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Abstract
Training monolingual language models for
low and mid-resource languages is made
challenging by limited and often inadequate
pretraining data. In this study, we propose a
novel model conversion strategy to address
this issue, adapting high-resources monolin-
gual language models to a new target lan-
guage. By generalizing over a word transla-
tion dictionary encompassing both the source
and target languages, we map tokens from
the target tokenizer to semantically similar
tokens from the source language tokenizer.
This one-to-many token mapping improves
tremendously the initialization of the embed-
ding table for the target language. We con-
duct experiments to convert high-resource
models to mid- and low-resource languages,
namely Dutch and Frisian. These converted
models achieve a new state-of-the-art perfor-
mance on these languages across all sorts
of downstream tasks. By reducing signifi-
cantly the amount of data and time required
for training state-of-the-art models, our novel
model conversion strategy has the potential
to benefit many languages worldwide.

1 Introduction

Large pre-trained language models have emerged
as a standard approach in NLP (Devlin et al., 2019;
Liu et al., 2019; Brown et al., 2020). Unfortunately,
high-quality monolingual models exist only for a
handful of languages. Worse, they are rarely kept
up-to-date because of the cost of retraining.

Multilingual models, often touted as a solution,
have their own challenges: interference between
languages, poor tokenization, large model size, and
more (Wang et al., 2020; Pires et al., 2019). More-
over, translating inputs into English and using a
monolingual English model for inference can some-
times surpass the performance of a fine-tuned mul-
tilingual model (Artetxe et al., 2023).

A more promising strategy seems to be model
conversion. In this approach, the original tokenizer
of an existing monolingual model is discarded in
favor of an entirely new vocabulary, adapted to the
target language; tokens shared between the two
tokenizers keep their existing embedding, while
newly-introduced tokens are randomly initialized
(Artetxe et al., 2020a; de Vries et al., 2021; Garcia
et al., 2021; Gogoulou et al., 2022a).

While tokenizer upgrades for language models
are nothing new, existing approaches only con-
sider tokens as black boxes, ignoring the character
strings they represent, as well as their semantics.
They are thus ill-equipped to deal with languages
which form multiword compounds, such as Dutch
or German. In these languages, compound words
can be formed by agglutinating several existing
words together (e.g. corporate credit translates to
the compound bedrijfskrediet in Dutch).

Compounds complicate the use of the popu-
lar merge-based tokenizers, as letters at subword
boundaries often get merged to the incorrect seg-
ment, resulting in several partial tokens with extra
or missing letters, all representing the same con-
cept but in different compounds (see Table 1). This
reduces the amount of training data which each
of these tokens receives during training, lowering
the quality of their representation, thereby occu-
pying precious space in the embedding table for
low-quality tokens. This also makes them difficult
to align with existing source language tokens using
the trivial mapping strategies described thus-far.

In this work, we address this issue by initializing
the embedding of each token of a new target vocab-
ulary using a weighted combination of embeddings
of similar tokens from the source model, the discov-
ery of which consists of a novel “token translation”
task which relies on the character composition and
semantics of these tokens, which we approximate
using the character n-grams these tokens contain.
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TOKENS WITH EXTRA LETTERS

Et[...ingsbedrijf ] =
+ 0.5 * Es[...company]

+ 0.3 * Es[...Company]

+ 0.2 * Es[Company]

Et[universiteits...] =
+ 0.5 * Es[university]

+ 0.3 * Es[University]

+ 0.2 * Es[...University]

TOKENS WITH MISSING LETTERS

Et[...oeding] =
+ 0.5 * Es[...feeding]

+ 0.3 * Es[...eding]

+ 0.2 * Es[...breeding]

Et[inschrijf...] =
+ 0.5 * Es[inscribed]

+ 0.3 * Es[inserting]

+ 0.2 * Es[inline]

TOKENS WITH NOVEL SPLITS

Et[Administr...] =
+ 0.5 * Es[Administ...]

+ 0.3 * Es[...Administ]

+ 0.2 * Es[administr...]

Et[Afrik...] =
+ 0.5 * Es[Afric...]

+ 0.3 * Es[Africa]

+ 0.2 * Es[African]

TOKENS FOR WORD ENDINGS

Et[...ventie] =
+ 0.5 * Es[...vention]

+ 0.3 * Es[...inence]

+ 0.2 * Es[invention]

Et[...geerd] =
+ 0.5 * Es[...inated]

+ 0.3 * Es[...urized]

+ 0.2 * Es[...itized]

Table 1: Categories of Dutch tokens not covered by a
translation dictionary, and their corresponding English
tokens based on the Tik-to-Tok strategy.

We hypothesize and show that this strategy
yields considerable advantages over training a lan-
guage model from scratch, with regards to both
training efficiency and downstream performance.
In the next chapters, we develop the following two
key contributions:

• We propose a novel cross-lingual model con-
version strategy for low-resource languages
that does not require further pre-training on a
downstream corpus, by leveraging a transla-
tion dictionary instead of a corpus (§ 4.1).

• We show that, even for mid-resource lan-
guages for which enough data exists for train-
ing dedicated language models, applying our
strategy and finetuning on the available corpus
performs better than training such a language
model from scratch (§ 4.2).

In the next section, we introduce the state of the
art strategies for cross-lingual transfer learning and
tokenizer upgrades. We then follow up with a more
comprehensive description of our methodology in
section 3, and showcase our results on Frisian and
Dutch model conversion in section 4.

2 Background and Related Work

Adapting existing language models to new lan-
guages –also called model conversion– would be
highly desirable to reduce the cost of language mod-
els. Indeed, while large language models perform
exceptionally well on many downstream tasks, this
performance is dependent on the high computa-
tional cost and data requirements of model pre-
training, which not every language can afford.

Unfortunately, the usage of different vocabular-
ies and tokens prevent the direct transfer of em-
bedding weights during model conversion, requir-
ing a random reinitialization of all or most embed-
dings, resulting in models of lower quality than
those trained from scratch on those languages, or
benefiting from multilingual transfer learning.

Additionally, encoding input sentences using
a subword tokenizer has become the dominant
paradigm embraced by the state-of-the-art language
models adapted from the Transformer architecture
(Vaswani et al., 2017). These tokenizers rely on
a greedy approach to assign tokens to the most
frequently occurring subwords by iteratively merg-
ing frequent substring pairs to form new tokens
(Sennrich et al., 2016; Wu et al., 2016).

Encoding words as substring tokens is undoubt-
edly a trade-off, whose challenges are by now
well-known (Provilkov et al., 2020; Rogers et al.,
2020). One such challenge pertains to the non-
morphological segmentation of compound words,
as highlighted by Vilar and Federico (2021).

Before explaining how we address these short-
comings, let us consider the existing strategies for
low-resources languages as well as relevant work
pertaining to tokenizer and model conversion.

As previously mentioned, the usage of multi-
lingual language models remains the most com-
mon strategy used to deal with low-resource lan-
guages. Low-resources languages in multilingual
models benefit from both the joint training with
languages with higher-quality resources, and from
a knowledge transfer obtained through to the use
of a shared vocabulary (Pires et al., 2019).

One drawback of this approach is the large vo-
cabulary it requires to properly encode all these
languages, leading to an embedding table which is
significantly larger than for monolingual models.

Additionally, due to language interference,
monolingual performance of mid-resourced lan-
guages only increases up to a point as more lan-
guages are added to the training, after which it
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starts to degrade (Conneau et al., 2020). The usage
of multilingual language models remains therefore
a trade-off for many languages worldwide, which
could theoretically benefit from smaller and more
powerful models, but might not do in practice due
to lack of training strategies that are data-efficient
enough to warrant the cost.

The perceived significance of this phenomenon
seems to be increasing, as Artetxe et al. (2023) have
recently demonstrated that meticulously fine-tuned
multilingual model could not attain the same per-
formance as similarly-sized monolingual English
models used on translated inputs. A possible hy-
pothesis is that it might not be possible to eliminate
entirely the language interference in multilingual
models, even after a monolingual finetuning.

Instead of translating inputs into English, a more
sensible approach would be to convert English mod-
els into models for the target language. The first
forays into the realms of model conversion origi-
nated from Artetxe et al. (2020b), who illustrated

that performing cross-lingual transfers of monolin-
gual models was possible, although at a significant
performance cost. Concretely, after training a new
tokenizer for a target language, the authors trained
a new embedding table from scratch for the new
target tokens, after freezing the attention layers.

A similar approach was successfully applied on
Dutch to adapt BERT (de Vries et al., 2021) and
GPT-2 (de Vries and Nissim, 2021), with varying
degrees of success. Their and other works demon-
strated that reusing the embeddings of shared to-
kens could already reduce the performance gap
between converted and from-scratch models.

Further investigations by Gogoulou et al. (2022b)
demonstrated that cross-lingual model conversion
can, in some cases, be beneficial to model perfor-
mance even in the original language, after back-
conversion of the target model. This seemed to
indicate it should in theory be possible to produce
state-of-the-art models through conversion, if a suit-
able model conversion strategy was devised.

Figure 1: Illustration of the model conversion process. While non-alphabetical tokens usually have an exact match
in the source tokenizer, we map the other tokens either using the word translation dictionary (1), if possible, or using
a character n-gram embedding model that is able to generalize to partial tokens (4). To ensure a proper learning
of the character n-gram embedding model, we generate then train on a symmetric bigram corpus (2), where every
word is equally likely to be paired with itself or its translation, ensure that the skipgram distribution of a word and
its translation are identical, imposing a strong equality constraint on their summed n-gram embeddings (3).
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3 Methodology

In this work, we introduce a new state-of-the-art
strategy (Tik-To-Tok) to convert an existing mono-
lingual language model from the language it was
originally pretrained on (called the source lan-
guage) to a new language of interest (called target).
We achieve this by replacing its current tokenizer
and token embedding table by new ones, which are
better suited for the target language or domain.

In line with previous works, we achieve this by
reusing entries of the old embedding table to ini-
tialize the new embedding table. However, unlike
previous works, we rely on a word translation dic-
tionary spanning the source and target languages to
compute a token mapping between the source and
target embedding tables.

As was noted in the previous section, a better ini-
tialization of the new embedding table helps to
better preserve the downstream performance of
the model post conversion. However, not every
shared token makes sense to reuse accross lan-
guages. While some words, such as “computer”
share the same meaning in Dutch and English,
some other shared words such as “of ” have dif-
ferent meanings in the two languages.

Using a word translation dictionary to perform
the initialization is therefore expected to bring ben-
efits, first by enabling many more tokens to be ini-
tialized (since being spelled identically is no longer
a requirement for a better initialization), but also
by reducing the frequency of inaccurate initaliza-
tion where words are incorrectly initialized with
the embedding of false friends.

Additionally, to address the issue of subword
tokens (which are not contained as-is in a word-
based translation dictionary), we devise a fallback
strategy relying on an estimation of the semantic
similarity of tokens. We hypothesize that it is possi-
ble to approximately translate even partial subword
tokens, using an estimation of their semantic mean-
ing based on the character n-grams they contain.

For this, we rely on fastText (Mikolov et al.,
2018), a word embedding strategy capable of
producing embeddings for out-of-vocabulary sub-
words by summing the embeddings of the character
n-gram they contain. The main advantage of fast-
Text is its robustness against typos, according to
the authors. Using fastText, we aim to provide an
approximate token mapping (e.g. from Tik to Tok)
based on the insights of the translation dictionary,
even for out-of-vocabulary or for subword tokens.

To this end, we develop a bilingual fastText em-
bedding model that generalizes over the word trans-
lation dictionary, in order to provide a mapping for
all tokens not covered by the dictionary itself. We
do this by embedding all source and target tokens
in a shared fastText space and, for each token of
the target langauge, by retrieving the tokens of the
source which are its closest neighbors.

Irrespective of the chosen strategy, we then ini-
tialize the new embedding table for each token as
a weighted average of its “translations”. We put
additional emphasis on the first and second best
matches, which we found to be of higher quality.
To do so, we assign 30% of the weight to the best
match, 10% to the second best match, and divide
the remaining 60% equally among all candidates.

We aim to show that this novel token translation
strategy extends by a lot the potential of the trans-
lation dictionary, since many tokens (especially in
Germanic languages) consist of only a part of a
word or compound. We do this by comparing our
strategy with state-of-the-art baselines.

3.1 Symmetrization of the dictionary

To compute fastText embeddings with the desired
properties, we leverage a well-known property of
skip-gram models: words sharing similar neighbor
distributions tend to exhibit analogous representa-
tions. Using this insight, we transform the word
translation dictionary into a bigram corpus featur-
ing a symmetric distribution (i.e., where each word
is paired equally often to itself and to its translation
in the other language; see Figure 1.2).

That way, a word and its translation feature ex-
actly the same distribution of neighbors (50% them-
selves, and 50% their translation; at least for words
that are perfect translations of each other) and the
sum of embeddings of their character-n-grams are
encouraged to match as a result (see Figure 1.3).

To differentiate words from the source and target
languages, a language-specific tag is prepended and
appended to every word in the dictionary (we rep-
resent these with flags in Figure 1, but use simpler
unicode characters in our implementation).

For languages which form multiword com-
pounds, like Frisian and Dutch, we perform an
additional data augmentation by adding copies of
each word where either the start or end tags are
omitted, to simulate partial compounds. We rely
on fastText to deal with extra or missing letters.
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3.2 FastText training

Once the symmetric bigram corpus described above
is generated, we train a fastText character n-gram
model on the word pairs it contains. This fastText
model will be used to compute approximate seman-
tic representations of tokens of the target language
which are not present in the dictionary itself, and
identify semantically similar tokens in the source
language. In this section, we describe the hyperpa-
rameters used for training of the fastText model.

The default fastText training makes use of the
skip-gram training objective, and we keep this
default configuration in our approach. However,
given that all training examples consist of pairs
of words only, the skip-gram objective becomes
equivalent to a neighbor prediction objective. As a
result, the window size parameter no longer plays
a role, and does not have to be optimized.

To construct the embeddings of the words in the
translation dictionary, fastText enumerates all the
character n-grams they contain whose length is con-
tained between MinN and MaxN characters. Each
of these n-grams is then assigned an embedding,
and the sum of these embeddings is used to repre-
sent the word. The default MinN and MaxN values
of fastText embed all n-grams that are 3-6 charac-
ters long, but a shifted range of 4-7 characters was
used in our experiments, based on the findings that
3-grams are counter-productive both for the Dutch
and English languages, as was also evidenced by
Novotný et al. (2021).

In our experiments, we train 64-dimensional fast-
Text embeddings on the synthetic corpus, for 5
epochs. We do not find these specific parameters
to have a large impact on the resulting mapping,
although training for 10 epochs or more seemed to
result in an increased overfitting.

All words from both languages are included in
the fastText output space, as required by the neigh-
bor prediction objective. All the remaining hyper-
parameters are set to their default value.

3.3 Token matching

Once the fastText model is trained, we have all the
tools necessary to perform our token mapping.

For non-alphabetic target tokens: we reuse the
embeddings of tokens from the source language for
tokens that are shared between the two languages,
without change; this mainly concerns punctuation
and numeric tokens. For tokens that are not shared,
the special UNK token is used as a fallback.

For tokens present in the dictionary: we rely
on the set of translations found in the dictionary.
After sorting the translations of the target word by
frequency, we return the weighted average of the
embeddings of all words from the list. For words
in that list that do not have a corresponding token
in the source tokenizer, we fallback to first token
of their tokenization by the source tokenizer).

For the remaining tokens: we calculate their
fastText embedding (after eventually prepending
and/or appending the language tags, as appropriate
for that token) and retrieve the three best maching
source tokens using cosine similarity as a metric,
and average the embedding of the three tokens.

The strategy described above will frequently
map target tokens to three or more source tokens.
To account for the higher quality of top-ranking
matches, we pre-allocate 30% of the weight to
the highest-ranking match and 10% to the second
highest-ranking match, with the residual 60% being
evenly divided among all candidates (including the
first two). Alternatives for the weighting scheme
can be investigated in future works.

Because Tik-to-Tok initializes all embeddings
using the source model, our initialization strategy
does not call for a random initialization unlike the
previous state-of-the-art strategies.

3.4 Embedding finetuning
While the extensive work above yields an excel-
lent initialization for the new embedding table of
the transformer, difference in linguistic patterns
between the source and target language result in a
higher masked language modeling (MLM) loss in
the target language after reinitialization.

Finetuning the newly-initialized embeddings on
a corpus in the target language can be used to re-
duce the loss again, by learning new patterns. To
prevent catastrophic forgetting during that phase of
the training, all the other parameters of the Trans-
former model are kept frozen.

3.5 Model finetuning
Once the the embeddings have converged and the
MLM loss stabilizes, the base model can optionally
be unfreezed in order to continue the training with
the remaining data. During this second phase of the
training, a lower learning rate is recommended, and
a longer warmup. We provide hyperparameters for
the finetuning stages in Appendix A. The benefits
brought by further finetuning of the whole model
are analyzed in more details in § 4.2.
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4 Experimental Evaluation

To evaluate our model conversion strategy, we
conduct experiments in the low-resource and mid-
resource realms of language model conversion.
The goal of these experiments is to establish the
supremacy of our proposed Tik-to-Tok initializa-
tion strategy, and benchmark its post-finetuning
performance against state-of-the-art monolingual
as well as state-of-the-art multilingual models.

4.1 Low-resource Languages

To compare our embedding table initialization strat-
egy with state-of-the-art approaches, we first fo-
cus on experiments on a low-resource language:
Frisian, a West Germanic language spoken by about
400,000 native speakers, mostly located in the
province of Friesland (Fryslân) in the north of the
Netherlands. The grammar of the Frisian language
is similar to other West Germanic languages and
most notably the Dutch language.

The Oscar 2019 corpus contains only 35
megabytes of data for Frisian, making it impossible
to training large language models for Frisian. How-
ever, its proximity with Dutch enabled de Vries
et al. (2021) to convert an existing Dutch model
into a mostly functional Frisian model.

In this work, we take advantage of the very small
size of the Frisian corpus used in that experiment
to quantify the impact of different embedding ini-
tialization strategies on the conversion outcome.

In particular, we investigate four initialization
strategies: [1] a complete re-initialization of the em-
bedding table (baseline), [2] a re-utilization of the
source embeddings of all tokens which are shared
between the Dutch and Frisian tokenizers (previous
state of the art), [3] a simplified dictionary map-
ping strategy where only non-alphabetic tokens
and full-word tokens present in the word transla-
tion dictionary are initialized based on the source
embeddings, and finally [4] our complete Tik-To-
Tok mapping strategy where gaps in the dictionary

Embedding Initialization Strategy 0ep. 1ep. 2ep.

[1] Random initialization (Baseline) 9.11 7.11 7.06
[2] Mapping shared tokens (2023 SotA) 7.34 5.22 5.02
[3] Mapping with dictionary (Ablation) 6.56 4.45 4.23
[4] Mapping with dictionary+fastText 5.50 4.00 3.79

Table 2: MLM loss of our Dutch model after conversion
into a Frisian model in function of the chosen token em-
bedding initialization strategy (after 0, 1, and 2 epochs).

mapping are filled using the fastText embeddings
computed for source and target tokens.

In this experiment, we convert our roberta-
large-nl-oscar19 model (described in the next sec-
tion) into a Frisian model using these various
strategies. We therefore apply our mappings be-
tween the Dutch tokenizer of RobBERT (Delobelle
et al., 2020), and the Frisian tokenizer devised by
de Vries et al. (2021).

The model parameters are kept frozen through-
out our experimentation, to the exception of the lan-
guage modeling head and the embedding table. The
limited scope of the parameter training is justified
by the data scarcity, the high grammatical proxim-
ity between the Frisian and Dutch languages, and
the strong cultural and geographical ties between
the two communities.

To create a word translation dictionary suitable
for the token mapping strategies that require it, and
given that the Frisian language is not supported by
the OpenSubtitles2018 dataset (Lison et al., 2018),
we combine two manually curated word translation
dictionaries between Frisian and Dutch, from re-
spectively Duijff et al. (2008) and Zantema (1984).

We evaluate the models based on the MLM loss
after 0, 1 and 2 training epochs on the oscar corpus.
This evaluation strategy was chosen to show both
differences in post-initialization quality (0 epoch)
and the extent to which this difference can be recov-
ered through finetuning using the available Frisian
corpus. The loss after 2 training epochs is reported
to demonstrate that a plateau is already reached
after 1 training epoch, and that little further per-
formance gain is to be expected beyond that point
(without providing significantly more training data).
Our results are reported in Table 2.

From these results, we draw the following con-
clusions: [a] Irrespective of the conversion strategy,
finetuning on the native corpus showed limited (~2p)

capacity for recovering from the impairment caused
by the conversion, highlighting the need of a good
initialization. [b] Reusing shared tokens is a mas-
sive improvement over the random re-initialization
of the embedding table, but the final performance
remains subpar. [c] Reusing embeddings through
a dictionary mapping, on the other hand, results
in a much better model at initialization; the MLM
loss of our Tik-to-Tok model is already compara-
ble with the loss of a finetuned model converted
using the SOTA approach (with MLM finetuning
bringing additional improvements on top of that).
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Table 3: Results for the benchmark by Delobelle et al. (2020) on Natural Language Inference, Sentiment Analysis,
Named Entity Recogntion, and Part-of-Speech tagging, as well as the pseudo-perplexity (PPL, Salazar et al., 2019)
on the new OSCAR-2023-01 corpus. Converted models use the same tokenizer and corpus as RobBERT.

CONFIGURATION BENCHMARK SCORES

Lang. Model Params NLI SA NER POS PPL

BERTje (de Vries et al., 2019) 109 M 83.9 93.0 88.3 96.3 33.8
RobBERT (Delobelle et al., 2020) 116 M 84.2 94.4 89.1 96.4 13.1

	 Converted camembert-base
Tik-to-Tok + full finetuning 116 M 85.3 95.8 84.9 94.4 12.4

	 Converted gbert-base
Tik-to-Tok + full finetuning 116 M 85.5 95.0 86.3 95.3 10.2

	 Converted olm-base
Tik-to-Tok only (no LM head) 116 M 85.0 95.5 78.6 93.8 ∞
Tik-to-Tok + embeddings ft. 116 M 85.4 95.6 86.0 95.1 9.9
Tik-to-Tok + full finetuning 116 M 86.6 95.4 87.6 95.8 5.9

	 Converted roberta-large
Tik-to-Tok + full finetuning 345 M 89.2 97.0 89.5 96.0 4.9

XLM-RoBERTa large (XLM-R) 560 M 87.9 96.5 89.5 96.9 5.5

4.2 Mid-resource Languages
Even whenever enough data is available to pre-train
a language model, our token translation approach
can significantly reduce the time and cost required
for pre-training such a language model. We demon-
strate this by applying our Tik-to-Tok model con-
version to Dutch, a mid-resource language.

We train a series of Dutch models, on the same
corpus (Oscar19 NL) and using the same tokenizer
as RobBERT (Delobelle et al., 2020), then evaluate
them following the same evaluation as this existing
Dutch model. We also compare them with BERTje
(de Vries et al., 2019) and the (larger) multilingual
XLM-R model (Conneau et al., 2020).

We evaluate a set of high-resource languages
(French, German, and English) to initialize our
Dutch models. More specifically we evaluate con-
verted versions of the French CamemBERT-base
(Martin et al., 2020), the German GBERT-base
(Chan et al., 2020), and the English olm-base
(Thrush and Oblokulov, 2022) and RoBERTa-large
(Liu et al., 2019) models. Three different tokenizers
(BertTokenizer, RobertaTokenizer, CamembertTok-
enizer) are covered by these four models, thereby
proving that our approach can be used across a
wide range of tokenizer implementations.

The models are evaluated on 5 tasks: Sentiment
Analysis (SA), Named Entity Recognition (NER),
Part-of-Speech tagging (POS), Natural Language
Inference (NLI), as well as their Pseudo-Perplexity
(PPL) on the recently-crawled Oscar2023 corpus.

To disentangle the effects of the embedding table
initialization from the subsequent MLM finetuning,
we perform an ablation study where we test three
variations of the training setup. Due to the limited
impact, this seemed to have on the downstream
tasks, we only performed this analysis for our best
116M-parameters model, initialized from olm-base.
Results for the other models are presented only
after finetuning the weights of the entire model.

In all cases, we train the models following the
same procedure: Firstly, we reinitialize the embed-
dings of the transformer model following the soft
token-mapping procedure described in section 3,
using the RobBERT tokenizer as target. Secondly,
we finetune the newly-initialized embeddings and
the language modeling head on a corpus of the tar-
get language. Finally, we unfreeze all the weights
and continue finetuning on the same corpus.

We stop all experiments early, after using only
about 15% of the available Dutch data (~7Gb text)
of the Oscar19 corpus, because the training loss
stabilizes around that point; another experiment
using 25% of the available Dutch data, not reported
in the table, showed no further improvement.

Our results, summarized in Table 3, seem to
indicate that models initialized with high-resources
languages perform better and train faster than state-
of-the-art language models, with our best model
outperforming all alternatives in 4 out of the 5 tasks,
while being competitive on the remaining one.
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Our ablation study confirms that while finetun-
ing the embeddings and the transformer weights
on a Dutch corpus improves the performance on
the downstream tasks measurably, this is not re-
quired for achieving state-of-the-art performance
in most of the tasks considered in our benchmark,
expanding on our observation that our initializa-
tion performs well as-is for low-resource languages.
This is very promising, as it is difficult to finetune
the transformer weights for many low-resource lan-
guages due to lack of available corpora (see § 4.1).

Unlike what is reported in de Vries et al. (2021),
we find little evidence that high language similarity
is critical for downstream task performance, with
our Romance-initialized model (camembert-base)
and our German-initialized model (gbert-base) per-
forming about equally well on average. One no-
table exception to this observation concerns part-
of-speech tagging, a fine-grained grammatical task;
interestingly, this is the task on which de Vries et al.
evaluated their converted Frisian model, which
probably explains their conclusion.

5 Impact and Discussion

We believe the results presented above could have a
large impact on the NLP community, by making the
creation of high-quality models for low-resource
languages more accessible. While this work fo-
cused on general-purpose models, the conversion
of more specialized models, such as biomedical
models, could be envisioned using specialized
translation dictionaries (Remy et al., 2022).

Another interesting aspect of our approach is
its potential for model distillation (Hinton et al.,
2015; Buciluǎ et al., 2006). In our second experi-
ment, several high-resource language models were
converted to Dutch models, using the same tok-
enizer. The usage of different tokenizers is one of
the key reasons why language models are usually
difficult to combine with each other, an issue that
our technique can contribute to overcome.

Finally, because converting models using our
technique is inexpensive, researchers using our
methodology might be able to update language
models on a more regular basis, an idea which the
Online Language Modeling community contributed
to popularize (Thrush and Oblokulov, 2022).

Our code and models will be released upon ac-
ceptance. We provide an easy-to-use notebook to
convert and finetune language models for any of the
1782 language pairs supported by OpenSubtitles.

6 Conclusion

In this work, we were able to successfully improve
the performance of language model conversion by
introducing a new token translation task.

We demonstrated how this new initialization
strategy largely benefits low-resource languages
such as Frisian, but also makes it possible to train
monolingual models for languages with more re-
sources (such as Dutch) using far less training data
and time as was previously possible.

Our results show that this approach might im-
prove the state-of-the-art tools available for many
languages across the globe, a key fairness issue.

We also believe our work is opening the gate to
more frequent incremental updates of these models
to keep up with the changing patterns of language
over time, an often overlooked problem.

7 Limitations and Future Work

While this project features exciting development
for low- and mid-resource languages, a couple of
limitations of our work are worth discussing.

One of these limitations is that our experiments
only cover Romance and Germanic languages. Col-
laborations to work on a more diverse set of lan-
guages are being discussed, but are at early stages.

Another limitation is that converting models to
other languages might have unexpected effects on
the model’s linguistic and cultural understanding.
This might for instance exacerbate or dampen the
biases present in the training data.

The impact of the use of a particular word trans-
lation dictionary, or the combination from multiple
dictionaries, was not studied in this work, but might
be important to consider as well. Using word trans-
lation dictionaries derived from aligned subtitles,
like we do for Dutch, might possibly bias the lan-
guage model understanding towards certain topics.

Finally, because our work relies on a token-level
translation task, the understanding of multiword
expressions in the target language is also a sub-
ject of concern. This understanding will probably
have to be learned through the full finetuning of
the model, as token embeddings are unlikely to
be sufficient to learn them all in isolation. Even
when the translation dictionary contains some mul-
tiword expressions, we do not provide a way to
use them effectively in our proposed framework.
Future works might want to provide an extension
of our strategy to multiword expressions.
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A Model conversion details

In this appendix, we provide details necessary to
replicate our Dutch model finetuning, as the hyper-
parameters required for this task are numerous, and
not always relevant to mention in the main text.

Our finetuning was divided into three phases: [1]
an embedding finetuning, focused on improving the
initialization outcome, [2] a grammatical finetun-
ing, focused on learning and unlearning languistic
patterns in the edge layers of the Transformer, and
[3] a knowledge finetuning, where all the weights
of the Transformer are finetuned.

As the number of tunable parameters varies, so
must the learning rate and warmup period, to ensure
high-quality results.

A.1 Embedding finetuning
During this phase, around 5% of the Dutch corpus
was used for training. In this phase, only the em-
bedding weights and the language modeling head
are tunable parameters.

per_device_train_batch_size=4
gradient_accumulation_steps=8,
#total_batch_size=32,
training_steps=150000,
learning_rate=5e-5,
warmup_steps=5000,
weight_decay=0.01,
fp16=True,

A.2 Grammatical finetuning
In the second step, around 5% of the Dutch corpus
was used for training. The main change over the
previous phase are the unfreezing of the bottom two
and top two Transformer layers, and the increase
of the batch size for less noisy gradients.

per_device_train_batch_size=4
gradient_accumulation_steps=64,
#total_batch_size=256,
training_steps=25000,
learning_rate=5e-5,
warmup_steps=1000,
weight_decay=0.01,
fp16=True,

A.3 Knowledge finetuning
In the second step, around 5% of the Dutch corpus
was used for training. The main change over the
previous phase are the unfreezing of all remaining
Transformer layers, and the decrease of the learning
rate to adjust to the increase of non-linear effects
in the parameter updates.

per_device_train_batch_size=4
gradient_accumulation_steps=64,
#total_batch_size=256,
training_steps=25000,
learning_rate=2e-5,
warmup_steps=2000,
weight_decay=0.01,
fp16=True,

A.4 Summary
In total, about 15% of the training data were used
during the full finetuning procedure. This amounts
to about 7Gb of text (out of the 47Gb available in
the Oscar corpus).

We performed the tuning on a single V100 GPU,
with a total running time of about a week for each
model trained.
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B Dutch evaluation details

In this section, we provide more details about the
Dutch evalution performed in section 4.2.

B.1 Sentiment Analysis (SA)
We evaluate sentiment analysis on the Dutch Book
Review Dataset (van der Burgh and Verberne,
2019) with standard splits. This dataset is pub-
licly available with a cc-by-nc-sa-4.0 licence. Our
experiment consists of one run with the following
hyperparameters:

• Number of gpus: 1 (1080 Ti)

• adafactor: False

• adam beta1: 0.9

• adam beta2: 0.999

• adam epsilon: 1e-08

• deepspeed: None

• fp16: False

• gradient acc. steps: 8

• lr: 10−4

• lr scheduler type: LINEAR

• num train epochs: 10

• optimizer: ADAMW

• batch size: 4

• seed: 1

• warmup ratio: 0.0

• warmup steps: 20

• weight decay: 0.05

B.2 Named Entity Recognition (NER)
We evaluate NER on the CoNLL-2002 shared task
from https://www.clips.uantwerpen.
be/conll2002/ner/ (no explicit mention
of a licence) with an experiment that consists
of 10 runs with Bayesian optimisation (TPE)
with the following hyperparameters, where
we vary the learning rate, number of gradient
accumulation steps and weight decay. We select
the best-performing model based on the F1 score
on a separate validation set before testing this
model the test set.

• Number of gpus: 1 (1080 Ti)

• adafactor: False

• adam beta1: 0.9

• adam beta2: 0.999

• adam epsilon: 1e-08

• deepspeed: None

• fp16: False

• gradient acc. steps: {1, 2, 4, 8, 16, 32}.

• lr: [10−6, 10−4].

• lr scheduler type: LINEAR

• num train epochs: 10

• optimizer: ADAMW

• batch size: 8

• warmup ratio: 0.0

• warmup steps: 20

• weight decay: [0.01, 0.1].

B.3 Part-of-speech (POS) tagging
We used the Dutch part of the Lassy cor-
pus (Bouma and van Noord, 2017) available
at https://universaldependencies.
org/treebanks/nl_lassysmall/index.
html which has a cc-by-sa 4.0 licence. We
perform 10 runs with Bayesian optimisation
(TPE) with the following hyperparameters, where
we vary the learning rate, number of gradient
accumulation steps and weight decay. We select
the best-performing model based on the F1 score
on a separate validation set before testing this
model the test set.

• Number of gpus: 1 (1080 Ti)

• adafactor: False

• adam beta1: 0.9

• adam beta2: 0.999

• adam epsilon: 1e-08

• deepspeed: None

• fp16: False

• gradient acc. steps: {1, 2, 4, 8, 16, 32}.

• lr: [10−6, 10−4].

• lr scheduler type: LINEAR

• num train epochs: 10

• optimizer: ADAMW

https://www.clips.uantwerpen.be/conll2002/ner/
https://www.clips.uantwerpen.be/conll2002/ner/
https://universaldependencies.org/treebanks/nl_lassysmall/index.html
https://universaldependencies.org/treebanks/nl_lassysmall/index.html
https://universaldependencies.org/treebanks/nl_lassysmall/index.html
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• batch size: 8

• warmup ratio: 0.0

• warmup steps: 20

• weight decay: [0.01, 0.1].

B.4 Natural Language Inference (NLI)
We use the SICK-NL dataset (Wijnholds and
Moortgat, 2021), available at https://github.
com/gijswijnholds/sick_nl under the
MIT licence. Our experiment consists of 30 runs
with the following hyperparameters, where most
are fixed and the learning rate, weight decay and
the number of gradient accumulation steps are ran-
domly selected from the specified ranges.

• Number of gpus: 1 (1080 Ti)

• adafactor: False

• adam beta1: 0.9

• adam beta2: 0.999

• adam epsilon: 1e-08

• deepspeed: None

• fp16: False

• gradient acc. steps: {2, 4, 8, 16}.

• lr: [10−6, 10−4].

• lr scheduler type: LINEAR

• num train epochs: 10

• optimizer: ADAMW

• batch size: 8

• warmup ratio: 0.0

• warmup steps: 20

• weight decay: [0, 0.1].

https://github.com/gijswijnholds/sick_nl
https://github.com/gijswijnholds/sick_nl

