ) is not globally Lipschitz continuous. To do so, for any θ > 0, note

|Ḟ (θ)− Ḟ (0)| = exp(exp(θ) + θ − 1)− 1 > exp(θ)− 1 ≥ θ + θ2/2. (50)

Thus, for any L > 0 there exists a θ > 0 such that |Ḟ (θ)− Ḟ (0)| > L|θ|.
We now show that F (θ) does not satisfy the (L0, L1)-smooth assumption. Note, for θ ≥ 0,

exp(exp(θ) + 2θ − 1) < F̈ (θ), (51)

and
Ḟ (θ) < exp(exp(θ) + θ − 1). (52)

It follows that for any L0, L1 > 0, there exists a θ > 0 such that L0|Ḟ (θ)|+ L1 < F̈ (θ).

For the noise, we compute the second moment of ḟ(θ,X). That is,

E
[
ḟ(θ,X)2

]
= E

[
Y 2Z2 − 2Y Z2 exp(θZ) + Z2 exp(2θZ)

]
(53)

= 4− 2E
[
Z2 exp(θZ)

]
+ E

[
Z2 exp(2θZ)

]
(54)

= 4− 2(exp(θ) + 1) exp(exp(θ) + θ − 1)

+ (exp(2θ) + 1) exp(exp(2θ) + 2θ − 1). (55)

It is clear from this calculation that the variance (computed by subtracting off Ḟ (θ)2) will diverge as
θ tends to infinity. To show that [Bottou et al., 2018, Assumption 4.3c] does not apply, it is enough to
show that its generalization, [Khaled and Richtárik, 2020, Assumption 2] does not apply. To this end,
we must show that there does not exists a C0, C1, C2 ≥ 0 such that, ∀θ,

E
[
ḟ(θ,X)2

]
≤ C0 + C1F (θ) + C2|Ḟ (θ)|2. (56)

From our calculations, it is easy to verify that F (θ) and Ḟ (θ) are dominated by exp(2 exp(θ)),
and that the second moment of the stochastic gradient is bounded from below by exp(exp(2θ)) for
θ ≥ log(4). Hence, for any C0, C1, C2 ≥ 0, there exists θ sufficiently large such that

C0 + C1F (θ) + C2|Ḟ (θ)|2 ≤ C0 + (C1 + C2) exp(2 exp(θ)) < exp(exp(2θ)) ≤ E
[
ḟ(θ,X)2

]
.

(57)
Thus, [Bottou et al., 2018, Assumption 4.3c] and [Khaled and Richtárik, 2020, Assumption 2] do not
hold.

On the other hand, the problem does satisfy our assumptions. In particular,

1. Assumptions 1 and 3 are easily verified.

2. Given that F̈ is continuous, Assumption 2 is satisfied.

3. Moreover, we can use the calculated value E[ḟ(θ,X)2], which is a continuous function, as
G(θ) to satisfy Assumption 4.

A.5 Noiseless Feed Forward Network for Binary Classification

Out of interest, we reconsider the second example but construct a different data distribution that
produces noiseless stochastic gradient. Consider the binary classification problem with label Y and
feature Z where (Y,Z) = (0,−1) with probability 1/2 and (Y,Z) = (1, 1) with probability 1/2.
We solve this classification problem using the network shown in Fig. 1 with σ linear and ϕ sigmoid.
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We will train this model using the binary cross entropy loss function. Letting X = (Y,Z) and
θ = (W1,W2,W3,W4),

f(θ,X) = −Y log(ŷ)− (1− Y ) log(1− ŷ) +
1

2

4∑
i=1

W 2
i , (58)

and
ŷ =

1

1 + exp(−W4W3W2W1Z)
. (59)

Moreover,

ḟ(θ,X) = Z(ŷ − Y )

W4W3W2

W4W3W1

W4W2W1

W3W2W1

+

W1

W2

W3

W4

 , (60)

and, consequently,

Ḟ (θ) =
−1

1 + exp(W4W3W2W1)

W4W3W2

W4W3W1

W4W2W1

W3W2W1

+

W1

W2

W3

W4

 . (61)

We first establish that Ḟ (θ) is not globally Lipschitz continuous. With θ = (1,−1,W3,W3) and
φ = (1, 0, 0, 0), it is enough to find a lower bound for the first component of Ḟ (θ)− Ḟ (φ), denoted
by Ḟ1(θ)− Ḟ1(φ). To this end,

|Ḟ1(θ)− Ḟ1(φ)| = W 2
3

1 + exp(−W 2
3 )
≥ 1

2
|W3 − 0|2. (62)

Thus, Ḟ is not globally Lipschitz.

On the other hand, the problem does satisfy our assumptions. In particular,

1. Assumptions 1 and 3 are easily verified.

2. Given that Ḟ is continuously differentiable, then compactness and continuity of the derivative
of Ḟ imply that it is locally Lipschitz continuous. Therefore, Assumption 2 is satisfied.

3. Moreover, ḟ(θ, Z) = Ḟ (θ)—that is, there ḟ(θ, Z) has zero variance for the distribution that
we have constructed. Therefore,

E
[∥∥∥ḟ(θ,X)

∥∥∥2

2

]
=
∥∥∥Ḟ (θ)

∥∥∥2

2
, (63)

which is a continuous function. Hence, Assumption 4 is satisfied.

B Technical Lemmas

Lemma 5 (Lemma 1). Suppose Assumptions 1 and 2 hold. Then, for any θ, ϕ ∈ Rp,

F (ϕ)− Fl.b. ≤ F (θ)− Fl.b. + Ḟ (θ)′(ϕ− θ) +
L(θ, ϕ)

1 + α
‖ϕ− θ‖1+α

2 . (64)

Proof. By Taylor’s theorem,

F (ϕ)− Fl.b. = F (θ)− Fl.b. +

∫ 1

0

Ḟ (θ + t(ϕ− θ))′(ϕ− θ)dt. (65)

Now, add and subtract Ḟ (θ) to Ḟ (θ + t(ϕ − θ)) in the integral, then apply Assumption 2. By
Definition 1, ∥∥∥Ḟ (θ + t(ϕ− θ))− Ḟ (θ)

∥∥∥
2
≤ L(θ, ϕ)tα ‖θ − ϕ‖α2 . (66)
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We conclude,

F (ϕ)− Fl.b. ≤ F (θ)− Fl.b. + Ḟ (θ)′(ϕ− θ) + L(θ, ϕ) ‖ϕ− θ‖1+α
2

∫ 1

0

tαdt. (67)

By computing the integral, the result follows.

Lemma 6. Suppose {Mk : k + 1 ∈ N} satisfy Properties 1 and 4. Then ∀C > 0, ∃K ∈ N such that
∀k ≥ K,

λmin(Mk)− C

2
λmax(Mk)1+α ≥ 1

2
λmin(Mk). (68)

Proof. Fix C > 0. Rearranging the conclusion, we see that it is equivalent to prove that ∃K ∈ N
such that ∀k ≥ K, 1/C ≥ λmax(Mk)ακ(Mk). This follows from Property 4.

Lemma 7. For any θ ∈ Rp, v ∈ R, L > 0 and α ∈ (0, 1],

L

1 + α
v1+α −

∥∥∥Ḟ (θ)
∥∥∥

2
v ≥ − α

1 + α


∥∥∥Ḟ (θ)

∥∥∥1+α

2

L


1/α

. (69)

Proof. If we minimize the left hand side of the inequality, we see that a minimum value occurs when
vα =

∥∥∥Ḟ (θ)
∥∥∥

2
/L ≥ 0. Solving for v and plugging this back into the left hand side, we conclude

that the inequality holds.

C Global Convergence Analysis

We begin by first deriving a recursive relationship between the optimality gap at iteration k + 1 and
the optimality gap at iteration k on the events {Bj(R)} as defined in (8) for arbitrary R ≥ 0. Using
this result, we then provide an analysis of the convergence of the objective function. Then, we turn
our attention to the gradient function. Note, B(θ, r) is the open ball around θ of radius r.

C.1 A Recursive Relationship

Lemma 8 (Lemma 2). Let {Mk} satisfy Property 1. Suppose Assumptions 1 to 4 hold. Let {θk}
satisfy (5). Then, ∀R ≥ 0,

E [ [F (θk+1)− Fl.b.]1 [Bk+1(R)]| Fk] ≤ [F (θk)− Fl.b.]1 [Bk(R)]

− λmin(Mk)
∥∥∥Ḟ (θk)

∥∥∥2

2
1 [Bk(R)] +

LR+1 + ∂FR
1 + α

λmax(Mk)1+αGR,
(70)

where GR = sup
θ∈B(0,R)

G(θ) <∞ with G(θ); and ∂FR = sup
θ∈B(0,R)

‖Ḟ (θ)‖2(1 + α) <∞.

Proof. Fix R ≥ 0. For any k + 1 ∈ N, the definition of local Hölder continuity implies that LR+1 is
well defined (see Definition 1). Therefore, Lemma 1 implies

[F (θk+1)− Fl.b.]1 [Bk+1(R+ 1)]

≤
(

[F (θk)− Fl.b.] + Ḟ (θk)′(θk+1 − θk) +
LR+1

1 + α
‖θk+1 − θk‖1+α

2

)
1 [Bk+1(R+ 1)] .

(71)

Now, since B(0, R) ⊂ B(0, R+ 1), it also holds true that

[F (θk+1)− Fl.b.]1 [Bk+1(R)]

≤
(

[F (θk)− Fl.b.] + Ḟ (θk)′(θk+1 − θk) +
LR+1

1 + α
‖θk+1 − θk‖1+α

2

)
1 [Bk+1(R)] .

(72)
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Our goal now is to replace Bk+1(R) on the right hand side by Bk(R). However, there is a technical
difficulty which we must address. First, it follows from the preceding inequality that

[F (θk+1)− Fl.b.]1 [Bk+1(R)]

≤
(

[F (θk)− Fl.b.] + Ḟ (θk)′(θk+1 − θk) +
LR+1

1 + α
‖θk+1 − θk‖1+α

2

)
×
(

1 [Bk+1(R)]− 1 [Bk(R)]

)
+

(
[F (θk)− Fl.b.] + Ḟ (θk)′(θk+1 − θk) +

LR+1

1 + α
‖θk+1 − θk‖1+α

2

)
1 [Bk(R)] .

(73)

The first term on the right hand side of the inequality only contributes meaningfully if it is positive.
Since 1 [Bk(R)] ≥ 1 [Bk+1(R)], then two statements hold: (i) 1 [Bk(R)] 1 [Bk+1(R)] = 1 [Bk+1(R)];
and (ii) the first term of the right hand side of (73) is positive if and only if(

[F (θk)− Fl.b.] + Ḟ (θk)′(θk+1 − θk) +
LR+1

1 + α
‖θk+1 − θk‖1+α

2

)
1 [Bk(R)] < 0. (74)

By the choice of LR+1, Assumption 1 and Lemma 1 imply that if (74) occurs, then ‖θk+1‖2 > R+

1 ≥ ‖θk‖2+1. By the reverse triangle inequality and (5), if (74) occurs, then ‖Mkḟ(θk, Xk+1)‖2 ≥ 1.
Hence, (

[F (θk)− Fl.b.] + Ḟ (θk)′(θk+1 − θk) +
LR+1

1 + α
‖θk+1 − θk‖1+α

2

)
×
(

1 [Bk+1(R)]− 1 [Bk(R)]

)
≤
(
−[F (θk)− Fl.b.]− Ḟ (θk)′(θk+1 − θk)− LR+1

1 + α
‖θk+1 − θk‖1+α

2

)
×
(

1 [Bk(R)]− 1 [Bk+1(R)]

)
1 [Bk(R)] 1

[∥∥∥Mkḟ(θk, Xk+1)
∥∥∥

2
≥ 1
]
.

(75)

We now compute another coarse upper bound for this inequality. Note, by Assumption 1 and
Cauchy-Schwarz,(

−[F (θk)− Fl.b.]− Ḟ (θk)′(θk+1 − θk)− LR+1

1 + α
‖θk+1 − θk‖1+α

2

)
×
(

1 [Bk(R)]− 1 [Bk+1(R)]

)
1 [Bk(R)] 1

[∥∥∥Mkḟ(θk, Xk+1)
∥∥∥

2
≥ 1
] (76)

≤
∥∥∥Ḟ (θk)

∥∥∥
2

∥∥∥Mkḟ(θk, Xk+1)
∥∥∥

2
1 [Bk(R)] 1

[∥∥∥Mkḟ(θk, Xk+1)
∥∥∥

2
≥ 1
]

(77)

≤
∥∥∥Ḟ (θk)

∥∥∥
2

∥∥∥Mkḟ(θk, Xk+1)
∥∥∥1+α

2
1 [Bk(R)] (78)

≤ ∂FR
1 + α

∥∥∥Mkḟ(θk, Xk+1)
∥∥∥1+α

2
1 [Bk(R)] , (79)

where ∂FR = sup
θ∈B(0,R)

‖Ḟ (θ)‖2(1 + α) <∞ given that ‖Ḟ (θ)‖2 is a continuous function of θ.

Applying this inequality to (73), we conclude
[F (θk+1)− Fl.b.]1 [Bk+1(R)]

≤
(

[F (θk)− Fl.b.]− Ḟ (θk)′Mkḟ(θk, Xk+1) +
LR+1 + ∂FR

1 + α

∥∥∥Mkḟ(θk, Xk+1)
∥∥∥1+α

2

)
× 1 [Bk(R)] .

(80)

By Assumption 3,
E [ [F (θk+1)− Fl.b.]1 [Bk+1(R)]| Fk]

≤
(

[F (θk)− Fl.b.]− Ḟ (θk)′MkḞ (θk) +
LR+1 + ∂FR

1 + α
E
[∥∥∥Mkḟ(θk, Xk+1)

∥∥∥1+α

2

∣∣∣∣Fk])
× 1 [Bk(R)] .

(81)
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Using Property 1 and Assumption 4,

E [ [F (θk+1)− Fl.b.]1 [Bk+1(R)]| Fk]

≤
(

[F (θk)− Fl.b.]− λmin(Mk)
∥∥∥Ḟ (θk)

∥∥∥2

2
+
LR+1 + ∂FR

1 + α
λmax(Mk)1+αG(θk)

)
1 [Bk(R)] .

(82)

By Assumption 4, G is upper semicontinuous and B(0, R) is compact, which implies that GR is well
defined and finite. The result follows.

C.2 Objective Function Analysis

Corollary 1. Let {θk} be defined as in (5) satisfying Properties 1 and 2. Suppose Assumptions 1
to 4 hold. Then, there exists a finite random variable Flim such that on the event {supk ‖θk‖2 <∞},
limk→∞ F (θk) = Flim with probability one.

Proof. By Lemma 2, for every R ≥ 0,

E [ [F (θk+1)− Fl.b.]1 [Bk+1(R)]| Fk]

≤ [F (θk)− Fl.b.]1 [Bk(R)] +
(LR+1 + ∂FR)GR

1 + α
λmax(Mk)1+α.

(83)

By Neveu and Speed [1975, Exercise II.4] (cf. Robbins and Siegmund [1971]) and Property 2,
limk→∞[F (θk)− Fl.b.]1 [Bk(R)] converges to a finite random variable with probability one. Since
R ≥ 0 is arbitrary, we conclude that there exists a finite random variable Flim such that the set
{supk ‖θk‖2 ≤ R} is a subset of {limk F (θk) = Flim} up to a measure zero set. Since the countable
union of measure zero sets has measure zero,{

sup
k
‖θk‖2 <∞

}
=
⋃
R∈N

{
sup
k
‖θk‖2 ≤ R

}
⊂
{

lim
k→∞

F (θk) = Flim

}
, (84)

up to a measure zero set. The result follows.

C.3 Gradient Function Analysis

We now prove that the gradient norm evaluated at SGD’s iterates must, repeatedly, get arbitrarily
close to zero.
Lemma 9. Let {θk} be defined as in (5) satisfying Properties 1 to 3. Suppose Assumptions 1 to 4
hold. Then, ∀R ≥ 0 and for all δ > 0,

P
[∥∥∥Ḟ (θk)

∥∥∥2

2
1 [Bk(R)] ≤ δ, i.o.

]
= 1. (85)

Proof. By Lemma 2,

λmin(Mk)E
[∥∥∥Ḟ (θk)

∥∥∥2

2
1 [Bk(R)]

]
≤ E [[F (θk)− Fl.b.]1 [Bk(R)]]

− E [[F (θk+1)− Fl.b.]1 [Bk+1(R)]] +
(LR+1 + ∂FR)GR

1 + α
λmax(Mk)1+α.

(86)

Taking the sum of this equation for all k from 0 to j ∈ N, we have
j∑

k=0

λmin(Mk)E
[∥∥∥Ḟ (θk)

∥∥∥2

2
1 [Bk(R)]

]
≤ [F (θ0)− Fl.b.]1 [B0(R)]

− E [[F (θj+1)− Fl.b.]1 [Bj+1(R)]] +
(LR+1 + ∂FR)GR

1 + α

j∑
k=0

λmax(Mk)1+α.

(87)

By Assumption 1 and Property 2, the right hand side is bounded by

[F (θ0)− Fl.b.]1 [B0(R)] +
(LR+1 + ∂FR)GR

1 + α
S, (88)
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which is finite. Therefore,
∑∞
k=0 λmin(Mk)E[‖Ḟ (θk)‖221 [Bk(R)]] is finite. Furthermore, by Prop-

erty 3, lim infk E[‖Ḟ (θk)‖221 [Bk(R)]] = 0.

Now, for any δ > 0, Markov’s inequality implies that for all j + 1 ∈ N, and for all k ≥ j

P

 ∞⋂
k=j

{∥∥∥Ḟ (θk)
∥∥∥2

2
1 [Bk(R)] > δ

} ≤ P
[∥∥∥Ḟ (θk)

∥∥∥2

2
1 [Bk(R)] > δ

]
(89)

≤ 1

δ
E
[∥∥∥Ḟ (θk)

∥∥∥2

2
1 [Bk(R)]

]
. (90)

Since the last inequality holds for every k ≥ j, then, in particular, for all j + 1 ∈ N,

P

 ∞⋂
k=j

{∥∥∥Ḟ (θk)
∥∥∥2

2
1 [Bk(R)] > δ

} ≤ 1

δ
min
j≤k

E
[∥∥∥Ḟ (θk)

∥∥∥2

2
1 [Bk(R)]

]
, (91)

where the right hand side is zero because lim infk E[‖Ḟ (θk)‖221 [Bk(R)]] = 0.

As the countable union of measure zero sets has measure zero, we conclude that for all δ > 0,

P
[∥∥∥Ḟ (θk)

∥∥∥2

2
1 [Bk(R)] ≤ δ, i.o.

]
= 1. (92)

Unfortunately, Lemma 9 does not guarantee that the gradient norm will be captured within a region
of zero. In order to prove this, we first show that it is not possible (i.e., a zero probability event) for
the limit supremum and limit infimum of the gradients to be distinct.
Lemma 10. Let {θk} be defined as in (5) satisfying Properties 1 and 2. Suppose Assumptions 1 to 4
hold. Then, ∀R ≥ 0 and for all δ > 0,

P
[∥∥∥Ḟ (θk+1)

∥∥∥
2

1 [Bk+1(R)] > δ,
∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ, i.o.
]

= 0. (93)

Proof. Let γ > 0. Let LR be as in Definition 1, and GR be as in Lemma 2. Then, for δ > 0,

P
[∥∥∥Ḟ (θk+1)

∥∥∥
2

1 [Bk+1(R)] 1
[∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ
]
> δ + LRγ

α
]

(94)

= P
[(∥∥∥Ḟ (θk+1)

∥∥∥
2
−
∥∥∥Ḟ (θk)

∥∥∥
2

+
∥∥∥Ḟ (θk)

∥∥∥
2

)
1 [Bk+1(R)] (95)

× 1
[∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ
]
> δ + LRγ

α

]
. (96)

Using the reverse triangle inequality, ‖Ḟ (θk+1)‖2 − ‖Ḟ (θk)‖2 ≤ ‖Ḟ (θk+1) − Ḟ (θk)‖2. Now,
making use of the restriction to Bk+1(R), ‖Ḟ (θk+1)− Ḟ (θk)‖2 ≤ LR‖θk+1 − θk‖α2 . Moreover, on
‖Ḟ (θk)‖2 ≤ δ, ‖Ḟ (θk)‖21 [Bk+1(R)] ≤ δ. Putting these two observations together,

P
[(∥∥∥Ḟ (θk+1)

∥∥∥
2
−
∥∥∥Ḟ (θk)

∥∥∥
2

+
∥∥∥Ḟ (θk)

∥∥∥
2

)
1 [Bk+1(R)] (97)

× 1
[∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ
]
> δ + LRγ

α

]
(98)

≤ P
[
LR ‖θk+1 − θk‖α2 1 [Bk+1(R)] 1

[∥∥∥Ḟ (θk)
∥∥∥

2
1 [Bk(R)] ≤ δ

]
> LRγ

α

]
(99)

= P
[ ∥∥∥Mkḟ(θk, Xk+1)

∥∥∥
2

1 [Bk+1(R)] 1
[∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ
]
> γ

]
. (100)
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Now, using 1 [Bk+1(R)] 1
[∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)]
]
≤ 1 [Bk(R)],

P
[ ∥∥∥Mkḟ(θk, Xk+1)

∥∥∥
2

1 [Bk+1(R)] 1
[∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ
]
> γ

]
(101)

≤ P
[∥∥∥Mkḟ(θk, Xk+1)

∥∥∥
2

1 [Bk(R)] > γ
]

(102)

≤ P
[∥∥∥Mkḟ(θk, Xk+1)

∥∥∥1+α

2
1 [Bk(R)] > γ1+α

]
(103)

≤ 1

γ1+α
‖Mk‖1+α

2 E
[
E
[∥∥∥ḟ(θk, Xk+1)

∥∥∥1+α

2

∣∣∣∣Fk] 1 [Bk(R)]

]
, (104)

where the last inequality is a consequence of Markov’s inequality, ‖Mkḟ(θk, Xk+1)‖2 ≤
‖Mk‖2‖ḟ(θk, Xk+1)‖2, and 1 [Bk(R)] being measurable with respect to Fk.

By Assumption 4, E
[
‖ḟ(θk, Xk+1)‖1+α

2

∣∣∣Fk] ≤ G(θk). Moreover, on Bk(R),G(θk) ≤ GR. Using
this in the expectation, we conclude

P
[∥∥∥Ḟ (θk+1)

∥∥∥
2

1 [Bk+1(R)] 1
[∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ
]
> δ + LRγ

α
]
≤ 1

γ1+α
‖Mk‖1+α

2 GR.

(105)

By Property 2, the sum of the last expression over all k + 1 ∈ N is finite. By the Borel-Cantelli
lemma, for all R ≥ 0, δ > 0 and γ > 0,

P
[∥∥∥Ḟ (θk+1)

∥∥∥
2

1 [Bk+1(R)] > δ + LRγ
α,
∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ, i.o.
]

= 0. (106)

Since this holds for any γ > 0, it will hold for every value in a sequence γn ↓ 0. Since the countable
union of measure zero events has measure zero, for any R ≥ 0 and δ > 0,

P
[{∥∥∥Ḟ (θk+1)

∥∥∥
2

1 [Bk+1(R)] > δ,
∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ, i.o.
}
∩ Ωcδ

]
= 0, (107)

where Ωδ = {lim supk ‖Ḟ (θk+1)‖21 [Bk+1(R)] = δ}.
We now show that Ωδ is a probability zero event. Notice, by Lemma 9 and the definition of Ωδ ,

Ωδ ⊂
{∥∥∥Ḟ (θk+1)

∥∥∥
2

1 [Bk+1(R)] > δ/2,
∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ/2, i.o.
}
∩ Ωcδ/2, (108)

up to a set of measure zero. By applying (107) with δ/2, P[Ωδ] = 0. The conclusion of the result
follows.

We now put together Lemmas 9 and 10 to show that, on the event {supk ‖θk‖2 < ∞}, ‖Ḟ (θk)‖2
converges to 0 with probability one.
Corollary 2. Let {θk} be defined as in (5) satisfying Properties 1 to 3. Suppose Assumptions 1 to 4
hold. Then, on the event {supk ‖θk‖2 <∞}, limk→∞ ‖Ḟ (θk)‖2 = 0.

Proof. For any R ≥ 0 and δ > 0, Lemma 9 implies

P
[∥∥∥Ḟ (θk+1)

∥∥∥
2

1 [Bk+1(R)] > δ, i.o.
]

= P
[{∥∥∥Ḟ (θk+1)

∥∥∥
2

1 [Bk+1(R)] > δ, i.o.
}
∩
{∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ, i.o.
}]

.
(109)

We see that this latter event is exactly,

P
[∥∥∥Ḟ (θk+1)

∥∥∥
2

1 [Bk+1(R)] > δ,
∥∥∥Ḟ (θk)

∥∥∥
2

1 [Bk(R)] ≤ δ, i.o.
]
, (110)

which, by Lemma 10, is zero with probability one. Therefore, P[‖Ḟ (θk+1)‖21 [Bk+1(R)] > δ, i.o.]
is zero. Letting δn ↓ 0 and noting that the countable union of measure zero sets has measure zero, we
conclude P[‖Ḟ (θk+1)‖21 [Bk+1(R)] > 0, i.o.] = 0.

Therefore, for all R ≥ 0, {supk ‖θk‖2 ≤ R} ⊂ {limk→∞ ‖Ḟ (θk)‖2 = 0} up to a measure zero set.
Since {supk ‖θk‖2 <∞} = ∪R∈N{supk ‖θk‖2 ≤ R}, the result follows.
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C.4 Capture Theorem

The final step in our proof is to study the event {supk ‖θk‖ <∞}.
Theorem 4 (Theorem 1). Let {θk} be defined as in (5), and let {Mk} satisfy Properties 1 and 2. If
Assumption 4 holds, then either {limk→∞ θk exists} or {lim infk→∞ ‖θk‖2 =∞} must occur.

Proof. Let θ̄ ∈ Rp. Fix R ≥ 0 and let γ > 0. Then,

P
[∥∥θk+1 − θ̄

∥∥
2
≥ R+ γ,

∥∥θk − θ̄∥∥2
≤ R

]
= P

[∥∥θk+1 − θ̄
∥∥

2
1
[∥∥θk − θ̄∥∥2

≤ R
]
≥ R+ γ

]
(111)

= P
[(∥∥θk+1 − θ̄

∥∥
2
−
∥∥θk − θ̄∥∥2

+
∥∥θk − θ̄∥∥2

)
1
[∥∥θk − θ̄∥∥2

≤ R
]
≥ R+ γ

]
. (112)

Now, ‖θk − θ̄‖21
[
‖θk − θ̄‖2 ≤ R

]
≤ R. Therefore,

P
[(∥∥θk+1 − θ̄

∥∥
2
−
∥∥θk − θ̄∥∥2

+
∥∥θk − θ̄∥∥2

)
1
[∥∥θk − θ̄∥∥2

≤ R
]
≥ R+ γ

]
(113)

≤ P
[(∥∥θk+1 − θ̄

∥∥
2
−
∥∥θk − θ̄∥∥2

)
1
[∥∥θk − θ̄∥∥2

≤ R
]

+R ≥ R+ γ
]

(114)

≤ P
[
‖θk+1 − θk‖2 1

[∥∥θk − θ̄∥∥2
≤ R

]
≥ γ

]
, (115)

where the last line follows by applying the reverse triangle inequality. By using (5) and Markov’s
inequality,

P
[
‖θk+1 − θk‖2 1

[∥∥θk − θ̄∥∥2
≤ R

]
≥ γ

]
(116)

≤ P
[∥∥∥Mkḟ(θk, Xk+1)

∥∥∥
2

1
[∥∥θk − θ̄∥∥2

≤ R
]
≥ γ

]
(117)

≤ 1

γ1+α
‖Mk‖1+α

2 E
[
E
[∥∥∥ḟ(θk, Xk+1)

∥∥∥1+α

2

∣∣∣∣Fk] 1
[∥∥θk − θ̄∥∥2

≤ R
]]
. (118)

By applying Assumption 4, E
[
‖ḟ(θk, Xk+1)‖1+α

2

∣∣∣Fk] ≤ G(θk). Moreover, on ‖θk − θ̄‖2 ≤ R,
G(θk) ≤ supθ:‖θ‖2≤R+‖θ̄‖2 G(θ) =: GR+‖θ̄‖2 <∞ since G is upper semi-continuous. Combining
these steps,

P
[∥∥θk+1 − θ̄

∥∥
2
≥ R+ γ,

∥∥θk − θ̄∥∥2
≤ R

]
≤ 1

γ1+α
‖Mk‖1+α

2 GR+‖θ̄‖2 , (119)

By Property 2, we see that the sum of the probabilities is finite. Together with the Borel-Cantelli
lemma, ∀R ≥ 0, ∀γ > 0, and for all θ̄ ∈ Rp,

P
[
‖θk+1 − θ̄‖2 ≥ R+ γ, ‖θk − θ̄‖2 ≤ R, i.o.

]
= 0. (120)

Since γ > 0 is arbitrary, we can show that this statement holds for a countable sequence of γn ↓ 0.
Therefore, ∀R ≥ 0 and all θ̄ ∈ Rp,

P
[
lim sup

k

∥∥θk − θ̄∥∥2
> R, lim inf

k

∥∥θk − θ̄2

∥∥
2
≤ R

]
= 0. (121)

Since R is arbitrary, we conclude that for any ordering of positive rational numbers, {Rn},
P[lim supk ‖θk+1 − θ̄‖2 > Rn, lim infk ‖θk − θ̄‖2 ≤ Rn] = 0 for every n. Again, the count-
able union of measure zero sets is measure zero. Hence, we conclude that P[lim supk ‖θk − θ̄‖2 >
lim infk ‖θk − θ̄‖2] = 0. Thus, either limk ‖θk − θ̄‖2 exists and is either infinite or finite.

Moreover, on the event that the limit is finite, since θ̄ is arbitrary, we can choose p+ 1 distinct values
of θ̄ which do not belong to a hyperplane of dimension smaller than p, and, by triangulation, the
limk θk converges to a fixed point (up to a set of measure zero).

D Stability Analysis

We begin with a recursive relationship on the events {τj > k}. We use this result to prove that the
objective function converges to a finite limit on these events. Then, we use this result to conclude
that the gradient function visits to a region of zero on the same event. Finally, we study this event to
establish that the two statements above hold with probability one.
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D.1 A Recursive Relationship

Lemma 11 (Lemma 3). Let {Mk} satisfy Property 1. Suppose Assumptions 1 to 4 hold. Let {θk}
satisfy (5). Then, for any j + 1 ∈ N and k > j,

E [ (F (θk+1)− Fl.b.) 1 [τj > k]| Fk] ≤
(
F (θk)− Fl.b. − Ḟ (θk)′MkḞ (θk)

)
1 [τj > k − 1]

+
λmax(Mk)1+α

1 + α

Lε(θk)G(θk) + α


∥∥∥Ḟ (θk)

∥∥∥1+α

2

Lε(θk)


1/α
 1 [τj > k − 1] .

(122)

Proof. By the construction of τj , when τj > k, then

F (θk+1)− Fl.b. ≤ F (θk)− Fl.b. + Ḟ (θk)′(θk+1 − θk) +
Lε(θk)

1 + α
‖θk+1 − θk‖1+α

2 . (123)

Using this relationship and using 1 [τj > k] = 1 [τj > k − 1]− 1 [τj = k],

E [{F (θk+1)− Fl.b.} 1 [τj > k]| Fk]

≤ E
[{

F (θk)− Fl.b. + Ḟ (θk)′(θk+1 − θk) +
Lε(θk)

1 + α
‖θk+1 − θk‖1+α

2

}
1 [τj > k − 1]

∣∣∣∣Fk]
− E

[{
F (θk)− Fl.b. + Ḟ (θk)′(θk+1 − θk) +

Lε(θk)

1 + α
‖θk+1 − θk‖1+α

2

}
1 [τj = k]

∣∣∣∣Fk]
(124)

For the first term on the right hand side, we can apply Assumptions 3 and 4, Property 1, and (5) to
calculate

E
[{

F (θk)− Fl.b. + Ḟ (θk)′(θk+1 − θk) +
Lε(θk)

1 + α
‖θk+1 − θk‖1+α

2

}
1 [τj > k − 1]

∣∣∣∣Fk]
≤
{
F (θk)− Fl.b. − Ḟ (θk)′MkḞ (θk) +

λmax(Mk)1+α

1 + α
Lε(θk)G(θk)

}
1 [τj > k − 1] .

(125)
For the second term on the right hand side of (124), we require two facts. The first fact is 1 [τj = k] ≤
1 [τj > k − 1] which implies 1 [τj = k] = 1 [τj = k] 1 [τj > k − 1]. For the second fact, the Cauchy-
Schwarz inequality and Lemma 7 imply

− F (θk)′Mkḟ(θk, Xk+1) +
Lε(θk)

1 + α
‖Mkf(θk, Xk+1)‖1+α

2

≥ −‖F (θk)‖2
∥∥∥Mkḟ(θk, Xk+1)

∥∥∥
2

+
Lε(θk)

1 + α
‖Mkf(θk, Xk+1)‖1+α

2 (126)

≥ − α

1 + α


∥∥∥Ḟ (θk)

∥∥∥1+α

2

Lε(θk)


1/α

. (127)

Hence, using (5),

− [F (θk)− Fl.b.]− Ḟ (θk)′(θk+1 − θk)− Lε(θk)

1 + α
‖θk+1 − θk‖1+α

2

≤ − [F (θk)− Fl.b.] +
α

1 + α


∥∥∥Ḟ (θk)

∥∥∥1+α

2

Lε(θk)


1/α

.

(128)
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Putting together these two preceding facts together,

− E
[{

F (θk)− Fl.b. + Ḟ (θk)′(θk+1 − θk) +
Lε(θk)

1 + α
‖θk+1 − θk‖1+α

2

}
1 [τj = k]

∣∣∣∣Fk]

≤

− [F (θk)− Fl.b.] +
α

1 + α


∥∥∥Ḟ (θk)

∥∥∥1+α

2

Lε(θk)


1/α
P [τj = k| Fk] 1 [τj > k − 1] (129)

≤ αλmax(Mk)1+α

1 + α


∥∥∥Ḟ (θk)

∥∥∥1+α

2

Lε(θk)


1/α

1 [τj > k − 1] , (130)

where we bound P[τj = k|Fk] using Theorem 5. By applying the bounds on the first term, (125),
and second term, (130), to (124), the result follows.

By applying Assumption 5 to Lemma 3, we have the following simplified form.
Lemma 12 (Lemma 4). If Assumptions 1 to 5, and Properties 1 and 4 hold, and {θk} satisfy (5),
then there exists a K ∈ N such that for any j + 1 ∈ N and any k ≥ min{K, j + 1},

E [ (F (θk+1)− Fl.b.)1 [τj > k]| Fk]

≤
(

1 + λmax(Mk)1+α C2

1 + α

)
(F (θk)− Fl.b.)1 [τj > k − 1]

− 1

2
λmin(Mk)

∥∥∥Ḟ (θk)
∥∥∥2

2
1 [τj > k − 1] + λmax(Mk)1+α C1

1 + α
.

(131)

Proof. The result follows by first using Assumption 5 in Lemma 3. Then, collecting similar terms,
we apply Lemma 6 to find K.

D.2 Objective Function Analysis

With this recursive formula, we now have the first result.
Corollary 3. If Assumptions 1 to 5 and Properties 1, 2 and 4 hold, and {θk} satisfy (5), then
limk→∞ F (θk) exists and is finite on ∪∞j=0{τj =∞}.

Proof. By Lemma 4 and Robbins and Siegmund [1971], Neveu and Speed [1975, Exercise II.4],
the limit as k goes to infinity of (F (θk) − Fl.b.)1 [τj > k − 1] exists with probability one and is
integrable. Therefore, on the event {τj =∞}, the limit of F (θk)− Fl.b. exists and is integrable. As
a result, the limit of F (θk)− Fl.b. exists and is finite on ∪∞j=0{τj =∞}.

Additionally, we can state the following useful result.
Lemma 13. If Assumptions 1 to 5, and Properties 1, 2 and 4 hold, and {θk} satisfy (5), then ∃K ∈ N
such that for any j > K, ∃Nj > 0 for which

sup
k>j

E [(F (θk)− Fl.b.)1 [τj > k − 1]] ≤ Nj . (132)

Proof. In Lemma 4, we upper bound the right hand side by removing the negative term, and, by
Property 2, we add C1(1 + α)−1

∑∞
`=k+1 λmax(M`)

1+α to both side. Then, for all k ≥ j,

E [(F (θk+1)− Fl.b.)1 [τj > k]] +
C1

1 + α

∞∑
`=k+1

λmax(M`)
1+α

≤
(

1 + λmax(Mk)1+α C2

1 + α

)
E [(F (θk)− Fl.b.)1 [τj > k − 1]] +

C1

1 + α

∞∑
`=k

λmax(M`)
1+α.

(133)
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Using 1 + C2(1 + α)−1λmax(Mk)1+α ≤ exp(C2(1 + α)−1λmax(Mk)1+α), it follows

E [(F (θk+1)− Fl.b.)1 [τj > k]] +
C1

1 + α

∞∑
`=k+1

λmax(M`)
1+α

≤ exp

(
C2

1 + α
λmax(Mk)1+α

)[
E [(F (θk)− Fl.b.)1 [τj > k − 1]] +

C1

1 + α

∞∑
`=k

λmax(M`)
1+α

]
.

(134)
Hence,

E [(F (θk+1)− Fl.b.)1 [τj > k]] +
C1

1 + α

∞∑
`=k+1

λmax(M`)
1+α

≤ exp

 C2

1 + α

k∑
`=j

λmax(M`)
1+α

E [(F (θj)− Fl.b.)] +
C1

1 + α

∞∑
`=j

λmax(M`)
1+α

 , (135)

where we have used 1 [τj > j − 1] = 1. By Property 2, the summation in the exponent is finite,
which implies the result.

D.3 Gradient Function Analysis

Lemma 14. If Assumptions 1 to 5, and Properties 1 to 4 hold, and {θk} satisfy (5), then, for any
δ > 0,

P
[∥∥∥Ḟ (θk)

∥∥∥
2

1 [τj > k − 1] ≤ δ i.o.
]

= 1. (136)

Proof. By Lemma 4,

1

2
λmin(Mk)E

[∥∥∥Ḟ (θk)
∥∥∥2

2
1 [τj > k − 1]

]
≤ E [(F (θk)− Fl.b.)1 [τj > k − 1]]

− E [(F (θk+1)− Fl.b.)1 [τj > k]] +
C2

1 + α
λmax(Mk)1+αE [(F (θk)− Fl.b.)1 [τj > k − 1]]

+
C1

1 + α
λmax(Mk)1+α.

(137)
By applying Lemma 13,

1

2
λmin(Mk)E

[∥∥∥Ḟ (θk)
∥∥∥2

2
1 [τj > k − 1]

]
≤ E [(F (θk)− Fl.b.)1 [τj > k − 1]]

− E [(F (θk+1)− Fl.b.)1 [τj > k]] + λmax(Mk)1+α

(
C2Nj + C1

1 + α

)
.

(138)

By summing and using Assumption 1,

1

2

∞∑
k=j

λmin(Mk)E
[∥∥∥Ḟ (θk)

∥∥∥2

2
1 [τj > k − 1]

]

≤ E [F (θj)− Fl.b.] +
C2Nj + C1

1 + α

∞∑
k=j

λmax(Mk)1+α.

(139)

By Property 2, the right hand side is bounded. Now, by Property 3,

lim inf
k→∞

E
[∥∥∥Ḟ (θk)

∥∥∥2

2
1 [τj > k − 1]

]
= 0. (140)

Using Markov’s inequality, for any ` ∈ N and any δ > 0,

P

[ ∞⋂
k=`

{∥∥∥Ḟ (θk)
∥∥∥

2
1 [τj > k − 1] > δ

}]
≤ 1

δ2
min
k≥`

E
[∥∥∥Ḟ (θk)

∥∥∥2

2
1 [τj > k − 1]

]
= 0. (141)

As the countable union of sets of measure zero have measure zero, the result follows.
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D.4 Stopping Time Analysis

WE compute the probability of {τj = k}.
Theorem 5. Let {τj : j + 1 ∈ N} be defined as in (11). If Assumptions 1, 2 and 4 and Property 1
hold, and {θk} satisfy (5), then, for any j + 1 ∈ N and any k + 1 ∈ N,

P [τj = k| Fk] ≤
{

0 k ≤ j,
λmax(Mk)1+α k > j.

(142)

Moreover, if Property 2 also holds, then P
[
∪∞j=0{τj =∞}

]
= 1.

Proof. The case of k ≤ j is trivial. So consider only k > j. By the construction of L(·, ·) and Lε(·),
ω ∈ {L(θk, θk+1) > Lε(θk)} implies ω ∈ {‖θk+1 − θk‖2 > (G(θk)∨ ε)

1
1+α }. Using (5), Markov’s

inequality, Property 1, we conclude

P [τj = k| Fk] ≤ P
[∥∥∥Mkḟ(θk, Xk+1)

∥∥∥1+α

2
> G(θk) ∨ ε

∣∣∣∣Fk] (143)

≤
λmax(Mk)1+αE

[∥∥∥ḟ(θk, Xk+1

∥∥∥1+α

2

∣∣∣∣Fk]
G(θk) ∨ ε

. (144)

Applying Assumption 4 supplies the bound on P [τj = k| Fk]. For the second part, note

P [τj =∞] ≥ 1− P [τj <∞] ≥ 1−
∞∑

k=j+1

λmax(Mk)1+α. (145)

Therefore,

P

 ∞⋃
j=0

{τj =∞}

 = lim
j→∞

P [τj =∞] . (146)

Since limj P[τj = ∞] ≥ 1 − limj

∑∞
k=j+1 λmax(Mk)1+α, applying Property 2 supplies the final

result.
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