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Abstract
The Gromov-Wasserstein (GW) distance has gained increasing interest in
the machine learning community in recent years, as it allows for the com-
parison of measures in different metric spaces. To overcome the limita-
tions imposed by the equal mass requirements of the classical GW prob-
lem, researchers have begun exploring its application in unbalanced set-
tings. However, Unbalanced GW (UGW) can only be regarded as a dis-
crepancy rather than a rigorous metric/distance between two metric mea-
sure spaces (mm-spaces). In this paper, we propose a particular case of
the UGW problem, termed Partial Gromov-Wasserstein (PGW). We es-
tablish that PGW is a well-defined metric between mm-spaces and dis-
cuss its theoretical properties, including the existence of a minimizer for
the PGW problem and the relationship between PGW and GW, among
others. We then propose two variants of the Frank-Wolfe algorithm for
solving the PGW problem and show that they are mathematically and
computationally equivalent. Moreover, based on our PGW metric, we in-
troduce the analogous concept of barycenters for mm-spaces. Finally, we
validate the effectiveness of our PGW metric and related solvers in ap-
plications such as shape matching, shape retrieval, and shape interpola-
tion, comparing them against existing baselines. Our code is available at
https://github.com/mint-vu/PGW_Metric.

1 Introduction
The classical optimal transport (OT) problem (Villani, 2009) seeks to match two probability
measures while minimizing the expected transportation cost. At the heart of classical OT
theory lies the principle of mass conservation, which aims to optimize the transfer between
two probability measures, assuming they have the same total mass and strictly preserv-
ing it. Statistical distances that arise from OT, such as Wasserstein distances, have been
widely applied across various machine learning domains, ranging from generative modeling
(Arjovsky et al., 2017; Gulrajani et al., 2017) to domain adaptation (Courty et al., 2017)
and representation learning (Kolouri et al., 2020). Recent advancements have extended the
OT problem to address certain limitations within machine learning applications. These ad-
vancements include: 1) facilitating the comparison of non-negative measures that possess
different total masses via unbalanced (Chizat et al., 2018c) and partial OT (Figalli, 2010),
and 2) enabling the comparison of probability measures across distinct metric spaces through
Gromov-Wasserstein distances (Mémoli, 2011), with applications spanning from quantum
chemistry (Gilmer et al., 2017) to natural language processing (Alvarez-Melis & Jaakkola,
2018).
Regarding the first aspect, many applications in machine learning involve comparing non-
negative measures (often empirical measures) with varying total amounts of mass, e.g.,
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domain adaptation (Fatras et al., 2021). Moreover, OT distances (or dissimilarity measures)
are often not robust against outliers and noise, resulting in potentially high transportation
costs for outliers. Many recent publications have focused on variants of the OT problem that
allow for comparing non-negative measures with unequal mass. For instance, the optimal
partial transport problem (Figalli, 2010; Caffarelli & McCann, 2010; Figalli & Gigli, 2010;
Nguyen et al., 2024; Georgiou et al., 2008; Piccoli & Rossi, 2014), Kantorovich–Rubinstein
norm (Guittet, 2002; Heinemann et al., 2023; Lellmann et al., 2014), and the Hellinger–
Kantorovich distance (Chizat et al., 2018a; Liero et al., 2018). Recent works formulating the
metric properties of partial OT with total variation constraints include (Raghvendra et al.,
2024; Nietert et al., 2023). These methods fall under the broad category of “unbalanced
optimal transport.” In this regard, we also highlight (Balaji et al., 2020; Nguyen et al., 2023;
Le et al., 2021), which enhance OT’s robustness in the presence of outliers.
Regarding the second aspect, comparing probability measures across different metric spaces
is essential in many machine learning applications, ranging from computer graphics, where
shapes and surfaces are compared (Bronstein et al., 2006; Mémoli, 2009), to graph parti-
tioning and matching problems (Xu et al., 2019a). Source and target distributions often
arise from varied conditions, such as different times, contexts, or measurement techniques,
creating substantial differences in intrinsic distances among data points. The conventional
OT framework necessitates a meaningful distance across diverse domains, a requirement
that is not always achievable. To circumvent this issue, the Gromov-Wasserstein (GW)
distances were proposed in (Mémoli, 2011; 2009) as an adaptation of the Gromov-Hausdorff
distance, which measures the discrepancy between two metric spaces (Edwards, 1975; Gro-
mov, 1981b;a; Burago et al., 2001). The GW distance (Mémoli, 2011; Sturm, 2023) extends
OT-based distances to metric measure spaces (mm-spaces) up to isometries. Its invariance
across isomorphic mm-spaces makes the GW distance particularly valuable for applications
like shape comparison and matching, where invariance to rigid motion transformations is
crucial.
The main computational challenge of the GW metric is the non-convexity of its formulation
(Mémoli, 2011). The conventional computational approach relies on the Frank-Wolfe (FW)
algorithm (Frank et al., 1956; Lacoste-Julien, 2016). Optimal transport (OT) computational
methods (Guittet, 2002; Cuturi, 2013; Papadakis et al., 2014; Benamou et al., 2014; 2015;
Peyré et al., 2019; Chizat et al., 2018b; Bonneel & Coeurjolly, 2019; Bai et al., 2023), such as
the Sinkhorn algorithm, can be incorporated into FW iterations, which yields the classical
GW solvers (Peyré et al., 2016; Xu et al., 2019b; Titouan et al., 2019a).
Given that the GW distance is limited to the comparison of probability mm-spaces, recent
works have introduced unbalanced and partial variations (Séjourné et al., 2021; Chapel
et al., 2020; De Ponti & Mondino, 2022). These variations have been applied in diverse
contexts, including partial graph matching for social network analysis (Liu et al., 2020)
and the alignment of brain images (Thual et al., 2022). Although solving these unbalanced
variants of the GW problem yields notions of discrepancies between mm-spaces, their metric
properties remain unclear in the literature.
Motivated by the emerging applications of the GW problem in unbalanced settings, this
paper focuses on developing a metric between general (not necessarily probability) mm-
spaces and providing efficient solvers for its computation. Our proposed metric arises from
formulating a variant of the GW problem for unbalanced contexts, rooted in the frame-
work provided by (Séjourné et al., 2021), which we named the Partial Gromov-Wasserstein
(PGW) problem. In contrast to (Séjourné et al., 2021), which introduces a KL-divergence
penalty and a Sinkhorn solver, we employ a total variation penalty, demonstrate the result-
ing metric properties, and provide novel, efficient solvers for this problem. To the best of
our knowledge, this paper presents the first metric for non-probability mm-spaces based on
the GW distance.
Contributions. Our specific contributions to this paper are:

• GW metric in unbalanced settings. We propose the Partial Gromov-
Wasserstein (PGW) problem and prove that it gives rise to a metric between arbi-
trary mm-spaces.
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• PGW solver. 1 Analogous to the technique presented in (Caffarelli & McCann,
2010), we show that the PGW problem can be turned into a variant of the GW
problem. Based on this relation, we propose two mathematically equivalent, but
distinct in numerical implementation, Frank-Wolfe solvers for the discrete PGW
problem. Inspired by the results of (Lacoste-Julien, 2016), we prove that similar to
the Frank-Wolfe solver presented in (Chapel et al., 2020), our proposed solvers for
the PGW problem converge linearly to a stationary point.

• Numerical experiments. We demonstrate the performance of our proposed al-
gorithms in terms of computation time and efficacy on a series of tasks: shape-
matching with outliers between 2D and 3D objects, shape retrieval between 2D
shapes, and shape interpolation using the concept of PGW barycenters. We com-
pare the performance of our proposed algorithms against existing baselines for each
task.

2 Background
In this section, we review the basics of OT theory, one of its variants in unbalanced contexts
called Partial OT (POT), and their connection as established in (Caffarelli & McCann,
2010). We then introduce the GW distance.
2.1 Optimal Transport and Partial Optimal Transport
Let Ω ⊆ Rd be, for simplicity, a compact subset of Rd, and P(Ω) be the space of probability
measures defined on the Borel σ-algebra of Ω.
The Optimal Transport (OT) problem for µ, ν ∈ P(Ω), with transportation cost
c(x, y) : Ω× Ω→ R+ being a lower-semi continuous function is defined as:

OT (µ, ν) := min
γ∈Γ(µ,ν)

γ(c), where γ(c) :=

∫
Ω2

c(x, y) dγ(x, y) (1)

and where Γ(µ, ν) denotes the set of all joint probability measures on Ω2 := Ω × Ω with
marginals µ, ν, i.e., γ1 := π1#γ = µ, γ2 := π2#γ = ν, where π1, π2 : Ω2 → Ω are the
canonical projections π1(x, y) := x, π2(x, y) := y. A minimizer for (1) always exists (Villani,
2009; 2021) and when c(x, y) = ‖x − y‖p, for p ≥ 1, it defines a metric on P(Ω), which is
referred to as the “p-Wasserstein distance”:

W p
p (µ, ν) := min

γ∈Γ(µ,ν)

∫
Ω2

‖x− y‖pdγ(x, y). (2)

The Partial Optimal Transport (POT) problem (Chizat et al., 2018c; Figalli & Gigli,
2010; Piccoli & Rossi, 2014) extends the OT problem to the set of Radon measuresM+(Ω),
i.e., non-negative and finite measures. For λ > 0 and µ, ν ∈ M+(Ω), the POT problem is
defined as:

POT (µ, ν;λ) := inf
γ∈M+(Ω2)

γ(c) + λ(|µ− γ1|+ |ν − γ2|), (3)

where, in general, |σ| denotes the total variation norm of a measure σ, i.e., |σ| := σ(Ω). The
constraint γ ∈M+(Ω

2) in (3) can be further restricted to γ ∈ Γ≤(µ, ν):

Γ≤(µ, ν) := {γ ∈M+(Ω
2) : γ1 ≤ µ, γ2 ≤ ν},

denoting γ1 ≤ µ if for any Borel set B ⊆ Ω, γ1(B) ≤ µ(B) (respectively, for γ2 ≤ ν)
(Figalli, 2010). Roughly speaking, the linear penalization indicates that if the classical
transportation cost exceeds 2λ, it is better to create/destroy’ mass (see (Bai et al., 2023)
for further details).
The relationship between POT and OT. By using the techniques in (Caffarelli &
McCann, 2010), the POT problem can be transferred into an OT problem, and thus, OT
solvers (e.g., network simplex) can be employed to solve the POT problem.

1Rigorously speaking, due to the non-convexity of the GW problem and its variants, current
methods achieve only local minima rather than global minima. We use the term “solver” following
the convention of previous related works (Séjourné et al., 2021; Chapel et al., 2020). However,
it should be emphasized that the proposed methods aim to find local minima rather than global
minima, similar to related and classical computational GW works.
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Proposition 2.1. (Caffarelli & McCann, 2010; Bai et al., 2023) Given µ, ν ∈ M+(Ω),
construct the following measures on Ω̂ := Ω ∪ {∞̂}, for an auxiliary point ∞̂:

µ̂ = µ+ |ν|δ∞̂ and ν̂ = ν + |µ|δ∞̂. (4)

Consider the following OT problem

OT(µ̂, ν̂) = min
γ̂∈Γ(µ̂,ν̂)

γ̂(ĉ), where ĉ(x, y) :=

{
c(x, y)− 2λ if x, y ∈ Ω,

0 elsewhere. (5)

Then, there exists a bijection F : Γ≤(µ, ν)→ Γ(µ̂, ν̂) given by

F (γ) := γ + (µ− γ1)⊗ δ∞̂ + δ∞̂ ⊗ (ν − γ2) + |γ|δ∞̂,∞̂. (6)

such that γ is optimal for the POT problem (3) if and only if F (γ) is optimal for the OT
problem (5).

It is worth noting that instead of considering the same underlying space Ω for both measures
µ and ν, the OT and POT problems can be formulated in the scenario where µ and ν are
defined on different metric spaces X and Y , respectively. In this setting, one needs a cost
function c : X × Y → R+ to formulate the OT and POT problems. However, in practice,
it is usually difficult to define reasonable ‘distance’ or ground cost c(·, ·) between the two
spaces X and Y . In particular, the p-Wasserstein distance cannot be adopted if µ, ν are
defined on different spaces. To relax this requirement, in the next section, we will review
the fundamentals of the Gromov-Wasserstein problem (Mémoli, 2011).

2.2 The Gromov-Wasserstein (GW) Problem
A metric measure space (mm-space) consists of a set X endowed with a metric structure,
that is, a notion of distance dX between its elements, and equipped with a Borel measure µ.
As in Mémoli (2011, Ch. 5), we will assume that X is compact and that supp(µ) = X. Given
two probability mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), with µ ∈ P(X) and ν ∈ P(Y ),
and a non-negative lower semi-continuous cost function L : R2 → R+ (e.g., the Euclidean
distance or the KL-loss), the Gromov-Wasserstein (GW) matching problem is defined as:

GWL(X,Y) := inf
γ∈Γ(µ,ν)

γ⊗2(L(dX(·, ·), dY (·, ·))), (7)

where, for brevity, we employ the notation γ⊗2 for the product measure
dγ⊗2((x, y), (x′, y′)) = dγ(x, y)dγ(x′, y′). If L(a, b) = |a − b|p, for 1 ≤ p < ∞, we de-
note GWL(·, ·) simply by GW p(·, ·). In this case, the expression (7) defines an equivalence
relation ∼ among probability mm-spaces, i.e., X ∼ Y if and only if GW p(X,Y) = 02. A
minimizer of the GW problem (7) always exists, and thus, we can replace inf by min. More-
over, similar to OT, the above GW problem defines a distance for probability mm-spaces
after taking the quotient under ∼. For details, we refer to Mémoli (2011, Ch. 5 and 10).

3 The Partial Gromov-Wasserstein (PGW) Problem
The Unbalanced Gromov-Wasserstein (UGW) problem for general (compact) mm-spaces
X = (X, dX , µ),Y = (Y, dY , ν), with µ ∈ M+(X), ν ∈ M+(Y ), studied in (Séjourné et al.,
2021; Kong et al., 2024) is defined as:

UGWL
λ (X,Y) := inf

γ∈M+(X×Y )
γ⊗2(L(dX , dY )) + λ(Dφ(γ

⊗2
1 ‖ µ⊗2) +Dφ(γ

⊗2
2 ‖ ν⊗2)), (8)

where λ > 0 is a fixed linear penalization parameter, and Dφ is a Csiszár or φ-divergence.
The above formulation extends the classical GW problem (7) into the unbalanced setting
(µ and ν are no longer necessarily probability measures but general Radon measures).
We underline two points: First, as discussed in (Séjourné et al., 2021), while the above
quantity allows us to ‘compare’ the mm-spaces X and Y, its metric property is unclear.

2Moreover, given two probability mm-spaces X and Y, GW (X,Y) = 0 if and only if there exists
a bijective isometry φ : X → Y such that φ#µ = ν. In particular, the GW distance is invariant
under rigid transformations (translations and rotations) of a given probability mm-space.
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Secondly, when Dφ is the KL divergence, a Sinkhorn solver has been proposed in (Séjourné
et al., 2021). However, a solver for general φ-divergences has not yet been proposed.
In this paper, we will analyze the case when Dφ is the total variation norm. Specifically,
for q ≥ 1, we consider the following problem, which we refer to as the Partial Gromov-
Wasserstein (PGW) problem:

PGWL
λ,q(X,Y) := inf

γ∈M+(X×Y )
γ⊗2(L(dqX , d

q
Y )) + λ(|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |). (9)

Remark 3.1. If γ ∈ Γ ≤ (µ, ν), the above cost functional can be rewritten as

γ⊗2(L(dqX , d
q
Y )) + λ(|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |) = γ⊗2 (L(dqX , d

q
Y )− 2λ) + λ

(
|µ|2 + |ν|2

)︸ ︷︷ ︸
does not depend on γ

.

Proposition 3.2. Given mm-spaces X = (X, dX , µ),Y = (Y, dY , ν), the minimization prob-
lem (9) can be restricted to the set Γ≤(µ, ν) = {γ ∈ M+(X × Y ) : γ1 ≤ µ, γ2 ≤ ν}. That
is,

PGWL
λ,q(X,Y) = inf

γ∈Γ≤(µ,ν)
γ⊗2 (L(dqX , d

q
Y )− 2λ) + λ(|µ|2 + |ν|2). (10)

For the proof inspired by (Piccoli & Rossi, 2014), we direct the reader to Appendix B.
We notice that a similar Partial Gromov-Wasserstein problem (and its solver) has been
studied (Chapel et al., 2020). Indeed, in (Chapel et al., 2020), the λ-penalization in the
optimization problem (10) is avoided, but the constraint set is replaced by the subset of all
γ ∈ Γ≤(µ, ν) such that |γ| = ρ for a fixed ρ ∈ [0,min{|µ|, |ν|}]. We will call this formulation
the Mass-Constrained Partial Gromov-Wasserstein (MPGW) problem. In Appendix L, we
explore the relations between PGW and MPGW, and in Section 5 and Appendices O, Q,
we analyze the performance of the different solvers through different experiments.
Proposition 3.3. If L(r1, r2) = |r1 − r2|p, for p ∈ [1,∞), we use PGW p

λ,q to denote
PGWL

λ,q. In this case, (9) and (10) admit a minimizer.

The proof is given in Appendix C: Its idea extends results from (Mémoli, 2011) from prob-
ability mm-spaces to arbitrary mm-spaces.
Next, we state one of our main results: The PGW problem gives rise to a metric between
mm-spaces. The rigorous statement, as well as its proof, is given in Appendix D: The formal
statement is based on the definition of equivalence classes among mm-spaces (see Remark
D.1). The most difficult part of the proof is the triangle inequality, and the main technique
used relies on the relation between PGW and GW (see Appendix D.3).
Proposition 3.4. Let λ > 0, 1 ≤ q, p < ∞ and L(r1, r2) = |r1 − r2|p. Then
(PGW p

λ,q(·, ·))1/p defines a metric between mm-spaces.

Finally, for consistency, we provide the following result when the penalization tends to
infinity. Its proof is given in Appendix E.
Proposition 3.5. Consider probability mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), that is,
|µ| = |ν| = 1. Assume that L is a continuous function. Then limλ→∞ PGWL

λ,q(X,Y) =

GWL(X,Y).

4 Computation of the Partial GW Distance
In the discrete setting, consider mm-spaces X = (X, dX ,

∑n
i=1 p

X
i δxi

), Y =
(Y, dY ,

∑m
j=1 q

Y
j δyj

), where X = {x1, . . . , xn}, Y = {y1, . . . , ym}, the weights pXi , qYj
are non-negative numbers, and the distances dX , dY are determined by the matrices
CX ∈ Rn×n, CY ∈ Rm×m defined by

CX
i,i′ := dqX(xi, xi′) ∀i, i′ ∈ [1 : n] and CY

j,j′ := dqY (yj , yj′) ∀j, j′ ∈ [1 : m]. (11)

Let p := [qX1 , . . . , q
X
n ]> and q := [qY1 , . . . , q

Y
m]> denote the weight vectors corresponding to

the given discrete measures. We view the sets of transportation plans Γ(p, q) and Γ≤(p, q)
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for the GW and PGW problems, respectively, as the subsets of n×m matrices

Γ(p, q) := {γ ∈ Rn×m
+ : γ1m = p, γ>1n = q}, if |p| =

n∑
i=1

pXi = 1 =

m∑
j=1

qYj = |q|; (12)

Γ≤(p, q) := {γ ∈ Rn×m
+ : γ1m ≤ p, γ>1n ≤ q}, (13)

for any pair of non-negative vectors p ∈ Rn
+, q ∈ Rm

+ , where 1n is the vector with all ones
in Rn (resp. 1m), and γ1m ≤ p means that component-wise the ≤ relation holds.
Given by a non-negative function L : Rn×n ×Rm×m → R+, the transportation cost M and
the ‘partial’ transportation cost M̃ are represented by the n×m× n×m tensors:

Mi,j,i′,j′ = L(CX
i,i′ , C

Y
j,j′) and M̃ :=M − 2λ :=M − 2λ1n,m,n,m, (14)

where 1n,m,n,m is the tensor with ones in all its entries. For each n×m× n×m tensor M
and each n×m matrix γ, we define tensor-matrix multiplication M ◦ γ ∈ Rn×m by

(M ◦ γ)ij =
∑
i′,j′

(Mi,j,i′,j′)γi′,j′ .

Then, the Partial GW problem in (10) can be written as
PGWL

λ (X,Y) = min
γ∈Γ≤(p,q)

LM̃ (γ) + λ(|p|2 + |q|2), where (15)

LM̃ (γ) := M̃γ⊗2 :=
∑

i,j,i′,j′

M̃i,j,i′,j′γi,jγi′,j′ =
∑
ij

(M̃ ◦ γ)ijγij =: 〈M̃ ◦ γ, γ〉F , (16)

and 〈·, ·〉F stands for the Frobenius dot product. The constant term λ(|p|2 + |q|2) will be
ignored in the rest of this paper since it does not depend on γ.
4.1 Frank-Wolfe for the PGW Problem – Solver 1
In this section, we discuss the Frank-Wolfe (FW) algorithm for the PGW problem (15). A
second variant of the FW solver is provided in the Appendix G.
As a summary, in our proposed method, we address the discrete PGW problem (15), high-
lighting that the direction-finding subproblem in the Frank-Wolfe (FW) algorithm is a POT
problem for (15). Specifically, (15) is treated as a discrete POT problem in our Solver 1,
where we apply Proposition 2.1 to solve a discrete OT problem.
For each iteration k, the procedure is summarized in three steps detailed below.
The convergence analysis, detailed in Appendix K, applies the results from (Lacoste-Julien,
2016) to our context, showing that the FW algorithm achieves a stationary point at a rate
of O(1/

√
k) for non-convex objectives with a Lipschitz continuous gradient in a convex and

compact domain.
Step 1. Computation of gradient and optimal direction.
It is straightforward to verify that the gradient of the objective function (16) in (15) is given
by

∇LM̃ (γ) = 2M̃ ◦ γ. (17)
The classical method to compute M ◦ γ is the following: First, convert M into an (n ×
m) × (n × m) matrix, denoted as v(M), and convert γ into an (n × m) × 1 vector v(γ).
Then, the computation of M ◦ γ is equivalent to the matrix multiplication v(M)v(γ). The
computational cost and the required storage space are O(n2m2). In certain conditions, the
above computation can be reduced to O(n2 + m2). We refer to Appendices F and H for
details.
Next, we aim to solve the following problem:

γ(k)
′
← arg min

γ∈Γ≤(p,q)
〈∇LM̃ (γ(k)), γ〉F ,

which is a discrete POT problem since it is equivalent to
min

γ∈Γ≤(p,q)
〈2M ◦ γ(k), γ〉F + λ|γ(k)|(|p|+ |q| − 2|γ|).

The solver can be obtained by firstly converting the POT problem into an OT problem via
Proposition 2.1 and then solving the proposed OT problem.

6
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Algorithm 1: Frank-Wolfe Algorithm for PGW, ver 1
Input: µ =

∑n
i=1 p

X
i δxi

, ν =
∑m

j=1 q
Y
j δyj

, γ(1)

Output: γ(final)
Compute CX , CY

for k = 1, 2, . . . do
G(k) ← 2M̃ ◦ γ(k) // Compute gradient
γ(k)

′ ← argminγ∈Γ≤(p,q)〈G(k), γ〉F // Solve the POT problem.
Compute α(k) ∈ [0, 1] via (18) // Line Search
γ(k+1) ← (1− α(k))γ(k) + α(k)γ(k)

′// Update γ
if convergence, break

end for
γ(final) ← γ(k)

Step 2: Line search method.
In this step, at the k-th iteration, we need to determine the optimal step size:

α(k) = arg min
α∈[0,1]

{LM̃ ((1− α)γ(k) + αγ(k)
′
)}.

The optimal α(k) takes the following values (see Appendix I for details):

Let α(k) =


0 if a ≤ 0, a+ b > 0,

1 if a ≤ 0, a+ b ≤ 0,

clip(−b
2a , [0, 1]) if a > 0,

where


δγ(k) = γ(k)

′ − γ(k),
a = 〈M̃ ◦ δγ(k), δγ(k)〉F
b = 2〈M̃ ◦ γ(k), δγ(k)〉F .

,

(18)
and clip(−b

2a , [0, 1]) = min{max{− b
2a , 0}, 1}.

Step 3: Update γ(k+1) ← (1− α(k))γ(k) + α(k)γ(k)
′ .

4.2 Numerical Implementation Details
The initial guess, γ(1). In the GW problem, if there is no prior knowledge, the initial
guess is set to γ(1) = pq>.
In PGW, however, as µ, ν may not necessarily be probability measures (i.e.,

∑
i p

X
i ,
∑

j q
Y
j 6=

1 in general), we set γ(1) = pq>

max(|p|,|q|) . It is straightforward to verify that γ(1) ∈ Γ≤(p, q) as

γ(1)1m =
|q|p

max(|p|, |q|)
≤ p, γ(1)>1n =

|p|q
max(|p|, |q|)

≤ q.

Column/Row-Reduction. According to the interpretation of the penalty weight param-
eter in the Partial OT problem (e.g. see Lemma 3.2 in (Bai et al., 2023)), during the POT
solving step, for each i ∈ [1 : n] (or j ∈ [1 : m]), if the ith row (jth column) of M̃ ◦ γ(k)
contains a non-negative entry, all the mass of pXi (qYj ) will be destroyed (created). Thus,
we can remove the corresponding row (column) to improve the computational efficiency.

5 Experiments
5.1 Toy Example: Shape Matching with Outliers
We use the moon dataset and synthetic 2D/3D spherical data in this experiment. Let
{xi}ni=1, {yj}nj=1 denote the source and target point clouds. In addition, we add ηn (where
η = 20%) outliers to the target point cloud. See Figure 1 for visualization.
We visualize the transportation plans given by the GW (Mémoli, 2011), MPGW (Chapel
et al., 2020), UGW (Séjourné et al., 2021), and our proposed PGW problems. For MPGW,
UGW, and PGW, we set the mass to be 1 for each point in the source and target point
clouds. For GW, we normalize the mass of these points so that the source and target have
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the same total mass. From Figure 1, we observe that PGW and MPGW induce a one-
by-one relation in both cases, and no outlier points are matched to the source point cloud.
Meanwhile, GW matches all of the outliers. For UGW, as it applies the Sinkhorn algorithm,
we observe mass-splitting transportation plans in both cases. Moreover, we observe that
some mass from the outliers has been matched, which is not desired.

Figure 1: The set of red points comprises the source point cloud. The union of the dark
blue (outliers) and light blue points comprises the target point cloud. For UGW, MPGW,
and PGW, we set the mass for each point to be the same. For GW, we normalize the mass
for the balanced mass constraint setting.

5.2 Shape Retrieval
Experiment setup. We now employ the PGW distance to distinguish between 2D shapes,
as done in (Beier et al., 2022), and use GW, MPGW, and UGW as baselines for comparison.
Given a series of 2D shapes, we represent the shapes as mm-spaces Xi = (R2, ‖ · ‖2, µi),
where µi =

∑ni

k=1 α
iδxi

k
. For the GW method, we normalize the mass for the balanced mass

constraint setting (i.e., αi = 1
ni ), and for the remaining methods, we let αi = α for all the

shapes, where α > 0 is a fixed constant. In this manner, we compute the pairwise distances
between the shapes.
We then use the computed distances for nearest neighbor classification. We do this by
choosing a representative at random from each class in the dataset and then classifying each
shape according to its nearest representative. This is repeated over 10,000 iterations, and
we generate a confusion matrix for each distance used. Finally, using the approach given
by (Beier et al., 2022; Titouan et al., 2019b), we combine each distance with a support
vector machine (SVM), applying stratified 10-fold cross-validation. In each iteration of
cross-validation, we train an SVM using exp(−σD) as the kernel, where D is the matrix of
pairwise distances (w.r.t. one of the considered distances) restricted to 9 folds, and compute
the accuracy of the model on the remaining fold. We report the accuracy averaged over all
10 folds for each model.
Dataset setup. We test two datasets in this experiment, which we refer to as Dataset I and
Dataset II. We construct Dataset I by adapting the 2D shape dataset given in (Beier et al.,
2022), consisting of 20 shapes in each of the classes: bone, goblet, star, and horseshoe. For
each class, we augment the dataset with an additional class by selecting either a subset of
points from each shape of that class (rectangle/bone, trapezoid/goblet, disk/star) or adding
additional points to each shape of that class (annulus/horseshoe). Hence, the final dataset
consists of 160 shapes across 8 total classes. This dataset is visualized in Figure 9a.
For Dataset II, we generate 20 shapes for each of the classes: rectangle, house, arrow, double
arrow, semicircle, and circle. These shapes were generated in pairs, such that each shape
of class rectangle is a subset of the corresponding shape of class house, and similarly for
arrow/double arrow and semicircle/circle. This dataset is visualized in Figure 9b.
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Figure 2: In each row, the first figure visualizes an example shape from each class, and the
second figure visualizes the resulting pairwise distance matrices. The first row corresponds
to Dataset I, and the second corresponds to Dataset II.

Distance Dataset I Dataset II
GW 0.9813 0.8083
MPGW 0.2375 0.2500
UGW 0.89375 0.9000
PGW (ours) 0.9625 1.0000

(a) Mean accuracy of SVM using each
distance in the kernel.

Distance Dataset I Dataset II
GW 49.02s 137.12s
MPGW 49.10s 93.90s
UGW 1484.49s 519.91s
PGW (ours) 35.92s 79.27s

(b) Wall-clock time comparison.

Table 1: Accuracy and wall-clock time comparison for shape retrieval experiment.

Performance analysis. We refer to Appendix O for full numerical details, parameter
settings, and the visualization of the resulting confusion matrices. We visualize the two
considered datasets and the resulting pairwise distance matrices in Figure 2. For the SVM
experiments, GW achieves the highest accuracy on Dataset I, 98.13%, while the second best
method is PGW, 96.25%. For Dataset II, PGW achieves the highest accuracy, correctly
classifying 100% of the samples. The complete set of accuracies for all considered distances
on each dataset is reported in Table 1a.
In addition, we report the wall-clock time required to compute all pairwise distances for each
distance in Table 1b. We observe that GW, MPGW, and PGW have similar wall-clock times
across both experiments (30-50 seconds for Dataset I, 80-140 seconds for Dataset II), with
PGW admitting a slightly faster runtime in both cases. Meanwhile, UGW requires almost
1500 seconds on the experiment with Dataset I and over 500 seconds on the experiment
with Dataset II.

5.3 Partial Gromov-Wasserstein Barycenter and Shape Interpolation
By (Peyré et al., 2016), Gromov-Wasserstein can be applied to interpolate two shapes via the
concept of Gromov-Wasserstein Barycenters. In this paper, we introduce Partial Gromov-
Wasserstein Barycenters by extending the GW Barycenter to the setting of PGW as follows.
Consider the discrete mm-spaces X1, . . . ,XK , where Xk = (Xk, ‖ · ‖Rdk ,

∑nk

i=1 p
k
i δxk

i
), with

Xk = {xki }
nk
i=1 ⊂ Rdk . We denote Ck = [‖xki − xki′‖2]i,i′ and pk = [pk1 , . . . , p

k
nk
]. Given

positive constants λ1, . . . , λK > 0, the PGW Barycenter is defined by:

min
C,γk

∑
k

ξk〈M(C,Ck) ◦ γk, γk〉 − 2λk|γk|2 (19)

where each γk ∈ Γ≤(p,p
k). We refer to Appendix M for the solver of (19) and details.
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Experiment setup. We apply the PGW barycenter to the following problem: Given
two shapes X = {xi}ni=1 ⊂ Rd1 and Y = {yi}mi=1 ⊂ Rd2 , modeled as mm-spaces X =
(X, ‖ · ‖Rd1 ,

∑n
i=1 δxi

) and Y = (Y, ‖ · ‖Rd2 ,
∑m

i=1 δyi
), we wish to find interpolations between

them. In addition, we assume Y is corrupted by noise, i.e., Y is redefined as Y = (Ỹ , ‖ ·
‖Rd2 ,

∑m
i=1 δyi

+
∑mη

i=1 δỹi
) with Ỹ = Y ∪{ỹi}mi=1, where η ∈ [0, 1] is the noise level and each

ỹi is randomly selected from a particular region R ⊂ Rd2 .

GW
,5

%
PG

W
,5

%
GW

,1
0%

data

PG
W

,1
0%

t = 0/7 t = 1/7 t = 2/7 t = 3/7 t = 4/7 t = 5/7 t = 6/7 t = 7/7

Figure 3: In the first column, the first and second figures are the source and target point
clouds in the first experiment (η = 5%); the third and fourth figures are the source and
target point clouds in the second experiment (η = 10%).
Dataset setup. We adapt the dataset given in (Peyré et al., 2016). See Appendix M.1 for
further details on the dataset. In this experiment, we test η = 5%, 10%. We visualize the
barycenter interpolation from t = 0/7 to t = 7/7, where (1−t), t are the weight of the source
X and the target Y, respectively, in the barycenter (19). The visualization given in Figure
3 is obtained by applying SMACOF MDS (multidimensional scaling) of the minimizer C.
Performance analysis. From Figure 3, we observe that in these two scenarios, the inter-
polation derived from GW is clearly disturbed by the noise data points. For example, in
rows 1, 3, columns t = 1/7, 2/7, 3/7, we see that the point clouds reconstructed by MDS have
significantly different width-height ratios from those of the source and target point clouds.
In contrast, PGW is significantly less disturbed, and the interpolation is more natural. The
width-height ratio of the point clouds generated by the PGW barycenter is consistent with
that of the source/target point clouds.

6 Summary
In this paper, we propose the Partial Gromov-Wasserstein (PGW) problem and introduce
two Frank-Wolfe solvers for it. As a byproduct, we provide pertinent theoretical results,
including the relation between PGW and GW, the metric property of PGW, and the PGW
barycenter formulation. Furthermore, we demonstrate the efficacy of the PGW solver in
solving shape matching, shape retrieval, and shape interpolation tasks. For the shape re-
trieval experiment, we observe that due to their metric property, PGW and GW have similar
accuracy and outperform the other methods evaluated. In the shape matching and shape
interpolation experiments, we demonstrate that PGW admits a more robust result when
the data are corrupted by outliers/noisy data.
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A Notation and Abbreviations
• OT: Optimal Transport.
• POT: Partial Optimal Transport.
• GW: Gromov-Wasserstein.
• PGW: Partial Gromov-Wasserstein.
• FW: Frank-Wolfe.
• MPGW: Mass-Constrained Partial Gromov-Wasserstein.
• ‖ · ‖: Euclidean norm.
• X2 = X ×X.
• M+(X): set of all positive (non-negative) Randon (finite) measures defined on X.
• P2(X): set of all probability measures defined on X, whose second moment is finite.
• R+: set of all non-negative real numbers.
• Rn×m: set of all n×m matrices with real coefficients.
• Rn×m

+ (resp. Rn
+): set of all n × m matrices (resp., n-vectors) with non-negative

coefficients.
• Rn×m×n×m: set of all n×m× n×m tensors with real coefficients.
• 1n, 1n×m, 1n×m×n×m: vector, matrix, and tensor of all ones.
• 1E : characteristic function of a measurable set E

1E(z) =

{
1 if z ∈ E,
0 otherwise.

• X,Y: metric measure spaces (mm-spaces): X = (X, dX , µ), Y = (Y, dY , ν).

• CX : given a discrete mm-space X = (X, dX , µ), where X = {x1, . . . , xn}, the
symmetric matrix CX ∈ Rn×n is defined as CX

i,i′ = dqX(xi, x
′
i).

• µ⊗2: product measure µ⊗ µ.
• T#σ: T : X → Y is a measurable function and σ is a measure on X. T#σ is the

push-forward measure of σ, i.e., its is the measure on Y such that for all Borel set
A ⊂ Y , T#σ(A) = σ(T−1(A)).

• γ, γ1, γ2: γ is a joint measure defined in a product space having γ1, γ2 as its first and
second marginals, respectively. In the discrete setting, they are viewed as matrices
and vectors, i.e., γ ∈ Rn×m

+ , and γ1 = γ1m ∈ Rn
+, γ2 = γ>1n ∈ Rm

+ .
• π1 : X × Y → X, canonical projection mapping, with (x, y) 7→ x. Similarly,
π2 : X × Y → Y is canonical projection mapping, with (x, y) 7→ y.

• π1,2 : S ×X × Y → X × Y , canonical projection mapping, with (s, x, y) → (x, y).
Similarly, π0,1 maps (s, x, y) to (s, x); π0,2 maps (s, x, y) to (s, y).

• Γ(µ, ν), where µ ∈ P2(X), ν ∈ P2(Y ) (where X,Y may not necessarily be the same
set): it is the set of all the couplings (transportation plans) between µ and ν, i.e.,
Γ(µ, ν) := {γ ∈ P2(X × Y ) : γ1 = µ, γ2 = ν}.

• Γ(p, q): set of all the couplings between the discrete probability measures µ =∑n
i=1 p

X
i δxi

and ν =
∑m

j=1 q
Y
j δyj

with weight vectors

p = [pX1 , . . . , p
X
n ]> and q = [qY1 , . . . , q

Y
m]>. (20)

That is, Γ(p, q) coincides with Γ(µ, ν), but it is viewed as a subset of n×m matrices
defined in (12).

• p, q: real numbers 1 ≤ p, q <∞.
• p, q: vectors of weights as in (20).
• p = [p1, . . . , pn] ≤ p′ = [p′1, . . . , p

′
n] if pj ≤ p′j for all 1 ≤ j ≤ n.
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• |p| =
∑n

i=1 pi for p = [p1, . . . , pn].
• c(x, y) : X×Y → R+ denotes the cost function used for classical and partial optimal

transport problems. lower-semi continuous function.
• OT (µ, ν): it is the classical optimal transport (OT) problem between the probability

measures µ and ν defined in (1).
• Wp(µ, ν): it is the p-Wasserstein distance between the probability measures µ and
ν defined in (2), for 1 ≤ p <∞.

• POT (µ, ν;λ): the Partial Optimal Transport (OPT) problem defined in (3).
• |µ|: total variation norm of the positive Randon (finite) measure µ defined on a

measurable space X, i.e., |µ| = µ(X).
• µ ≤ σ: denotes that for all Borel set B ⊆ X we have that the measures µ, σ ∈
M+(X) satisfy µ(B) ≤ σ(B).

• Γ≤(µ, ν), where µ ∈M+(X), ν ∈M+(Y ): set of all “partial transportation plans”
Γ≤(µ, ν) := {γ ∈M+(X × Y ) : γ1 ≤ µ, γ2 ≤ ν}.

• Γ≤(p, q): set of all the “partial transportation plans” between the discrete prob-
ability measures µ =

∑n
i=1 p

X
i δxi

and ν =
∑m

j=1 q
Y
j δyj

with weight vectors
p = [pX1 , . . . , p

X
n ] and q = [qY1 , . . . , q

Y
m]. That is, Γ≤(p, q) coincides with Γ≤(µ, ν),

but it is viewed as a subset of n×m matrices defined in (13).
• λ > 0: positive real number.
• ∞̂: auxiliary point.
• X̂ = X ∪ {∞̂}.
• µ̂, ν̂: given in (4).
• p̂, q̂: given in (53).
• γ̂: given in (6).
• ĉ(·, ·) : X̂ × Ŷ → R+: cost as in (5).
• L : R× R→ R: cost function for the GW problems.
• D : R× R→ R: generic distance on R used for GW problems.
• GWL(·, ·): GW optimization problem given in (7).
• GW p(·, ·): GW optimization problem given in (7) when L(a, b) = |a− b|p.
• GWL

q (·, ·): general GW optimization problem for g ≥ 1 given in (33).
• GW p

q (·, ·): general GW optimization problem for q ≥ 1 and L(a, b) = |a− b|p given
in (34).

• GW p
λ,q(·, ·): generalized GW problem given in (39).

• ĜW : GW-variant problem given in (51) for the general case, and in (55) for the
discrete setting.

• L̂: cost given in (16) for the GW-variant problem.
• d : X̂ × X̂ → R+ ∪ {∞}: “generalized” metric given in (50) for X̂.
• X ∼ Y: equivalence relation in for mm-spaces, X ∼ Y if and only if they have the

same total mass and GW p
q (X,Y) = 0.

• PGWL
λ,q(·, ·): partial GW optimization problem given in (9) or, equivalently, in

(10).
• PGW p

λ,q(·, ·): partial GW optimization problem given in (10) when L(a, b) = |a−b|p.
• PGWλ(·, ·): is is the PGW problem PGW p

λ,q(·, ·) for the case when p = 2 = q.
• µ(φ): given a measure µ and a function φ,

µ(φ) :=

∫
φ(x)dµ(x).
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• C(γ;λ, µ, ν): the transportation cost induced by transportation plan γ ∈ Γ≤(µ, ν)
in the Partial GW problem 10,

C(γ;λ, µ, ν) := γ⊗2(L(dqX , d
q
Y )) + λ(|µ|2 + |ν|2 − 2|γ|2).

• L: functional for the optimization problem PGWλ(·, ·).
• M , M̃ , and M̂ : see (14), and (54). Notice that, (M − 2λ)i,i′,j,j′ :=Mi,i′,j,j′ − 2λ.

• 〈·, ·〉F : Frobenius inner product for matrices, i.e., 〈A,B〉F = trace(A>B) =∑n,m
i,j Ai,jBi,j for all A,B ∈ Rn×m.

• M ◦ γ: product between the tensor M and the matrix γ.
• ∇: gradient.
• [1 : n] = {1, . . . , n}.
• α: step size based on the line search method.
• γ(1): initialization of the algorithm.
• γ(k), γ(k)′ : previous and new transportation plans before and after step 1 in the
k−th iteration of version 1 of our proposed FW algorithm.

• γ̂(k), γ̂(k)′ : previous and new transportation plans before and after step 1 in the
k−th iteration of version 2 of our proposed FW algorithm.

• G = 2M̃ ◦γ, Ĝ = 2M̂ ◦ γ̂: Gradient of the objective function in version 1 and version
2, respectively, of our proposed FW algorithm for solving the discrete version of
partial GW problem.

• (δγ, a, b) and (δγ̂, a, b): given in (18) and (56) for versions 1 and 2 of the algorithm,
respectively.

• C1-function: continuous and with continuous derivatives.
• MPGWρ(·, ·): Mass-Constrained Partial Gromov-Wasserstein defined in (77).
• Γρ

≤(µ, ν): set transportation plans defined in (78) for the Mass-Constrained Partial
Gromov-Wasserstein problem.

B Proof of Proposition 3.2

The idea of the proof is inspired by the proof of Proposition 1 in (Piccoli & Rossi, 2014).
The goal is to verify that

PGWL
λ,q(X,Y)

:= inf
γ∈M+(X,Y )

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

︸ ︷︷ ︸
transport GW cost

+λ
(
|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |
)︸ ︷︷ ︸

mass penalty

= inf
γ∈Γ≤(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2 + λ

(
|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |
)
. (21)

Consider γ ∈M+(X×Y ) such that γ1 ≤ µ does not hold. Then we can write the Lebesgue
decomposition of γ1 with respect to µ:

γ1 = fµ+ µ⊥,

where f ≥ 0 is the Radon-Nikodym derivative of γ1 with respect to µ, and µ⊥, µ are mutually
singular, that is, there exist measurable sets A,B such that A ∩ B = ∅, X = A ∪ B and
µ⊥(A) = 0, µ(B) = 0. Without loss of generality, we can assume that the support of f lies
on A, since

γ1(E) =

∫
E∩A

f(x) dµ(x) + µ⊥(E ∩B) ∀E ⊆ X measurable.
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Define A1 = {x ∈ A : f(x) > 1}, A2 = {x ∈ A : f(x) ≤ 1} (both are measurable, since f is
measurable), and define µ̄ = min{f, 1}µ. Then,

µ̄ ≤ µ and µ̄ ≤ fµ ≤ fµ+ µ⊥ = γ1.

There exists a γ̄ ∈ M+(X × Y ) such that γ̄1 = µ̄, γ̄ ≤ γ, and γ̄2 ≤ γ2. Indeed, we can
construct γ̄ in the following way: First, let {γx}x∈X be the set of conditional measures
(disintegration) such that for every measurable (test) function ψ : X × Y → R we have∫

ψ(x, y) dγ(x, y) =

∫
X

∫
Y

ψ(x, y) dγx(y) dγ1(x).

Then, define γ̄ as

γ̄(U) :=

∫
X

∫
Y

1U (x, y) dγ
x(y) dµ̄(x) ∀U ⊆ X × Y Borel.

Then, γ̄ verifies that γ̄1 = µ̄, and since µ̄ ≤ γ1, we also have that γ̄ ≤ γ, which implies
γ̄2 ≤ γ2.
Since |γ1| = |γ2| and |γ̄1| = |γ̄2|, then we have |γ⊗2

1 − γ̄⊗2
1 | = |γ

⊗2
2 − γ̄⊗2

2 |.
We claim that

|µ⊗2 − γ⊗2
1 | ≥ |µ⊗2 − γ̄⊗2

1 |+ |γ
⊗2
1 − γ̄⊗2

1 |. (22)

• Left-hand side of (22): Since {A,B} is a partition of X, we first split the left-hand
side of (22) as

|µ⊗2 − γ⊗2
1 | = (µ⊗2 − γ⊗2

1 )(A×A)︸ ︷︷ ︸
(I)

+(µ⊗2 − γ⊗2
1 )(A×B) + (µ⊗2 − γ⊗2

1 )(B ×A)︸ ︷︷ ︸
(II)

+ (µ⊗2 − γ⊗2
1 )(B ×B)︸ ︷︷ ︸
(III)

.

Then we have

(III) = (µ⊗2 − γ⊗2
1 )(B ×B) = µ⊥ ⊗ µ⊥(B ×B) = |µ⊥|2,

(II) = (µ⊗2 − γ⊗2
1 )(A×B) + (µ⊗2 − γ⊗2

1 )(B ×A) = 2|µ⊥|(µ− γ1)(A).

Since γ1 = fµ in A, then γ̄1 = γ1 in A2 and γ̄1 = µ in A1, so we have

(µ− γ1)(A) = (µ− γ1)(A1) + (µ− γ1)(A2) = (γ1 − γ̄1)(A1) + (µ− γ̄1)(A2)

= (γ1 − γ̄1)(A) + (µ− γ̄1)(A).

Thus,

(II) = 2|µ⊥|((γ1 − γ̄1)(A) + (µ− γ̄1)(A)),

and we also get that

(I) = (µ⊗2 − γ⊗2
1 )(A×A)

= (µ⊗2 − γ⊗2
1 )(A1 ×A1) + (µ⊗2 − γ⊗2

1 )(A2 ×A2) + (µ⊗2 − γ⊗2
1 )(A1 ×A2)

+ (µ⊗2 − γ⊗2
1 )(A2 ×A1)

= (γ⊗2
1 − γ̄⊗2

1 )(A1 ×A1) + (µ⊗2 − γ̄⊗2
1 )(A2 ×A2)+

+ |γ̄1 ⊗ µ− γ1 ⊗ γ̄1|(A1 ×A2) + |µ⊗ γ̄1 − γ̄1 ⊗ γ1|(A2 ×A1)

= (γ⊗2
1 − γ̄⊗2

1 )(A1 ×A1) + (µ⊗2 − γ̄⊗2
1 )(A2 ×A2) + 2(γ̄1 − γ1)(A1)(µ− γ̄1)(A2)

= (γ⊗2
1 − γ̄⊗2

1 )(A×A) + (µ⊗2 − γ̄⊗2
1 )(A×A) + 2(γ̄1 − γ1)(A1)(µ− γ̄1)(A2)︸ ︷︷ ︸

≥0

.

• Right-hand side of (22): First notice that

(γ1 − γ̄1)(B) = (γ1 − γ̄1)(B) ≤ γ1(B) = |µ⊥|,
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and since γ̄1 ≤ µ and µ(B) = 0, we have

(µ− γ̄1)(B) = 0.

Then,

|µ⊗2 − γ̄⊗2
1 |+ |γ

⊗2
1 − γ̄⊗2

1 | =
= (µ⊗2 − γ̄⊗2

1 )(A×A) + (γ⊗2
1 − γ̄⊗2

1 )(A×A) + (µ⊗2 − γ̄⊗2
1 )(B ×B)

+ (γ⊗2
1 − γ̄⊗2

1 )(B ×B) + (µ⊗2 − γ̄⊗2
1 )(A×B) + (γ⊗2

1 − γ̄⊗2
1 )(A×B)

+ (µ⊗2 − γ̄⊗2
1 )(B ×A) + (γ⊗2

1 − γ̄⊗2
1 )(B ×A)

≤ (µ⊗2 − γ̄⊗2
1 )(A×A) + (γ⊗2

1 − γ̄⊗2
1 )(A×A)︸ ︷︷ ︸

≤(I)

+ |µ⊥|2︸ ︷︷ ︸
=(III)

+2|µ⊥|(γ1 − γ̄1)(A)︸ ︷︷ ︸
=(II)

.

Thus, (22) holds.
We finish the proof of the proposition by noting that

|µ⊗2 − γ̄⊗2
1 |+ |ν⊗2 − γ̄⊗2

2 | ≤ |µ⊗2 − γ⊗2
1 | − |γ

⊗2
1 − γ̄⊗2

1 |+ |ν⊗2 − γ̄⊗2
2 |

= |µ⊗2 − γ⊗2
1 | − |γ

⊗2
2 − γ̄⊗2

2 |+ |ν⊗2 − γ̄⊗2
2 |

≤ |µ⊗2 − γ⊗2
1 |+ |ν⊗2 − γ⊗2

2 |

where the first inequality follows from (22), and the second inequality holds from the fact
the total variation norm | · | satisfies triangular inequality. Therefore, γ̄ induces a smaller
transport GW cost than γ (since γ̄ ≤ γ), and also γ̄ decreases the mass penalty in comparison
that corresponding to γ. Thus, γ̄ is a better GW transportation plan, which satisfies γ̄1 ≤ µ.
Similarly, we can further construct γ̄′ based on γ̄ such that γ̄′1 ≤ µ, γ̄′2 ≤ ν. Therefore, we
can restrict the minimization in (9) from M+(X × Y ) to Γ≤(µ, ν). Thus, the equality (21)
is satisfied.

Proof of Remark 3.1. Given γ ∈ Γ≤(µ, ν), since γ1 ≤ µ, γ2 ≤ ν, and γ1(X) = |γ1| = |γ| =
|γ2| = γ2(Y ), we have

|µ⊗2 − γ⊗2
1 |+ |ν⊗2 − γ⊗2

2 | = µ⊗2(X2)− γ⊗2
1 (X2) + ν⊗2(Y 2)− γ⊗2

2 (Y 2)

= |µ|2 + |ν|2 − 2|γ|2,

and so the transportation cost in partial GW problem (10) becomes

C(γ;λ, µ, ν)

:=

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) dγ(x, y)dγ(x′, y′) + λ

(
|µ⊗2 − γ⊗2

1 |+ |ν⊗2 − γ⊗2
2 |
)

=

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) dγ(x, y)dγ(x′, y′) + λ

(
|µ|2 + |ν|2 − 2|γ|2

)
=

∫
(X×Y )2

(L(dqX(x, x′), dqY (y, y
′)− 2λ) dγ(x, y)dγ(x′, y′) + λ

(
|µ|2 + |ν|2

)︸ ︷︷ ︸
does not depend on γ

. (23)

C Proof of Proposition 3.3

In this section, we discuss the minimizer of the Partial GW problem (9). Trivially,
Γ≤(µ, ν) ⊆ M+(X × Y ) and by using Proposition 3.2 it is enough to show that a min-
imizer for problem (10) exists.
We refer the reader to Mémoli (2011, Chapters 5 and 10) for similar ideas.
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C.1 Formal Statement of Proposition 3.3

Suppose X,Y are compact sets, then exists compact set [0, β] ⊂ R, such that
d(x, x′), d(y, y′) ∈ [0, β], ∀x, x′ ∈ X, y, y′ ∈ Y

Let A = [0, βq]. Let LA2 denote the restriction of L on A2, i.e. LA2 : A2 → R with
LA2(r1, r2) = L(r1, r2), ∀r1, r2 ∈ A. Suppose L satisfies the following: there exists 0 < K <
∞ such that for every r1, r′1, r2, r′2 ∈ A,
|LA2(r1, r2)− LA2(r′1, r2)| ≤ K|r1 − r′1|, |LA2(r1, r2)− LA2(r1, r

′
2)| ≤ K|r2 − r′2| (24)

(i.e., LA2 is Lipschitz on each variable). Then PGWL
λ (·, ·) admits a minimizer.

Note, the condition (24) contains the case L(r1, r2) = |r1 − r2|p as a special case:
Lemma C.1. If L(r1, r2) = |r1 − r2|p, for 1 ≤ p <∞, then L satisfies the condition (24).

Proof. Assume that L is defined on an interval of the form [0,M ], for some M > 0. Consider
r1, r

′
1, r2, r

′
2 ∈ [0,M ]. If p = 1, by triangle inequality, we have

|L(r1, r2)− L(r′1, r2)| = ||r1 − r2| − |r′1 − r2|| ≤ |r1 − r′1|
and similarly,

|L(r1, r2)− L(r1, r′2)| ≤ |r2 − r′2|.
From Mémoli (2011, page 473), since for 1 ≤ p < ∞, the function t 7→ tp, for t ∈ [0,M ], is
Lipschitz with constant bounded by pMp−1, we have

|L(r1, r2)− L(r′1, r2)| ≤ pMp−1|r1 − r′1|.
and similarly,

|L(r1, r2)− L(r1, r′2)| ≤ pMp−1|r2 − r′2|.

Lemma C.2. Given q ≥ 1, consider β > 0. Then [0, β] 3 c 7→ cq ∈ [0, βq] is a Lipschitz
function.

Proof. Given c1, c2 ∈ [0, β], we have

|cq1 − c
q
2| ≤ qβq−1|c1 − c2| (25)

Thus, c 7→ cq is a Lipschitz function.

C.2 Convergence Auxiliary Result

If a sequence {γn} converges weakly to γ, we write γn w
⇀ γ. In this setting, if γn w

⇀ γ, it
does not imply that (γn)⊗2 w

⇀ γ⊗2. Thus, the technique used in classical OT for proving the
existence of a minimizer for the optimal transport optimization problem as a consequence of
the Stone-Weierstrass theorem does not apply directly in the Gromov-Wasserstein context.
Inspired by (Mémoli, 2011), we introduce the following lemma.
Lemma C.3. Given metric space (Z, dZ), suppose φ : Z2 → R is a Lipschitz continuous
function with respect to (Z2, d+Z ), where

d+Z ((z1, z2), (z
′
1, z

′
2)) := dZ(z1, z

′
1) + dZ(z2, z

′
2), ∀(z1, z2), (z′1, z′2) ∈ Z2.

Given γ ∈M+(Z), and a sequence {γn}n≥1 ∈M+(Z) such that converges weakly to γ,

γn
w
⇀ γ (n→∞).

Finally, consider the mapping

Z 3 z 7→ γ(φ(z, ·)) :=
∫
Z

φ(z, z′)dγ(z′) ∈ R.

Then we have the following results:
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(1) γn(φ(z, ·))→ γ(φ(z, ·)) uniformly (when n→∞).

(2) (γn)⊗2(φ(·, ·))→ γ⊗2(φ(·, ·)) (when n→∞).

(3) If M ⊂ M+(Z) is compact for the weak convergence, then infγ∈M γ⊗2(φ(·, ·))
admits a minimizer.

Proof. The main idea of the proof is similar to Mémoli (2011, Lemma 10.3): we extend it
from P+(Z) to M+(Z).

(1) Since γn w
⇀ γ, and Z is compact, we have |γn| → |γ|. Then, given ε > 0, for n

sufficiently large we have |γn| ≤ |γ|+ ε.
Let us denote by ‖φ‖Lip the Lipschitz constant of φ. For any z1, z2 ∈ Z, we have:

|γn(φ(z1, ·))− γn(φ(z2, ·))| ≤
∫
Z

|φ(z1, z)− φ(z2, z)|γn(z)

≤ max
z∈Z
|φ(z1, z)− φ(z2, z)|(|γ|+ ε)

≤ (|γ|+ ε)‖φ‖Lip dZ(z1, z2) = KdZ(z1, z2),

where K = (|γ|+ ε)‖φ‖Lip is a finite positive value. Note that the above inequality
also holds if we replace γn with γ.

Since (Z, dZ) is compact, Z =
⋃N

i=1B(zi, ε/K) for some z1, . . . , zN ∈ Z, where
B(zi, ε/3K) = {z ∈ Z : dZ(z, zi) ≤ ε/3K} is the closed ball centered at zi, with
radius ε/K. By definition of weak convergence, when n is sufficiently large,

|γn(φ(zi, ·))− γ(φ(zi, ·))| < ε/3, for each i ∈ [1 : N ].

Given z ∈ Z, then z ∈ B(zi) for some zi. For sufficiently large n, we have:
|γn(φ(z, ·))− γ(φ(z, ·))|
≤ |γn(φ(z, ·))− γn(φ(zi, ·))|+ |γn(φ(zi, ·))− γ(φ(zi, ·))|+ |γ(φ(zi, ·))− γ(φ(z, ·))|
≤ Kd(z, zi) + ε/3 +Kd(z, zi) = ε/3 + ε/3 + ε/3 = ε. (26)

Thus, we prove the first statement.

(2) We recall that we do not have (γn)⊗2 w
⇀ γ⊗2.

Consider an arbitrary ε > 0. We have,
0 ≤ lim sup

n→∞
|(γn)⊗2(φ)− (γ)⊗2(φ)| (27)

≤ lim sup
n→∞

|(γn ⊗ γn)(φ)− (γ ⊗ γn)(φ)|︸ ︷︷ ︸
An

+ lim sup
n→∞

|(γn ⊗ γ)(φ)− (γ ⊗ γ)(φ)|︸ ︷︷ ︸
Bn

.

For the first term, when n is sufficiently large, by statement (1), we have:

An =

∫
(γn(φ(z, ·))− γ(φ(z, ·)) dγn(z)

≤ max
z
|γn(φ(z, ·))− γ(φ(z, ·)||γn|

≤ ε(|γ|+ ε) (28)
Thus, lim supnA = limnA = 0.
Similarly, for the second term, when n is sufficiently large, we have

Bn :=

∫
(γn(φ(z, ·))− γ(φ(z, ·)))dγ(z) ≤ ε|γ|. (29)

Thus, lim supnBn = limnBn = 0.
Therefore, from (27), (28) and (29), we obtain

lim sup
n→∞

|(γn)⊗2(φ)− (γ)⊗2(φ)| = lim
n→∞

|(γn)⊗2(φ)− (γ)⊗2(φ)| = 0. (30)
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(3) Let γn ∈ M be a sequence such that (γn)⊗2(φ) (weakly) converges to
infγ∈M γ⊗2(φ). Since M is compact, there exists a sub-sequence γnk

w
⇀ γ for

some γ ∈M. Then, by statement (2), we have:

γ⊗2(φ) = lim
k
(γnk)⊗2(φ) = inf

γ∈M
γ⊗2(φ),

and we complete the proof.

C.3 Proof of the Formal Statement for Proposition 3.3

The proof follows the ideas of Mémoli (2011, Corollary 10.1).
Define (Z, dZ) as Z := X × Y , with dZ((x, y), (x

′, y′)) := dX(x, x′) + dY (y, y
′).

We claim that the following mapping
(X × Y )2 = Z2 → R
((x, y), (x′, y′)) 7→ φ((x, y), (x′, y′)) := L(dqX(x, x′), dqY (y, y

′))− 2λ

is a Lipschitz function with respect to d+Z , where L satisfies (24). Indeed, given
((x1, y1), (x

′
1, y

′
1)), ((x2, y2), (x

′
2, y

′
2)) ∈ Z2, we have:

|φ((x1, y1), (x′1, y′1))− φ((x2, y2), (x′2, y′2))|
= |L(dX(x1, x

′
1), dY (y1, y

′
1))− L(dX(x2, x

′
2), dY (y2, y

′
2))|

≤ |L(dX(x1, x
′
1), dY (y1, y

′
1))− L(dX(x2, x

′
2), dY (y1, y

′
1))|

+ |L(dX(x2, x
′
2), dY (y1, y

′
1))− L(dX(x2, x

′
2), dY (y2, y

′
2))|

≤ K|dqX(x1, x
′
1)− d

q
X(x2, x

′
2)|+K|dqY (y1, y

′
1)− d

q
Y (y2, y

′
2)|

≤ K ′|dX(x1, x
′
1)− dX(x2, x

′
2)|+K ′|dY (y1, y′1)− dY (y2, y′2)| (31)

≤ K ′(dX(x1, x
′
2) + dX(x′1, x

′
2)) +K ′(dY (y1, y2) + dY (y

′
1, y

′
2)) (32)

= K ′ [((dX(x1, x2) + dY (y1, y2)) + ((dX(x′1, x
′
2) + dY (y

′
1, y

′
2))]

= K ′ [dZ((x1, y1), (x2, y2)) + dZ((x
′
1, y

′
1), (x

′
2, y

′
2))]

= K ′d+Z (((x1, y1), (x2, y2)), ((x1, y1), (x2, y2)))

where in (31), K ′ = qβq−1K; the inequality holds by lemma C.2; The inequality (32) follows
from the triangle inequality:

dX(x1, x
′
1)− dX(x2, x

′
2) ≤ dX(x1, x2) + dX(x2, x

′
2) + dX(x′2, x

′
1)− dX(x2, x

′
2)

= dX(x1, x2) + dX(x′1, x
′
2),

and similarly,
dX(x2, x

′
2)− dX(x1, x

′
1) ≤ dX(x1, x2) + dX(x′1, x

′
2).

Let M = Γ≤(µ, ν). From Liu et al. (2023, Proposition B.1), we have that Γ≤(µ, ν) is a
compact set with respect to the weak convergence topology.
By Lemma (C.3) part (3), we have the PGW problem, which can be written as

inf
γ∈Γ≤(µ,ν)

γ⊗2(φ) + λ(|µ|2 + |ν|2)

admits a solution, i.e., a minimizer γ ∈ Γ≤(µ, ν). Therefore, we end the proof of Proposition
3.3.

D Proof of Proposition 3.4: Metric Property of Partial GW

Let L(r1, r2) = Dp(r1, r2) for a metric D on R, and since all the metrics in R are equivalent,
for simplicity, consider D(r1, r2) = |r1 − r2|. (Notice that this satisfies the hypothesis of
Proposition H.1 used in the experiments).
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Consider the GW problem, for q ≥ 1,

GWL
q (X,Y) := inf

γ∈Γ(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) dγ⊗2, (33)

or, in particular,

GW p
q (X,Y) := inf

γ∈Γ(µ,ν)

∫
(X×Y )2

|dqX(x, x′)− dqY (y, y
′)|p dγ⊗2. (34)

For probability mm-spaces we have the equivalence relation X ∼ Y if and only if
GW p

q (X,Y) = 0.

By Mémoli (2011, Chapter 5), X ∼ Y is equivalent to the following: there exists a bijective
isometry mapping φ : X → Y , such that

dX(x, x′)− dY (φ(x), φ(x′)) = 0, µ⊗2 − a.s.
φ#µ = ν.

Remark D.1. In the literature, the case where q = 1 is the most frequently considered
problem. In particular, in (Mémoli, 2011) it is stated the equivalence relation X ∼ Y if and
only if there exists φ : X → Y such that φ#µ = ν and dX(x, x′) = dY (φ(x), φ(x

′)) µ⊗2−a.s.
if and only if GW p

1 (X,Y) = 0. Thus, X ∼ Y is also equivalent to have φ : X → Y such that
φ#µ = ν and dX(x, x′) = dY (y, y

′) γ⊗2−a.s. where γ is a minimizer for GW p
1 (X,Y). So, in

this situation we also have dqX(x, x′) = dqY (y, y
′) γ⊗2 − a.s. for any given q ≥ 1. Therefore,

X ∼ Y if and only if GW p
q (X,Y) = 0.

D.1 Formal Statement of Proposition 3.4

We first introduce the formal statement of Proposition 3.4. To do so, we extend the equiv-
alence relation ∼ to all mm-spaces (not only probability mm-spaces): Given arbitrary
mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), where X,Y are compact and µ ∈ M+(X),
ν ∈ M+(Y ), we write X ∼ Y if and only if they have the same total mass (i.e.,
|µ| = µ(X) = ν(Y ) = |ν|) and GW p

q (X,Y) = 0.
Formal statement of Proposition 3.4: Given λ > 0, 1 ≤ p, q < ∞, then
(PGW p

λ,q(·, ·))1/p defines a metric among mm-spaces under taking quotient with respect
to the equivalence relation ∼.
Next, we discuss its proof.

D.2 Non-Negativity and Symmetry Properties

It is straightforward to verify PGW p
λ,q(X,Y) ≥ 0, and that PGW p

λ,q(X,Y) = PGW p
λ,q(Y,X).

In what follows, we will concentrate on proving PGW p
λ,q(X,Y) = 0 if and only if X ∼ Y:

If X ∼ Y, then |µ| = |ν|, and we have
0 ≤ PGW p

λ,q(X,Y) ≤ GW
p
q (X,Y) = 0,

where the inequality follows from the fact Γ(µ, ν) ⊆ Γ≤(µ, ν). Thus, PGW p
λ,q(X,Y) = 0.

For the other direction, suppose that PGW p
λ,q(X,Y) = 0. We claim that |µ| = |ν| and that

there exist an optimal plan γ for PGW p
λ,q(X,Y) such that |µ| = |γ| = |ν|. Let us prove

this by contradiction. Assume |µ| < |ν|. For convenience, suppose |µ|2 ≤ |ν|2 − ε, for some
ε > 0. Then, for each γ ∈ Γ≤(µ, ν), we have |γ⊗2| ≤ |µ|2 ≤ |ν|2 − ε, and so

PGW p
λ,q(X,Y) ≥ λ(|µ|

2 + |ν|2 − 2|γ|2) ≥ λ(|ν2| − |γ|2) ≥ λε > 0.

Thus, PGW p
λ,q(X,Y) > 0, which is a contradiction. So, |µ| = |ν|. In addition, if γ ∈ Γ≤(µ, ν)

is optimal for PGW p
λ,q(X,Y), we have |γ| = |µ| = |ν|, thus γ ∈ Γ(µ, ν). Therefore, since

PGW p
λ,q(X,Y) = 0, and for such optimal γ we have |γ| = |µ| = |ν|, we obtain∫

(X×Y )2
|dqX(x, x′)− dqY (y, y

′)|pdγ⊗2 = 0.
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As a result, dqX(x, x′) = dqY (y, y
′) γ⊗2 − a.s., which implies that GW p

q (X,Y) = 0, and so
X ∼ Y.

D.3 Triangle Inequality – Strategy: Convert the PGW Problem into a
GW Problem

Consider three arbitrary mm-spaces S = (S, dS , σ), X = (X, dX , µ), Y = (Y, dY , ν). We
define Ŝ = (Ŝ, dŜ , σ̂), X̂ = (X̂, dX̂ , µ̂), Ŷ = (Ŷ , dŶ , ν̂) in a similar way to that of Proposition
G.1 but now aiming to have new spaces with equal total mass:
First, introduce auxiliary points ∞̂0, ∞̂1, ∞̂2 and set

Ŝ = S ∪ {∞̂0, ∞̂1, ∞̂2},
X̂ = X ∪ {∞̂0, ∞̂1, ∞̂2},
Ŷ = Y ∪ {∞̂0, ∞̂1, ∞̂2}.

Define σ̂, µ̂, ν̂ as follows: 
σ̂ = σ + |µ|δ∞̂1

+ |ν|δ∞̂2
,

µ̂ = µ+ |σ|δ∞̂0 + |ν|δ∞̂2 ,

ν̂ = ν + |σ|δ∞̂0
+ |µ|δ∞̂1

.

(35)

Note that σ̂ is not supported on point ∞̂0, similarly, µ̂ is not supported on ∞̂1, ν̂ is not
supported on ∞̂2. In addition, we have |µ̂| = |ν̂| = |σ̂| = |µ|+ |ν|+ |σ|. (For a similar idea
in classical unbalanced optimal transport, see, for example, (Heinemann et al., 2023).)

Finally, define dŜ : Ŝ2 → R ∪ {∞} as follows:

dŜ(s, s
′) =

{
dS(s, s

′) if (s, s′) ∈ S2,

∞ elsewhere. (36)

Note, dŜ(·, ·) is not a rigorous metric in Ŝ since we allow dŜ =∞. Similarly, define dX̂ , dŶ .
As a result, we have constructed new spaces

Ŝ = (Ŝ, dŜ , σ̂), X̂ = (X̂, dX̂ , µ̂), Ŷ = (Ŷ , dŶ , ν̂). (37)

We define the following mapping Dλ : (R ∪ {∞})× (R ∪ {∞})→ R+:

Dp
λ(r1, r2) =


|r1 − r2|p if r1, r2 <∞,
λ if r1 =∞, r2 <∞ or vice versa,
0 if r1 = r2 =∞.

(38)

Note that Dλ is not a rigorous metric since it may sometimes violate triangle inequality.
See the following lemma for a detailed and precise explanation.
Lemma D.2. Let Dλ(·, ·) denote the function defined in (38). For any r0, r1, r2 ∈ R∪{∞},
we have the following:

• Dλ(r1, r2) ≥ 0. Dλ(r1, r2) = 0 if and only if r1 = r2, where r1 = r2 denotes that
r1 = r2 ∈ R or r1 = r2 =∞.

• Except the case r1, r2 ∈ R, r0 =∞, for all other cases, we have

Dλ(r1, r2) ≤ Dλ(r1, r0) +Dλ(r2, r0).

Proof of Lemma D.2. It is straightforward to verify Dλ(·, ·) ≥ 0.
Now, consider r0, r1, r2 ∈ R ∪ {∞}. If r1 = r2 ∈ R or r1 = r2 =∞, we have Dλ(r1, r2) = 0.
Otherwise, Dλ(r1, r2) > 0. So, Dλ(r1, r2) = 0 if and only if r1 = r2.
For the second item, we have the following cases:
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Case 1: r1, r2, r0 ∈ R,

Dλ(r1, r2) = |r1 − r2|
≤ |r1 − r2|+ |r2 − r0|
= Dλ(r0, r1) +Dλ(r0, r2)

Case 2: r1, r2 ∈ R, r0 =∞. We do not need to verify the inequality in this case.
Case 3: r1 ∈ R, r2, r0 =∞, or r1 =∞, r2 ∈ R, r0 =∞. In this case, we have

Dλ(r1, r2) = Dλ(r1, r0) =
√
λ,Dλ(r2, r0) = 0

and it is straightforward to verify the inequality.
Case 4: r1, r2 =∞, r3 ∈ R. In this case, we have Dλ(r1, r2) = 0 ≤ Dλ(r0, r1) +Dλ(r0, r2).
Case 5: r1, r2, r0 =∞. In this case, we have

Dλ(r1, r2) = Dλ(r1, r0) = Dλ(r2, r0) = 0

and it is straightforward to verify the inequality.

We construct the following generalized GW problem:

GW p
λ,q(X̂, Ŷ) := inf

γ̂∈Γ(µ̂,ν̂)

∫
(X̂×Ŷ )2

Dp
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂⊗2

︸ ︷︷ ︸
Ĉ(γ̂;λ,µ̂,ν̂)

. (39)

Similarly, we define GW p
λ,q(X̂, Ŝ), and GW p

λ,q(Ŝ, Ŷ).

The mapping (6) is modified as:

Γ≤(σ, µ) 3 γ01 7→ γ̂01 ∈ Γ(σ̂, µ̂),

γ̂01 := γ01 + (σ − γ011 )⊗ δ∞̂0 + δ∞̂1 ⊗ (µ− γ012 ) + |γ|δ∞̂1,∞̂0 + |ν|δ∞̂2,∞̂2 ;

Γ≤(σ, ν) 3 γ02 7→ γ̂02 ∈ Γ(σ̂, ν̂),

γ̂02 := γ02 + (σ − γ021 )⊗ δ∞̂0 + δ∞̂2 ⊗ (ν − γ022 ) + |γ|δ∞̂2,∞̂0 + |µ|δ∞̂1,∞̂1 ;

Γ≤(µ, ν) 3 γ12 7→ γ̂12 ∈ Γ(µ̂, ν̂),

γ̂12 := γ12 + (µ− γ121 )⊗ δ∞̂1 + δ∞̂2 ⊗ (ν − γ122 ) + |γ|δ∞̂2,∞̂1 + |µ|δ∞̂0,∞̂0 . (40)

Remark D.3. It is straightforward to verify the above mappings are well-defined. In
addition, we can observe that, for each γ01 ∈ Γ≤(σ, µ), γ

02 ∈ Γ≤(σ, ν), γ
12 ∈ Γ≤(µ, ν),

γ̂01({∞̂2} ×X) = γ̂01(S × {∞̂2}) = 0, (41)
γ̂02({∞̂1} × Y ) = γ̂02(S × {∞̂1}) = 0, (42)
γ̂12({∞̂0} × Y ) = γ̂12(X × {∞̂0}) = 0.

Proposition D.4. If γ12 ∈ Γ≤(µ, ν) is optimal in PGW problem PGW p
λ,q(X,Y), then

γ̂12 defined in (40) is optimal in generalized GW problem GW p
λ,q(X̂, Ŷ). Furthermore,

Ĉ(γ̂12;λ, µ̂, ν̂) = C(γ12;λ, µ, ν), and thus,

PGW p
λ,q(X,Y) = GW p

λ,q(X̂, Ŷ).

Proof of Proposition D.4. For each γ ∈ Γ≤(µ, ν), define γ̂ by (40).
Note that if we merge the points ∞̂1, ∞̂2, ∞̂3 as ∞̂, i.e.

∞̂ = ∞̂1 = ∞̂2 = ∞̂3,

the value Ĉ(γ̂;λ, µ̂, ν̂) will not change. Thus, we merge these three auxiliary points.
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We have:

Ĉ(γ̂;λ, µ̂, ν̂) =

∫
(X̂×Ŷ )2

Dp
λ(d

q

X̂
(x, x′), dq

Ŷ
(x, x′))dγ̂⊗2

=

∫
(X×Y )2

|dqX(x, x′)− dqY (y, y
′)|pdγ̂⊗2 +

∫
({∞̂}×Y )2

λdγ̂⊗2 +

∫
(X×{∞̂})2

λγ̂⊗2

+ 2

∫
({∞̂}×Y )×(X×Y )

λdγ̂⊗2 + 2

∫
(X×{∞̂})×(X×Y )

λdγ̂⊗2 +

∫
({∞̂}×{∞̂})2

Dp
λ(∞,∞)dγ̂⊗2

+ 2

∫
({∞̂}×Y )×(X×{∞̂})

Dp
λ(∞,∞)dγ̂⊗2 + 2

∫
({∞̂}×{∞̂})×(X×Y )

Dp
λ(∞,∞)dγ̂⊗2

+ 2

∫
({∞̂}×{Y })×{∞̂}2

Dp
λ(∞,∞)dγ̂⊗2 + 2

∫
(X×{∞̂})×{∞̂}2

Dp
λ(∞,∞)dγ̂⊗2

=

∫
(X×Y )2

|dqX(x, x′)− dqY (y, y
′)|pdγ⊗2

+ 2λ(|ν| − |γ|)|γ|+ λ(|ν| − |γ|)2 + 2λ(|µ| − |γ|)|γ|+ λ(|µ| − |γ|)2

=

∫
(X×Y )2

|dqX(x, y′)− dqY (y, y
′)|p dγ⊗2) + λ(|ν2|+ |µ|2 − 2|γ|2) = C(γ;λ, µ, ν).

As we merged the points ∞̂1, ∞̂2, ∞̂3, by Bai et al. (2023, Proposition B.1.), the mapping
γ 7→ γ̂ defined in (40) is a bijection. Then, if γ ∈ Γ≤(µ, ν) is optimal for the PGW
problem PGW p

λ,q(X,Y) (defined in (10)), γ̂ ∈ Γ(µ̂, ν̂) is optimal for generalized GW problem
GW p

λ,q(X̂, Ŷ) (defined in (39)). Therefore,

GW p
λ,q(X̂, Ŷ) = PGW p

λ,q(X,Y).

Proposition D.5 (Triangle inequality for GW p
λ,q(·, ·)). Consider the generalized GW prob-

lem (39). Then, for any p ∈ [1,∞), we have

GW p
λ,q(X̂, Ŷ) ≤ GW

p
λ,q(Ŝ, X̂) +GW p

λ,q(Ŝ, Ŷ).

Proof of Proposition D.5. We prove the case p = 2. For general p ≥ 1, it can be proved
similarly.
Choose an optimal γ12 ∈ Γ≤(µ, ν) for PGW 2

λ,q(X,Y), an optimal γ01 ∈ Γ≤(σ, µ) for
PGW 2

λ,q(S,X), and an optimal γ02 ∈ Γ≤(σ, ν) for PGW 2
λ,q(S,Y). Construct γ̂12, γ̂01, γ̂02 by

(40).

By Proposition D.4, we have that γ̂12, γ̂01, γ̂02 are optimal for GW 2
λ,q(X̂, Ŷ), GW 2

λ,q(Ŝ, X̂),
GW 2

λ,q(Ŝ, Ŷ), respectively.

Define canonical projection mapping

π0,1 :(Ŝ × X̂ × Ŷ )→ (Ŝ × X̂)

(s, x, y) 7→ (s, x).

Similarly, we define π0,2, π1,2.

By gluing lemma (see Lemma 5.5 (Santambrogio, 2015)), there exists γ̂ ∈M+(Ŝ× X̂ × Ŷ ),
such that (π0,1)#γ̂ = γ̂01, (π0,2)#γ̂ = γ̂02. Thus, (π1,2)#γ̂ is a coupling between µ̂, ν̂. We
have

GW 2
λ,q(X,Y) =

∫
(X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))d(γ̂12)⊗2

≤
∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ̂⊗2. (43)
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The inequality holds since (π1,2)#γ̂, γ̂
12 ∈ Γ(µ̂, ν̂), and γ̂12 is optimal.

Next, we will show that

∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ̂⊗2

≤
∫
(Ŝ×X̂×Ŷ )2

(Dλ(d
q

Ŝ
(s, s′), dq

X̂
(x, x′)) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′)))2dγ̂⊗2.

Let ((s, x, y), (s′, x′, y′)) ∈ (Ŝ, X̂, Ŷ )2, and assume that

Dλ(d
2
X̂
(x, x′), d2

Ŷ
(y, y′)) > Dλ(d

2
Ŝ
(s, s′), d2

X̂
(x, x′)) +Dλ(d

2
Ŝ
(s, s′), d2

Ŷ
(y, y′)). (44)

By Lemma D.2, (44) implies dX̂(x, x′), dŶ (y, y
′) ∈ R, dŜ(s, s

′) = ∞. Thus, by definition
(36), it also implies

(x, x′) ∈ X2, (y, y′) ∈ Y 2, (s, s′) ∈ Ŝ2 \ S2. (45)

Define the following sets:

Aα = Ŝ ×X × Y,
A0 = {∞̂0} ×X × Y,
A1 = {∞̂1} ×X × Y,
A2 = {∞̂2} ×X × Y.

Notice that, (44) =⇒ (45) is equivalent to

(44) =⇒ ((s, x, y), (s, x′, y′)) ∈ A :=

2⋃
i=0

(Ai ×Aα) ∪
2⋃

i=0

(Aα ×Ai). (46)

Next, we will show γ̂⊗2(A) = 0. Indeed,

γ̂(A0) ≤ γ̂({∞0} × X̂ × Ŷ ) = σ̂({∞0}) = 0 by definition (35) of σ̂ ,
γ̂(A1) ≤ γ̂({∞1} × X̂ × Y ) = γ̂02({∞̂1 × Y }) = 0 by (42),

γ̂(A2) ≤ γ̂({∞2} ×X × Ŷ ) = γ̂01({∞̂2 ×X}) = 0 by (41).

Thus, γ̂⊗2(A) = 0. By considering B = (Ŝ × X̂ × Y )2 \A, we obtain

∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ⊗2

=

∫
B

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ⊗2 since γ⊗2(A) = 0

≤
∫
B

(
Dλ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))

)2
dγ⊗2 by (46)

≤
∫
(Ŝ×X̂×Ŷ )2

(
Dλ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))

)2
dγ⊗2. (47)
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Following (43) and (47), we have

GW 2
λ,q(X̂, Ŷ) ≤

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

X̂
(x, x′), dq

Ŷ
(y, y′))dγ̂⊗2

)1/2

≤

(∫
(Ŝ×X̂×Ŷ )2

(
Dλ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′)) +Dλ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))

)2
dγ⊗2

)1/2

≤

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′))dγ⊗2

)1/2

+

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))dγ⊗2

)1/2

(48)

=

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

X̂
(x, x′))d(γ01)⊗2

)1/2

+

(∫
(Ŝ×X̂×Ŷ )2

D2
λ(d

q

Ŝ
(s, s′), dq

Ŷ
(y, y′))d(γ02)⊗2

)1/2

= GW 2
λ,q(Ŝ, X̂) +GW 2

λ,q(Ŝ, Ŷ),

where in the third inequality (48) we used the Minkowski inequality in L2((Ŝ×X̂×Ŷ )2, γ̂⊗2).

Now, we can complete the proof of Proposition 3.4: By the Propositions D.4, we have
PGW p

λ,q(X,Y) = GW p
λ,q(X̂, Ŷ)

and similarly for PGW p
λ,q and (S,X), PGW p

λ,q(S,Y). By the Proposition D.5, GW p
λ,q(·, ·)

satisfies the triangle inequality, thus We complete the proof:
PGW p

λ,q(X,Y) = GW p
λ,q(X̂, Ŷ)

≤ GW p
λ,q(Ŝ, X̂) +GW p

λ,q(Ŝ, Ŷ)
= PGW p

λ,q(S,X) + PGW p
λ,q(S,Y).

E Proof of Proposition 3.5: PGW converges to GW as λ→∞.

In the main text, we set λ ∈ R. In this section, we discuss the limit case when λ→∞.
Lemma E.1. Suppose |µ| ≤ |ν|, for each γ ∈ Γ≤(µ, ν), there exists γ′ ∈ Γ≤(µ, ν) such that
γ ≤ γ′ and (π1)#γ

′ = µ.

Proof. Let γ ∈ Γ≤(µ, ν).
If |γ| = |µ|, then we have (π1)#γ = µ.
If |γ| < |µ|, let µr = µ − (π1)#γ, ν

r = ν − (π2)#γ. We have that µr, νr are non-negative
measures, with |µr| = |µ| − |γ| > 0. If we define

γ′ := γ +
1

|ν| − |γ|
µr ⊗ νr,

we obtain γ ≤ γ′. In addition, we have:

(π1)#γ
′ = (π1)#γ + µr |νr|

|ν| − |γ|
= (π1)#γ + µr = µ,

(π2)#γ
′ = (π2)#γ + νr

|µr|
|ν| − |γ|

≤ (π2)#γ + νr
|νr|
|ν| − |γ|

= ν.

Thus, γ′ ∈ Γ≤(µ, ν) and (π1)#γ
′ = µ.
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Lemma E.2. Given general mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), where µ, ν are
supported on bounded sets (in general, it is assumed that X and Y are compact, and that
supp(µ) = X, supp(ν) = Y ), consider the problem the problem PGWL

λ,q(X,Y) with L(r1, r2)
a continuous functions. If λ is sufficiently large, in particular:

λ ≥ max
x,x′∈supp(µ)
y,y′∈supp(ν)

L(dX(x, x′), dY (y, y
′)),

then there exists optimal γ for PGWλ(X,Y) such that |γ| = min(|µ|, |ν|).
Furthermore, when

λ > max
x,x′∈supp(µ)
y,y′∈supp(ν)

L(dX(x, x′), dY (y, y
′)),

the for all optimal γ ∈ Γ≤(µ, ν), we have |γ| = min(|µ|, |ν|).

Proof. We prove it for q = 1. For a general q ≥ 1, it can be proved similarly.
Without loss of generality, suppose |µ| ≤ |ν|.
Since µ, ν are supported on bounded sets, there exists A = [0,M ] such that
dX(x, x′), dY (y, y

′) ∈ A for all x, x′ ∈ supp(µ), y, y′ ∈ supp(ν).
Thus, the restriction of L on A2, denoted as LA2 , is continuous on A2, and thus it is bounded.
So, consider

m := max
r1,r2∈A

(L(r1, r2)) ≥ L(dX(x, x′), dY (y, y
′)), ∀x, x′ ∈ supp(µ), y, y′ ∈ supp(ν).

Suppose 2λ ≥ m+1, and assume that there exists a optimal γ ∈ Γ≤(µ, ν) such that |γ| < |µ|.
By Lemma E.1, there exists γ′ such that γ ≤ γ′, (π1)#γ′ = µ. Thus, we have

C(γ′;λ, µ, ν)− C(γ;λ, µ, ν) =
∫
(X×Y )

L(dX(x, x′), dY (y, y
′))− 2λ d((γ′)⊗2 − (γ)⊗2)

≤
∫
(X×Y )

m− 2λ d((γ′)⊗2 − (γ)⊗2)

= −(|γ′|2 − |γ|2) = −(|µ|2 − |γ|2) < 0,

which is contradiction since γ is optimal, and so we have completed the proof.

Lemma E.3. Consider probability mm-spaces X = (X, dX , µ), Y = (Y, dY , ν), that is, with
|µ| = |ν| = 1. Then, for each λ > 0, we have

PGWL
λ,q(X,Y) ≤ GWL

q (X,Y).

Proof. In this setting, we have Γ(µ, ν) ⊂ Γ≤(µ, ν), and thus

PGWL
λ,q(X,Y)

= inf
Γ∈Γ≤(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2 + λ(|µ|2 + |ν|2 − 2|γ|2)

≤ inf
γ∈Γ(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′)) + λ(|µ|2 + |ν|2 − 2|γ|2)dγ⊗2

= inf
γ∈Γ(µ,ν)

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

= GWL
q (X,Y).

Based on the above properties, we can now prove Proposition 3.5:
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Proposition E.4 (Generalization of Proposition 3.5). Consider general probability mm-
spaces X = (X, dX , µ), Y = (Y, dY , ν), that is, with |µ| = |ν| = 1, where X,Y are bounded.
Assume that L is continuous. Then

lim
λ→∞

PGWL
λ,q(X,Y) = GWL

q (X,Y).

Proof. When λ is sufficiently large, by Lemma E.2, for each optimal γλ ∈ Γ≤(µ, ν) of the
minimization problem PGWL

λ,q(X,Y), we have |γλ| = min(|µ|, |ν|) = 1. That is, γλ ∈
Γ(µ, ν). Plugging γλ into C(γλ;λ, µ, ν), we obtain:

PGWL
λ,q(X,Y) =

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

λ + λ(12 + 12 − 2 · 12)

=

∫
(X×Y )2

L(dqX(x, x′), dqY (y, y
′))dγ⊗2

λ ≥ GW (X,Y).

By Lemma E.3, we also have PGWL
λ,q(X,Y) ≤ GWL

q (X,Y) and we complete the proof.

F Tensor Product Computation

Lemma F.1. Given a tensor M ∈ Rn×m×n×n and γ, γ′ ∈ Rn×m, the tensor product
operator M ◦ γ satisfies the following:

(i) The mapping γ 7→M ◦ γ is linear with respect to γ.

(ii) If M is symmetric, in particular, Mi,j,i′,j′ = Mi′,j′,i,j ,∀i, i′ ∈ [1 : n], j, j′ ∈ [1 : m],
then

〈M ◦ γ, γ′〉F = 〈M ◦ γ′, γ〉F .

Proof.

(i) For the first part, consider γ, γ′ ∈ Rn×m and k ∈ R. For each i, j ∈ [1 : n]× [1 : m],
we have we have

(M ◦ (γ + γ′))ij =
∑
i′,j′

Mi,j,i′,j′(γ + γ′)i′j′

=
∑
i′,j′

Mi,j,i′,j′γi′j′ +
∑
i′,j′

Mi,j,i′,j′γ
′
i′j′

= (M ◦ γ)ij + (M ◦ γ)i′j′ ,

(M ◦ (kγ))ij =
∑
i′,j′

Mi,j,i′,j′(kγ)ij

= k
∑
i′,j′

Mi,j,i′,j′γij

= k(M ◦ γ)ij .
Thus, M ◦ (γ+ γ′) =M ◦ γ+M ◦ γ′ and M ◦ (kγ) = kM ◦ γ. Therefore, γ 7→M ◦ γ
is linear.

(ii) For the second part, we have

〈M ◦ γ, γ′〉F =
∑
iji′j′

Mi,j,i′,j′,γijγ
′
i′j′

=
∑

i,j,i′,j′

Mi′,j′,i,jγi′,j′γi,j (49)

= 〈Mγ′, γ〉
where (49) follows from the fact that M is symmetric.
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G Another Algorithm for Computing PGW Distance – Solver
2

Our Algorithm 2 for solving the proposed PGW problem is based on a theoretical result
that relates GW and PGW. The details of our computational method, as well as the proof of
Proposition G.1 stated below, are provided in Appendix G.1. Based on such a proposition,
we extend the PGW problem to a discrete GW-variant problem (55), leading to a solution
for the original PGW problem by truncating the GW-variant solution.
Proposition G.1. Let X = (X, dX , µ) be a mm-space. Consider an auxiliary point ∞̂ and
let X̂ = (X̂, dX̂ , µ̂), where X̂ = X ∪ {∞̂}, µ̂ is constructed by (4), and considering ∞ as an
auxiliary point to R such that x ≤ ∞ for every x ∈ R, we extend dX into dX̂ : X̂2 → R∪{∞}
and define Lλ : R ∪ {∞} → R as follows:

dX̂(x, x′) =

{
dX(x, x′) if x, x′ ∈ X
∞ otherwise , Lλ(r1, r2) :=

{
L(r1, r2)− 2λ if r1, r2 ∈ R
0 elsewhere . (50)

Consider the following GW-variant3 problem:

ĜW
Lλ

(X̂, Ŷ) = inf
γ̂∈Γ(µ̂,ν̂)

γ̂⊗2(Lλ(d
q

X̂
, dq

Ŷ
)) (51)

Then, when considering the bijection γ 7→ γ̂ defined in (6), we have that γ is optimal for
PGW problem (10) if and only if γ̂ is optimal for the GW-variant problem (51).
Remark G.2. Intuitively, the above proposition states that, by introducing auxiliary points
∞̂, we can build an equivalent relation between PGW and GW problem. This idea is firstly
discussed in (Cagniart et al., 2010) in a classical optimal partial transport setting. In this
paper, we extend the technique to the partial GW setting. However, this technique cannot be
extended to the MPGW setting; we refer to Chapel et al. (2020, Appendix A.3) for details.

Proof. The mapping F defined by (6) well-defined bijection, as shown in(Bai et al., 2023;
Caffarelli & McCann, 2010).

Given γ ∈ Γ≤(µ, ν), we have γ̂ = F (γ) ∈ Γ(µ̂, ν̂). Let Ĉ(γ̂;µ, ν) denote the transportation
cost in the GW-variant problem (51), that is,

Ĉ(γ̂;µ, ν) :=

∫
(X̂×Ŷ )2

Lλ(d
q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂(x, y)dγ̂(x′, y′)

Then, we have

C(γ;λ, µ, ν)

=

∫
(X×Y )2

(L(dqX(x, x′), dqY (y, y
′))− 2λ) dγ⊗2 + λ(|µ|+ |ν|)︸ ︷︷ ︸

does not depend on γ

=

∫
(X×Y )2

(L(dqX(x, x′), dqY (y, y
′))− 2λ) dγ̂⊗2 + λ(|µ|+ |ν|) (since γ̂|X×Y = γ)

=

∫
(X×Y )2

(L(dq
X̂
(x, x′), dq

Ŷ
(y, y′))− 2λ) dγ̂⊗2 + λ(|µ|+ |ν|) (as dX̂ |X×X = dX , dŶ |Y×Y = dY )

=

∫
(X×Y )2

Lλ(d
q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂⊗2 + λ(|µ|+ |ν|) (since L̂|R×R(·, ·) = (L(·, ·)− 2λ))

=

∫
(X̂×Ŷ )2

Lλ(d
q

X̂
(x, x′), dq

Ŷ
(y, y′)) dγ̂⊗2 + λ(|µ|+ |ν|)︸ ︷︷ ︸

does not depend on γ̂

. (since L̂ assigns 0 to ∞̂)

3ĜW
Lλ

(X̂, Ŷ) is not a rigorous GW problem since dX̂ = ∞ is possible, thus it is not a metric.
Also, X, Y are not necessarily probability mm-spaces
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Combining this with the fact that F : γ 7→ γ̂ is a bijection, we have that γ is optimal for
(10) if and only if γ̂ is optimal for (51). Under the assumptions of Proposition 3.3, there
exists an optimal γ ∈ Γ≤(µ, ν) for the PGW problem exists, and so we have:

arg min
γ̂∈Γ(µ̂,ν̂)

Ĉ(γ̂;µ, ν) = arg min
γ∈Γ≤(µ,ν)

C(γ;λ, µ, ν). (52)

Remark G.3. Both algorithms (Algorithm 1 and 2) are mathematically and computationally
equivalent, owing to the equivalence between the POT problem in Solver 1 and the OT problem
in Solver 2.

G.1 Frank-Wolfe for the PGW Problem – Solver 2

Similarly to the discrete PGW problem (15), consider the discrete version of (4):

p̂ = [p; |q|] ∈ Rn+1, q̂ = [q; |p|] ∈ Rm+1, (53)

and, in a similar fashion, we define M̂ ∈ R(n+1)×(m+1)×(n+1)×(m+1) as

M̂i,j,i′,j′ =

{
M̃i,j,i′,j′ if i, i′ ∈ [1 : n], j, j′ ∈ [1 : m],

0 elsewhere. (54)

Then, the GW-variant problem (51) can be written as

ĜW (X̂, Ŷ) = min
γ̂∈Γ(p̂,q̂)

LM̂ (γ̂). (55)

Based on Proposition G.1 (which relates PGWL
λ (·, ·) with ĜW (·, ·)), we propose two versions

of the Frank-Wolfe algorithm (Frank et al., 1956) that can solve the PGW problem (15).
Apart from Algorithm 1 in (Chapel et al., 2020), which solves a different formulation of
partial GW, and Algorithm 1 in (Séjourné et al., 2021), which applies the Sinkhorn algorithm
to solve an entropic regularized version of (8), to the best of our knowledge, a precise
computational method for the discrete PGW problem (15) has not been studied.
Here, we discuss another version of the FW Algorithm for solving the PGW problem (15).
The main idea relies on solving first the GW-variant problem (51), and, at the end of the
iterations, by using Proposition G.1, convert the solution of the GW-variant problem to a
solution for the original partial GW problem (15).

First, construct p̂, q̂, M̂ as described in Proposition G.1. Then, for each iteration k, perform
the following three steps.
Step 1: Computation of gradient and optimal direction. Solve the OT problem:

γ̂(k)
′
← arg min

γ̂∈Γ(p̂,q̂)
〈LM̂ (γ̂(k)), γ̂〉F .

The gradient LM̂ (γ(k)) can be computed in a similar way as described in Lemma H.2. We
refer to Section H for details.
Step 2: Line search method. Find optimal step size α(k):

α(k) = arg min
α∈[0,1]

{LM̂ ((1− α)γ̂(k) + αγ̂(k)
′
)}.

Similar to Solver 1, let 
δγ̂(k) = γ̂(k)

′ − γ̂(k),
a = 〈M̂ ◦ δγ̂(k), δγ̂(k)〉F ,
b = 2〈M̂ ◦ δγ̂(k), γ̂(k)〉F .

(56)

Then the optimal α(k) is given by formula (18). See Appendix J for a detailed discussion.

Step 3. Update γ̂(k+1) ← (1− α(k))γ̂(k) + α(k)γ̂(k)
′ .
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Algorithm 2: Frank-Wolfe Algorithm for partial GW, ver 2
Input: µ =

∑n
i=1 p

X
i δxi

, ν =
∑m

j=1 q
Y
j δyj

, γ(1)

Output: γ(final)
Compute CX , CY , p̂, q̂, γ̂(1)

for k = 1, 2, . . . do
Ĝ(k) ← 2M̂ ◦ γ̂(k) // Compute gradient
γ̂(k)

′ ← argminγ̂∈Γ(p̂,q̂)〈Ĝ(k), γ̂〉F // Solve the OT problem
Compute α(k) ∈ [0, 1] via (56), (18) // Line Search
γ̂(k+1) ← (1− α(k))γ̂(k)

′
+ αγ̂(k)// Update γ̂

if convergence, break
end for
γ(final) ← γ̂(k)[1 : n, 1 : m]

H Gradient Computation in Algorithms 1 and 2

In this section, we discuss the computation of Gradient∇LM̃ (γ) in Algorithm 1 and∇LM̂ (γ̂)
in Algorithm 2.
Proposition H.1 (Proposition 1 (Peyré et al., 2016)). If the cost function can be written
as

L(r1, r2) = f1(r1) + f2(r2)− h1(r1)h2(r2) (57)

then
M ◦ γ = u(CX , CY , γ)− h1(CX)γh2(C

Y )>, (58)

where u(CX , CY , γ) := f1(C
X)γ11

>
m + 1nγ

>
2 f2(C

Y ).

Additionally, the following lemma builds the connection between M̃ ◦ γ and M ◦ γ.
Lemma H.2. For any γ ∈ Rn×m, we have:

M̃ ◦ γ =M ◦ γ − 2λ|γ|1n,m. (59)

Proof. For any γ ∈ Rn×m, we have

M̃ ◦ γ = (M1n,n,m,m − 2λ) ◦ γ
= (M − 2λ1n,n,m,m) ◦ γ
=M ◦ γ − 2λ1n,m,n,m ◦ γ
=M ◦ γ − 2(〈1n,m, γ〉F )1n,m
=M ◦ γ − 2λ|γ|1n,m

where the second equality follows from Lemma F.1.

Next, in the setting of Algorithm 2, for any γ̂ ∈ R(n+1)×(m+1), we have

∇LM̂ (γ̂) = 2M̂ ◦ γ̂ (60)

and M̂ ◦ γ̂ can be computed by the following lemma.

Lemma H.3. For each γ̂ ∈ R(n+1)×(m+1), we have M̂ ◦γ̂ ∈ R(n+1)×(m+1) with the following:

(M̂ ◦ γ̂)ij =
{
(M̃ ◦ γ̂[1 : n, 1 : m])ij if i ∈ [1 : n], j ∈ [1 : m]

0 elsewhere . (61)
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Proof. Recall the definition of M̂ is given by (54), choose i ∈ [1 : n], j ∈ [1 : m], we have

(M̂ ◦ γ̂)ij =
n∑

i′=1

m∑
j′=1

M̂i,j,i′,j′ γ̂i′,j′ +

m∑
j′=1

M̂i,j,n+1,j γ̂n+1,j′ +

n∑
i′=1

M̂i,j,i′,m+1γ̂i,m+1

+ M̂i,j,n+1,m+1γ̂n+1,m+1

=

n∑
i′=1

m∑
j′=1

M̂i,j,i′,j′ γ̂i′,j′ + 0 + 0 + 0 =

n∑
i′=1

m∑
j′=1

M̃i,j,i′,j′ γ̂i′,j′

= (M̃ ◦ (γ̂[1 : n, 1 : m]))ij

If i = n+ 1, we have

(M̂ ◦ γ̂)n+1,j =

n+1∑
i′=1

m+1∑
j′=1

M̂n+1,j,i′,j′ γ̂i′,j′ = 0

Similarly, (M̂ ◦ γ̂)i,m+1 = 0. Thus, we complete the proof.

I Line Search in Algorithm 1

In this section, we discuss the derivation of the line search algorithm.
We observe that in the partial GW setting, for each γ ∈ Γ≤(µ, ν), the marginals of γ are not
fixed. Thus, we can not directly apply the classical algorithm (e.g., (Titouan et al., 2019a)).

In iteration k, let γ(k), γ(k)′ be the previous and new transportation plans from step 1 of
the algorithm. For convenience, we denote them as γ and γ′, respectively.
The goal is to solve the following problem:

min
α∈[0,1]

L(M̃, (1− α)γ + αγ′) (62)

where L(M̃, γ) = 〈M̃ ◦ γ, γ〉F . By denoting δγ = γ′ − γ, we have

L(M̃, (1− α)γ + αγ′) = L(M̃, γ + αδγ).

Then,

〈M̃ ◦ (γ + αδγ), (γ + αδγ)〉F

= 〈M̃ ◦ γ, γ〉F + α
(
〈M̃ ◦ γ, δγ〉F + 〈M̃ ◦ δγ, γ〉F

)
+ α2〈M̃ ◦ δγ, δγ〉F

Let

a =〈M̃ ◦ δγ, δγ〉F ,
b =〈M̃ ◦ γ, δγ〉F + 〈M̃ ◦ δγ, γ〉F = 2〈M̃ ◦ γ, δγ〉F , (63)
c =〈M̃ ◦ γ, γ〉F ,

where the second identity in (63) follows from Lemma F.1 and the fact that M̃ =
M1n,n,m,m − 2λ1n,m,n,m is symmetric.
Therefore, the above problem (62) becomes

min
α∈[0,1]

aα2 + bα+ c.

The solution is the following:

α∗ =


1 if a ≤ 0, a+ b ≤ 0,

0 if a ≤ 0, a+ b > 0,

clip(−b
2a , [0, 1]) if a > 0,

(64)
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where

clip(−b
2a
, [0, 1]) = min

{
1,max{0, −b

2a
}
}

=


−b
2a if −b

2a ∈ [0, 1],

0 if −b
2a < 0,

1 if −b
2a > 1.

We can further discuss the difference in computation of a and b in the PGW setting and
the classical GW setting. If the assumption in Proposition H.1 holds, by (58) and (59), we
have

a = 〈M̃ ◦ δγ, δγ〉F
= 〈(M ◦ δγ − 2λ|δγ|In,m), δγ〉F
= 〈M ◦ δγ, δγ〉F − 2λ|δγ|2 (65)
=
〈
u(CX , CY , δγ)− h1(CX)δγh2(C

Y )>, δγ
〉
F
− 2λ|δγ|2,

b = 2〈M̃ ◦ γ, δγ〉F
= 2〈M ◦ γ − 2λ|γ|In,m, δγ〉
= 2(〈M ◦ γ, δγ〉F − 2λ|δγ||γ|) (66)

Note that in the classical GW setting (Titouan et al., 2019a), the term u(CX , CY , δγ) =
0n×m and |δγ| = 0. Therefore, in such line search algorithm (Algorithm 2 in (Titouan et al.,
2019a)), the terms u(CX , CY , δγ), 2λ|δγ|1n×m are not required. In addition, in equation
(66), M ◦ γ, 2λ|γ| have been computed in the gradient computation step. Thus, these two
terms can be directly applied in this step.

J Line Search in Algorithm 2

Similar to the previous section, in iteration k, let γ̂(k), γ̂(k)′ denote the previous transporta-
tion plan and the updated transportation plan. For convenience, we denote them as γ̂, γ̂′,
respectively.
Let δγ̂ = γ̂ − γ̂′.
The goal is to find the following optimal α:

α = arg min
α∈[0,1]

L(M̂, (1− α)γ̂, αγ̂′) = arg min
α∈[0,1]

L(M̂, αδγ̂ + γ̂), (67)

where M̂ ∈ R(n+1)×(m+1)×(n+1)×(m+1), with M̂ [1 : n, 1 : m, 1 : n, 1 : m] = M̃ = M −
2λ1n×m×n×m.
Similar to the previous section, let

a = 〈M̂ ◦ δγ̂, δγ̂〉F ,
b = 〈M̂ ◦ δγ̂, γ̂〉F + 〈M̂ ◦ γ̂, δγ̂〉F = 2〈M̂ ◦ δγ̂, γ̂〉F , (68)
c = 〈M̂ ◦ γ̂, γ̂〉F ,

where (68) holds since M̂ is symmetric. Then, the optimal α is given by (64).
It remains to discuss the computation. By Lemma F.1, we set γ = γ̂[1 : n, 1 : m], δγ =
δγ̂[1 : n, 1 : m]. Then,

a = 〈(M̂ ◦ δγ̂)[1 : n, 1 : m], δγ〉F = 〈(M̃ ◦ δγ, δγ〉F ,
b = 〈(M̂ ◦ δγ̂)[1 : n, 1 : m], γ〉F = 〈(M̃ ◦ δγ, γ〉F .

Thus, we can apply (65), (66) to compute a, b in this setting by plugging in γ = γ̂[1 : n, 1 : m]
and δγ = δγ̂[1 : n, 1 : m].
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K Convergence

As in (Chapel et al., 2020), we will use the results from (Lacoste-Julien, 2016) on the
convergence of the Frank-Wolfe algorithm for non-convex objective functions.
Consider the minimization problems

min
γ∈Γ≤(p,q)

LM̃ (γ) and min
γ̂∈Γ(p̂,q̂)

LM̂ (γ̂) (69)

that corresponds to the discrete partial GW problem and the discrete GW-variant problem
(used in version 2), respectively.

Consider the objective functions γ 7→ LM̃ (γ) = M̃ γ⊗2 and γ̂ 7→ LM̂ (γ̂) = M̂ γ̂⊗2, where
M̃ = M − 2λ 1n,m for a fixed matrix M ∈ Rn×m with λ > 0, and M̂ is given by (54).
Although M̃ and M̂ are symmetric for λ > 0, they are not positive semi-definite, so these
objective functions are generally non-convex.
However, the constraint sets Γ≤(p, q) and Γ(p̂, q̂) are convex and compact in Rn×m (see
Proposition B.2 in (Liu et al., 2023)) and in R(n+1)×(m+1), respectively.
From now on, we will concentrate on the first minimization problem in (69), and the con-
vergence analysis for the second one will be analogous.
Consider the Frank-Wolfe gap of LM̃ at the approximation γ(k) of the optimal plan γ:

gk = min
γ∈Γ≤(p,q)

〈∇LM̃ (γ(k)), γ(k) − γ〉F . (70)

It provided a good criterion to measure the distance to a stationary point at iteration k.
Indeed, a plan γ(k) is a stationary transportation plan for the corresponding constrained
optimization problem in (69) if and only if gk = 0. Moreover, gk is always non-negative
(gk ≥ 0).
From Theorem 1 in (Lacoste-Julien, 2016), after K iterations, we have the following upper
bound for the minimal Frank-Wolf gap:

gK := min
1≤k≤K

gk ≤
max{2L1,Lip · (diam(Γ≤(p, q)))

2}√
K

, (71)

where
L1 := LM̃ (γ(1))− min

γ∈Γ≤(p,q)
LM̃ (γ)

is the initial global sub-optimal bound for the initialization γ(1) of the algorithm; Lip is the
Lipschitz constant of function γ 7→ ∇LM̃ ; and

diam(Γ≤(p, q)) = sup
γ,γ′∈Γ≤(µ,ν)

‖γ − γ′‖F

is the ‖ · ‖F diameter of Γ≤(p, q) in Rn×m.
The important thing to notice is that the constant max{2L1, DL} does not depend on the
iteration step k. Thus, according to Theorem 1 in (Lacoste-Julien, 2016), the rate in g̃K is
O(1/

√
K). That is, the algorithm takes at most O(1/ε2) iterations to find an approximate

stationary point with a gap smaller than ε.
Lemma K.1. In the discrete PGW problem, we have

diam(Γ≤(p, q)) ≤ 2s := 2min(|p|, |q|) (72)

Proof. Choose γ, γ′ ∈ Γ≤(p, q), we apply the property

(a− b)2 ≤ 2a2 + 2b2,∀a, b ∈ R (73)
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and obtain

‖γ − γ′‖2F =

n,m∑
i,j

|γi,j − γ′i,j |2

≤
n,m∑
i,j

2|γi,j |2 + 2|γ′i,j |2

≤ 2

(∑
i,j

γi,j)
2 + (

∑
i,j

γ′i,j)
2


= 2(|γ|2 + |γ′|2) (74)
≤ 2min(|p|, |q|)2 + 2min(|p|, |q|)2

= 4min(|p|, |q|)2

and thus, we complete the proof.

Lemma K.2. For the Lip term in (71) can be bounded as following:
Lip ≤ nm max

i,i,j,j′
(2(CX

i,i′)
2 + 2(CY

j,j′)
2, 2λ) (75)

Proof. Pick γ, γ′ ∈ Γ≤(p, q) we have,
‖∇LM̃ (γ)−∇LM̃ (γ′)‖2F
= ‖M̃ ◦ γ − M̃ ◦ γ′‖2F
= ‖[M − 2λ] ◦ (γ − γ′)‖2F

=
∑
i,j

(
[(M − 2λ) ◦ (γ − γ′)]i,j

)2

=
∑
i,j

∑
i′,j′

(Mi,j,i′,j′ − 2λ)(γi′,j′ − γ′i′,j′)

2

≤
∑
i,j

∑
i′,j′

|Mi,j,i′,j′ − 2λ||γi′,j′ − γ′i′,j′ |

2

≤
(

max
i,j,i′,j′

{Mi,j,i′,j′ − 2λ}
)2

︸ ︷︷ ︸
A

·
n,m∑
i,j

n,m∑
i′,j′

|γi′,j′ − γ′i′,j′ |

2

︸ ︷︷ ︸
B

For the first term, we have:
A ≤ max{2(CX)2 + 2(CY )2, 2λ}2

where
max{2(CX)2 + 2(CY )2, 2λ} := max{ max

i,i′,j′,j′
2(CX

i,i′)
2 + 2(CY

j,j′)
2, 2λ}

For the second term, we have:
n,m∑
i,j

n,m∑
i′,j′

|γi′,j′ − γ′i′,j′ |

2

≤
n,m∑
i,j

nm n,m∑
i′,j′

∣∣γi′,j′ − γ′i′,j′ ∣∣2


≤ n2m2‖γ − γ′‖2F
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Thus we obtain

Lip ≤ max(2(CX)2 + 2(CY )2, 2λ)nm‖γ − γ′‖F
‖γ − γ′‖F

= nmmax(2(CX)2 + 2(CY )2, 2λ)

and we complete the proof.

Combined the above two lemmas, we derive the convergence rate of the Frank-Wolf gap
(70):
Proposition K.3. When L(r1, r2) = |r1 − r2|2 in the PGW problem, the Frank-Wolfe gap
of algorithm 1, defined in (70) at iteration k satisfies the following:

gk ≤
max

{
2L1, 4min(|p|, |q|)2 · nm(max{2(CX)2 + 2(CY )2, 2λ})

}
√
k

(76)

Proof. The proof directly follows from the upper bounds (72),(75) and the inequality (71).

Remark K.4. Note, if the cost function in PGW is defined by |r1 − r2|p for some p 6= 2,
it is straightforward to verify that the upper bound of gk is obtained by replacing the term
max((CX)2 + (CY )2, 2λ) should be replaced by

max
i,j,i′,j′

[
2p−1((CX)p + (CY )p), 2λ

]
.

Remark K.5. It is straightforward to verify that the Frank-Wolf gap for algorithm 2 is also
upper bounded by (76).
Remark K.6. From the proposition (K.3), to achieve an ε−accurate solution, the required
number of iterations is

max

{
2L1, 2min(|p|, |q|) · n2m2 max({2(CX)2 + 2(CY )2, 2λ})

}2

ε2

In practice, by lemma E.2, when λ is large, it is equivalent to set λ = max((CX)2 − (CY )2)
and thus, the value λ will not affect the number of iterations.
Remark K.7. In this remark, we compare the upper (40) and the upper bounds in previous
works, including (Chapel et al., 2020) and cang2024supervised. We observe that:
If we ignore the term λ (or equivalently, set λ = maxi,i′,j,j′(2(C

X)2 + 2(CY )2)), the upper
bound (76) aligns with the upper bound for the Frank-Wolfe Gap in Mass-constraint PGW
(see Chapel et al. (2020, Eq. (10))) and balanced GW (see Cang et al. (2024, p. 18).
However, there exist several differences in details between our result and the result in (Chapel
et al., 2020).

• First, in (Chapel et al., 2020), the term nm is omitted. We suspect this omission
is a typo, as the nm term is contained in (Cang et al., 2024).

• In (Chapel et al., 2020), “s” plays the role of min(|p|, |q|) in our result. The
assumption in Chapel et al. (2020, Lemma 1) is

|γ| = |γ′| = 1

If we normalize p, q such that max(|p|, |q|) ≤ 1, we will obtain

2min(|p|, |q|)2 ≤ 2min(|p|, |q|),

and our result will induce the upper bound in Chapel et al. (2020, Lemma 1).
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L Related Work: Mass-Constrained Partial
Gromov-Wasserstein

Partial Gromov-Wasserstein is first introduced in (Chapel et al., 2020). To distinguish the
PGW problem in (Chapel et al., 2020) and the PGW problem in this paper, we call the
former one the Mass-Constrained Gromov-Wasserstein problem (MPGW):

MPGWρ(X,Y) := inf
γ∈Γρ

≤(µ,ν)
γ⊗2(L(dqX , d

q
Y )), (77)

where ρ ∈ [0,min{|µ|, |ν|}], and

Γρ
≤(µ, ν) := {γ ∈M+(X × Y ) : γ1 ≤ µ, γ2 ≤ ν, |γ| = ρ}. (78)

Unlike the relationship between Partial OT and OT, it is not rigorous to claim that PGW
and MPGW are equivalent. The objective function

γ 7→
∫
(X×Y )2

L
(
d2X(x, x′), d2Y (y, y

′)
)
dγ⊗2 (79)

is non-convex, even if the map (r1, r2) 7→ L(r1, r2) itself is convex (Peyré et al., 2019). If
the problem were convex, then MPGW, viewed as the ‘Lagrangian formulation’ of PGW
(adding the partial constraint into the functional via Lagrange multipliers), would coincide
with PGW. However, since these problems are not convex, we cannot assert their equivalence
in principle.
We can still investigate their relationship by the following lemma, based on which we design
the wall-clock time experiment in Section Q.
Proposition L.1. For each λ ≥ 0, there exists ρ ∈ [0,min(|µ|, |ν|)] such that, for each
γ ∈ Γ≤(µ, ν) with |γ| = ρ, γ is optimal in PGWλ(X,Y) iff γ is optimal in MPGWρ(X,Y).
Furthermore,

PGWλ(µ, ν) =MPGWρ(µ, ν) + λ(|µ|2 + |ν|2 − 2ρ2).

Proof. Pick γ′ ∈ Γρ
≤(µ, ν) ⊂ Γ≤(µ, ν), since γ is optimal in PGWλ(µ, ν), we have

0 ≤ C(γ;λ, µ, ν)− C(γ′;λ, µ, ν)

=

∫
(X×Y )2

L(d2X(x, x′), d2Y (y, y
′))d(γ⊗2 − γ′⊗2)

Thus, γ is optimal in Γρ
≤(µ, ν) for MPGWρ(X,Y) and we complete the proof.

Remark L.2. The above proposition clarifies a connection between PGW and MPGW .
Specifically, it implies that an optimal transportation plan for PGW can be derived from
MPGW by appropriately setting ρ. However, it is important to note that MPGW
and PGW admit distinct transportation costs. MPGW does not define a metric,
whereas PGW does. Therefore, in experiments that require transportation costs, such as
the shape retrieval experiment described in the main text, the results produced by the two
methods will differ significantly.
Example L.3. Consider the following three mm-spaces

X1 =

(
R3, ‖ · ‖,

1000∑
i=1

αδxi

)
, X2 =

(
R3, ‖ · ‖,

800∑
i=1

αδxi

)
, X3 =

(
R3, ‖ · ‖,

400∑
i=1

αδxi

)
,

where α > 0 is the mass of each point. For numerical stability reasons, we set α = 1/1000.
On the one hand, if we compute MPGW, the mass is fixed to be a value ρ ∈ [0, 0.4], since
the total mass in X3 is 0.4. For our experiment, we set ρ = 0.4, and we observe:

MPGWρ(X1,X2; ρ = 0.4) =MPGWρ(X2,X3; ρ = 0.4) =MPGWρ(X1,X3; ρ = 0.4) = 0
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On the other hand, if we compute our PGW, considering any λ > 0 (in particular, we set
λ = 10), we obtain

PGWλ(X1,X2;λ = 10) = 3.6

PGWλ(X2,X3;λ = 10) = 4.8

PGWλ(X1,X3;λ = 10) = 8.4

In particular, one can verify the triangular inequality.
As a conclusion, in this example, MPGW can not describe the dissimilarity of any two
datasets taken from {X1,X2,X3}. They are three distinct datasets, but MPGW returns zero
for each pair. On the contrary, our PGW can measure dissimilarity.
In addition, the discrepancy provided by our PGW formulation is consistent with the fol-
lowing intuitive observation: One expects the dissimilarity between X1 and X3 to be larger
than the difference X1 and X2 and than the difference between X1 and X2. This is because
we are considering discrete measures, with the same mass at each point concentrated on the
sets {x1, . . . , x400} ⊂ {x1, . . . , x400, . . . , x800} ⊂ {x1, . . . , x400, . . . , x800, . . . , x1000} for the
datasets X3,X2,X1, respectively.
Remark L.4. Moreover, there may, in fact, exist instances of the two problems for which
the solution sets are not equal for any value of the hyperparameters λ and ρ; we illustrate
this in the following example:
Consider the mm-spaces given by

X1 =

(
Rd1 , ‖ · ‖,

n∑
i=1

δxi

)
and X2 =

Rd2 , ‖ · ‖,
m∑
j=1

δyj

 .

If we let λ = 0, then PGW0(X1,X2) has δ(xi,yj) as a solution for all (i, j), as well as the
zero measure.
Now, we observe that for ρ = 0, δ(xi,yj) is not a solution of MPGWρ(X1,X2); meanwhile,
for any ρ > 0, the zero measure is not a solution of MPGWρ(X1,X2).
Hence, we see that the set of solutions between PGW0(X1,X2) and MPGWρ(X1,X2) are
distinct for all ρ.
Remark L.5. The other direction of the “equivalence relation” between PGW and MPGW
given by Proposition L.1 may not hold. In particular, there exists a problem MPGWρ(X1,X2)
for some ρ > 0, such that for all λ > 0, each solution to MPGWρ(X1,X2) is not a solution to
PGWλ(X1,X2), and each solution to PGWλ(X1,X2) is not a solution to MPGWρ(X1,X2).

As an example, consider X1 =
(
Rd, ‖ · ‖,

∑100
i=1 δxi

)
and X2 =

(
Rd, ‖ · ‖,

∑200
i=1 δxi

)
, where

x1, . . . x200 are distinct. Then for each ρ ∈ (0, 100], any solution to MPGWρ(X1,X2) is not
a solution for PGWλ(X1,X2) and vice versa.

M Partial Gromov-Wasserstein Barycenter

We first introduce the classical Gromov-Wasserstein problem (Peyré et al., 2016): Consider
finite discrete probability measures µ1, . . . , µK , where µk =

∑nk

i=1 p
k
i δxk

i
and each xki ∈ Rdk

for some dk ∈ N. Let Ck = [‖xki − xki′‖2]i,i′∈[1:nk] and pk = [pk1 , . . . , p
k
nk
]>. Given p ∈ Rn

+

with |p| = 1 for some n ∈ N and ξ1, . . . , ξK ≥ 0 with
∑K

k=1 ξk = 1, the GW barycenter
problem is defined by:

min
C,γk

K∑
k=1

ξk〈L(C,Ck) ◦ γk, γk〉, (80)

where the minimization is over all matrices C ∈ Rn×n, γk ∈ Γ(p,pk),∀k ∈ [1 : K].
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Similarly, we can extend the above definition into the PGW setting. In particular, we relax
the assumptions |p| = 1 and |pk| = 1 for each k ∈ [1 : K]. Given λ1, . . . , λK > 0, the PGW
barycenter is the follow problem:

min
C,γk

∑
k

ξk〈M(C,Ck) ◦ γk, γk〉 − 2λk|γk|2 (81)

where each γk ∈ Γ≤(p,p
k).

The problem (81) can be solved iterative by two steps:
Minimization with respect to C: For each k, we solve the PGW problem

min
γk∈Γ≤(p,pk)

〈M(C,Ck) ◦ γk, γk〉 − 2λk|γk|2

via solver 1 or 2.
Minimization with respect to {γk}k:

min
C

∑
k

ξk〈M(C,Ck) ◦ γk, γk〉 (82)

Note, we can ignore the −2λk|γk|2 terms as γk is fixed in this case.
It has closed form solution due to the following lemma and proposition:
Lemma M.1. Given matrices A ∈ Rn,m, B ∈ Rm,l, C ∈ Rn,l, let

L = 〈AB,C〉,

then dL
dA = CB>.

Proof. For any i ∈ [1 : n], j ∈ [1 : m], we have
dL
dAij

:=
∑
i′,j′

d

dAij
Ci′,j′(AB)i′,j′

=
∑
i′,j′

Ci′,j′
d(
∑

k Ai′,kBk,j′)

dAij

=
∑
j′

Ci,j′Bk,j′ = (CB>)ij .

Proposition M.2. If L satisfies (57), and f ′1/h′1 is invertible, then (82) can be solved by

C =

(
f ′1
h′1

)−1(∑
k ξkγ

kh2(C
k)(γk)

>∑
k ξkγ

k
1 (γ

k
1 )

>

)
, (83)

where
A

B
=

[
Aij

Bij

]
ij

,with convention 0

0
= 0.

Special case: if |p| ≤ |pk|,∀k, when λ is sufficiently large, (83) and Peyré et al. (2016,
Proposition 3) coincide.

Proof. From Proposition H.1, the objective in (82) becomes

L =
∑
k

ξk〈f1(C)γ111>nk
+ 1n(γ

k
2 )

>f2(C
k)− h1(C)γkh2(Ck)>, γk〉

=
∑
k

ξk〈f1(C)γ111>nk
, γk〉+

∑
k

ξk〈1n(γk2 )>f2(Ck), γk〉︸ ︷︷ ︸
constant

−
∑
k

ξk〈h1(C)γkh2(Ck)>, γk〉
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We set dL
dC = 0. From Lemma M.1, we have:

0 =
dL
dC

=
∑
k

ξkf
′
1(C)� γk1nk

(γk1 )
> −

∑
k

ξkh
′
1(C)� γkh2(Ck)(γk)>

= f ′1(C)�
∑
k

ξkγ
k1nk

(γk1 )
> − h′1(C)�

∑
k

ξkγ
kh2(C

k)(γk)>

= f ′1(C)�
∑
k

ξkγ
k
1 (γ

k
1 )

>

︸ ︷︷ ︸
B

−h′1(C)�
∑
k

ξkγ
kh2(C

k)(γk)>︸ ︷︷ ︸
A

. (84)

We claim A
B is well-defined, i.e., if Bij = 0, then Aij = 0.

For each i, j ∈ [1 : n], if Bij = 0, we have two cases:

Case 1: ∀k ∈ [1 : K], we have γk1 [i] = 0.
Thus, γk[i, :] = 0>nk

. So A[i, :] = (γkh2(C
k)(γk)>)[i, :] = 0>nk

.

Case 2: ∀k ∈ [1 : K], we have γk1 [j] = 0.
It implies (γk)⊥[:, j] = 0n, thus A[:, j] = (γkh2(C

k))(γk)>[:, j] = 0nk
. Therefore, Aij = 0.

Thus A
B is well-defined.

In addition, in these two cases, if we change the value Ck
ij , L will not change.

From (84), we have: (
f ′1
h′1

(C)

)
ij

=

(∑
k ξkγ

kh2(C
k)(γk)>

)
ij(∑

k ξkγ
k
1 (γ

k
1 )

>
)
ij

if Bij > 0. In addition, if Bij = 0, there is no constraint for Cij .
Combining it with the fact that if Bi,j = 0, then Ci,j does not affect L. Thus,
we have the following is a solution:

C =

(
f ′1
h′1

)−1(∑
k ξkγ

kh2(C
k)(γk)>∑

k ξkγ
k
1 (γ

k
1 )

>

)
.

In particular case: |p| ≤ |pk|,∀k, suppose λ > max{c2 : c ∈
⋃

k C
k ∪ C}, by lemma E.1, we

have for each k, |γk| = min(|p|, |p|k) = |p|, that is γk1 = p.
Thus, ∑

k

ξkγ
k
1 (γ

1
1)

> =
∑
k

ξkγ
k
1 (γ

k
1 )

> =
∑
k

ξkpp
> = pp>

Thus, C =
(

f ′
1

h′
1

)−1 (∑
k ξkγ

kh2(C
k)(γk)>

pp>

)
.

Remark M.3. In l2 loss case, i.e. L(r1, r2) = |r1 − r2|2, (83) becomes

C =

∑
k ξkγ

kCk(γk)>∑
k ξkγ

k
1 (γ

k
1 )

> . (85)

Since in this case, we can set

f1(x) = x2, f2(y) = y2, h1(x) = 2x, h2(y) = y.

Thus f ′
1

h′
1
(x) = 2x

2 = x and
(

f ′
1

h′
1

)−1

(x) = x. Therefore, (83) becomes (85).
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Algorithm 3: Partial Gromov-Wasserstein Barycenter
Input: {Ck,pk, λk}Kk=1,p
Output: C
Initialize C.
for i = 1, 2, . . . do

compute γk ← argminγ∈Γ≤(p,pk)〈L(C,Ck)− 2λk, γ〉,∀k ∈ [1 : K].
Update C by (83).
if convergence, break

end for

Algorithm 4: Mass-Constrained Partial Gromov-Wasserstein Barycenter
Input: {Ck,pk, λk}Kk=1,p
Output: C
Initialize C.
for i = 1, 2, . . . do

compute γk ← argminγ∈Γ
ρk
≤ (p,pk)〈L(C,Ck), γ〉,∀k ∈ [1 : K].

Update C by (83).
if convergence, break

end for

Similarly, we can also extend the above PGW Barycenter into the MPGW setting:

min
C,γk

K∑
k=1

ξk〈L(C,Ck) ◦ γk, γk〉,

where, for each k ∈ [1 : K], ρk ∈ [0,min(|p|, |pk|)], and the optimization is over C ∈ Rn and
γk ∈ Γρk

≤ (p,pk) for k ∈ [1 : K].

It can be solved by the following algorithm 4.

M.1 Details of Shape Interpolation Experiment

Dataset and data processing. We apply the dataset in (Peyré et al., 2016) with download
link. The original data are images, which we convert into a point cloud using the k-mean
algorithm, where k = 1024 (see the second row of Figure 4).
Suppose D ⊂ R2 is a region that contains these point clouds. Let R ⊂ R2 denote another
region. InR, we randomly select and add nη noise points to these point clouds. In particular,
we consider noise corruption in the following three cases:
Case 1: R is a rectangle region which is disjoint to D. See the third row in Figure 4.
Case 2: R = R1 ∪R2, where R1,R2 are rectangles which are disjoint to D. See the fourth
row in Figure 4.
Case 3: R contains D. See the fifth row in Figure 4.
GW Barycenter and PGW Barycenter methods. We select t1, . . . , tK with 0 = t1 <
t2 < . . . < tK = 1. For each t ∈ {t1, . . . , tK}, we compute the GW Barycenter

arg min
C,γ1,γ2

(1− t)〈L(C,C1) ◦ γ1, γ1〉+ t〈L(C,C2) ◦ γ2, γ2〉, (86)

where γ1 ∈ Γ(p,p1), γ2 ∈ Γ(p,p2). Apply Smacof-MDS to the minimizer C, the resulting
embedding, denoted as Xt ∈ Rn×2 (where n = 1024) is the GW-based interpolation.
Replacing the GW Barycenter with the PGW Barycenter

arg min
C,γ1,γ2

(1− t)(〈L(C,C1) ◦ γ1, γ1〉+ λ1|γ1|2) + t(〈L(C,C2) ◦ γ2, γ2〉+ λ2|γ2|), (87)
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Figure 4: We visualize the dataset in shape interpolation. The first row is the original
images in Link. The second row is the point clouds obtained by the k-mean method, where
k = 1024.

where λ1, λ2 > 0, γ1 ∈ Γ≤(p,p
1), γ2 ∈ Γ≤(p,p

2). Then, we obtain PGW-based interpola-
tion.
Problem setup. We select one point cloud from the clean dataset denoted as X = {xi}ni=1
(source point cloud), n = 1024.
Next, we select one noise-corrupted point cloud, as described in Case 1, Case 2, and Case
3, respectively. In these three scenarios, we test η = 0.5% and η = 10% where η is the noise
level. Therefore, we test 3 ∗ 2 = 6 different interpolation tasks for these two methods. The
size of the target point cloud is then m = n+ nη. See Figure 5 for details.
Numerical details. In the GW-barycenter method, because of the balanced mass setting,
we set

p1 =
1

n
1n,p

2 =
1

m
1m,p =

1

n
1n.

In PGW-barycenter, we set

p1 =
1

n
1n,p

2 =
1

n
1m,p =

1

n
1n.

In addition, we set λ1, λ2 such that 2λ1, 2λ2 ≥ max(max(C1)
2,max(C2)

2). We compute
GW/PGW barycenter for t = 0/7, 1/7, . . . , 7/7.
In both GW and PGW barycenter algorithms, we set the largest number of iterations to
100. The threshold for convergence is set to be 1e-5.
Performance analysis. Each interpolation task is essentially unbalanced: the source point
cloud contains clean data, while the target point cloud contains clean and noise points. We
observe that in the first two scenarios, the interpolation derived from GW is clearly disturbed
by the noise data points. For example, in rows 1, 3, 5, 7, columns t = 1/7, 2/7, 3/7, we see
that the point clouds reconstructed by MDS have significantly different width-height ratios
from those of the source and target point clouds.
In contrast, PGW is significantly less disturbed, and the interpolation is more natural. The
width-height ratio of the point clouds generated by the PGW barycenter is consistent with
that of the source/target point clouds.
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Figure 5: We test interpolation tasks in 3 scenarios: source data is clean, target data is
selected from three cases as described in section dataset and data processing. In each
scenario, we test η = 5%, 10% respectively. In the first column, we present the source
and target point cloud visualization in each task. In columns 2-9, we present GW, PGW
barycenter for t = 0/7, 1/7, . . . , 7/7.
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In the third scenario, the noise data is uniformly selected from a large region that contains
the domain of all clean point clouds. In this case, we observe that the GW and PGW
barycenters perform similarly. However, at t = 1/7, 2/7, 4/7, GW-barycenters present more
noise points than PGW-barycenters in the same truncated region.
Limitations and future work. The main issue of the above GW/PGW techniques arises
from the MDS method:
Given minimizer C ∈ Rn×n of GW/PGW barycenter problem (86) (or (87)), MDS studies
the following problem:

min
X∈Rn×d

n∑
i,i′=1

∣∣∣C1/2
i,i′ − ‖Xi −Xi′‖

∣∣∣2 (88)

Let O(n) denote the set of all n×n orthonormal matrices. Suppose X∗ is a minimizer, then
RX∗ is also a minimizer for the above problem for all R ∈ O(n).
In practice, this means manually setting suitable rotation and flipping matrices for each
method at each step, especially for the GW method.
However, we understand that this issue stems from the inherent properties of the GW/PGW
method. GW can be seen as a tool that describes the similarity between two graphs,
which are rotation-invariant and flipping-invariant. Therefore, the GW/PGW barycenter
essentially describes the interpolation between two graphs rather than two point clouds.

M.2 Multi-Shape Interpolation

In this section, we present the interpolation between 4 different shapes. In addition, let η
be the percentage of outliers; we test η = 0 and 5%.
Experiment setup. We select 4 shapes (bird, cat, human, and rooster) from the 2D clouds
dataset. Two of them, i.e., cat and rooster, are embedded into 4D space and are randomly
rotated. The goal is to find the interpolation between them.
Baselines. We select 4 baselines, optimal transport barycenter (Cuturi & Doucet, 2014),
partial optimal transport barycenter (Bonneel & Coeurjolly, 2019), GW barycenter (Peyré
et al., 2016) and our PGW barycenter.
Note that OT and partial OT barycenter can not be directly applied to this setting. We
first embed the 2D shapes into 4D space via mapping

R2 3 x 7→ [x; 0; 0] ∈ R4,

and then compute the OT/POT barycenter. Finally, we apply PCA to project the result
back to 2D space for visualization.
Result analysis. We present the results in Figures 6 and 7. When η = 0, from Figure
6, we observe that OT/POT admits good interpolation results between 2D shapes (bird
and human). However, the OT/POT interpolation between 2D and 4D is not as good
as GW/PGW. The main reason is that the OT/POT barycenter incorporates the absolute
coordinates of these shapes for interpolation, which is affected by random rotation. However,
GW/PGW is not affected by the absolute coordinates of the shapes.
In the second figure, we demonstrate the result for η = 5%. Two shapes are corrupted by
the noise points (cat and rooster). We observe that GW’s interpolation is affected by the
outliers (see, e.g.,a from bird to human or from cat to rooster), while PGW is less affected
by these outlier points and admits much better/smoother interpolation.

N Details of Shape Matching

Dataset setup. In the Moon dataset (see link), we apply n = 200 and set Gaussian
variance to be 0.2. The outliers are sampled from region [[−2,−1.5]× [−3.5,−3]].
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(a) OT barycenter (b) Partial OT barycenter

(c) GW barycenter (d) Partial GW barycenter

Figure 6: We visualize multi-shapes interpolation, where the proposition of noise η is 0.
“bird” and “human” shapes are distributed in 2D space, “cat” and “rooster” are distributed
in 4D space.

In the second experiment, the circle data is uniformly sampled from a 2D circle
S1 = {s ∈ R2 : ‖s‖2 = 1}

and spherical data is uniformly sampled from 3D sphere
S2 = {s+ [0, 0, 4] ∈ R2 : ‖s‖2 = 1},

where the shift [0, 0, 4] is applied for visualization.
We set sample size n = 200 for both 2D and 3D samples.
In both experiments, the number of outliers is ηn = 0.2n = 40.
Numerical details. In GW, we normalize the two-point clouds as

X = (X, dX ,

n∑
i=1

1

n
δxi

),Y = (Y, dY ,

n+nη∑
j=1

1

n+ nη
δyj

).

In PGW, MPGW, and UGW, we define the point clouds as

X = (X, dX ,

n∑
i=1

1

n
δxi

),Y = (Y, dY ,

n+nη∑
j=1

1

n
δyj

).
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(a) OT barycenter (b) Partial OT barycenter

(c) GW barycenter (d) Partial GW barycenter

Figure 7: We visulize of multi-shapes interporlation. “bird”,“human” shapes are distributed
in 2D space, “cat”, “rooster” are distributed in 4D space. The noise level, η, is 5%.

In PGW, we choose λ such that λ ≥ max(max((CX)2),max((CY )2)), in particular, λ = 10.0.
In addition, we tested λ = 0.01, 0.1, 1.0, 10.0.
In MPGW, we tested ρ = 0.3, 0.5, 0.8, 1.0 and selected ρ = 1.0

In UGW, we tested [1e− 10, 1e− 1, 1.0, 10] and selected ρ1 = ρ2 = 1.0, ε = 0.05.
We refer to Figure 8 for the visualization of all tested parameters.
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(a) 2D and 2D matching

(b) 2D and 3D matching

Figure 8: We visualize the shape-matching result for all tested parameters.
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O Details of Shape Retrieval Experiment

bone goblet star horseshoe

rectangle trapezoid disk annulus

(a) Dataset I

rectangle arrow semicircle

house double arrow circle

(b) Dataset II

Figure 9: Visualization of a representative shape from each class of the two datasets.

Dataset details. We test two datasets in this experiment, which we refer to as Dataset
I and Dataset II. We visualize Dataset I in Figure 9a and Dataset II in Figure 9b. The
complete datasets can be accessed from the supplementary materials.
Numerical details. We represent the shapes in each dataset as mm-spaces Xi =(
R2, ‖ · ‖2, µi =

∑ni

k=1 α
iδxi

k

)
. We use αi = 1

ni to compute the GW distances for the bal-
anced mass constraint setting. For the remaining distances, we set α = 1

N , where N is the
median number of points across all shapes in the dataset. For the SVM experiments, we
use exp(−σD) as the kernel for the SVM model. Here, we normalize the matrix D and
choose the best σ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000} for each method used in order
to facilitate a fair comparison of the resulting performances. We note that the resulting
kernel matrix is not necessarily positive semidefinite.
In computing the pairwise distances, for the PGW method, we set λ such that λ ≤ λmax =
maxi (|Ci|2). In particular, we compute λmax for each dataset and use λ = 1

5λmax for each
experiment. For UGW, we use ε = 10−1 and ρ1 = ρ2 = 1 for both experiments. Finally,
for MPGW, we set the mass-constrained term to be ρ = min(|µi|, |µj |) when computing the
similarity between shape Xi and Xj .
Performance analysis. The pairwise distance matrices are visualized for each dataset
in Figure 10, and the confusion matrices computed with each dataset are given in Figure
11. Finally, the classification accuracy with the SVM experiments is reported in Table 1a.
The results indicate that the PGW distance is able to obtain high performance across both
datasets consistently.
In addition, from Figure 10, we observe that PGW qualitatively admits a more reasonable
similarity measure compared to other methods. For example, in Dataset I, class “bone” and
“rectangle” should have relatively smaller distances than “bone” and “annulus”. Ideally, a
reasonable distance should satisfy the following:

0 < d(bone, rectangle) < d(bone, anulus).

However, we do not observe this relation in GW and UGW4, and for the MPGW method,
MPGW (bone, rectangle) ≈ 0, which is also undesirable. For PGW, however, we do observe
this relation. Additionally, we report the wall-clock time comparison in Table 1b.

O.1 Additional Experiment with OT/UT Baselines

In this subsection, we incorporate optimal transport distance (Villani, 2003) and unbalanced
optimal transport distance (Chizat et al., 2018c) into the shape retrieval experiment.

4For UGW, this is due to the Sinkhorn regularization term.
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Figure 10: Pairwise distance matrices computed for each dataset.
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Figure 11: Confusion matrices computed from nearest neighbor classification experiments.

Dataset setup. We perform shape retrieval experiments in two scenarios: the original 2D
dataset and a 4D dataset. For the 4D scenario, we embed the shapes into 4D space and
then apply a random rotation to each shape.
Baselines. We evaluate the performance of the following methods: Optimal Transport
distance (OT) (Villani, 2003), Unbalanced Optimal Transport (UOT) distance (Chizat et al.,
2018c), Gromov-Wasserstein distance (GW) (Gromov, 2001), Mass-constrained Gromov-
Wasserstein discrepancy (MPGW) (Chapel et al., 2020), Unbalanced Gromov-Wasserstein
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Method Dataset I Dataset II
OT (d = 2) 95.6% 55.8%
OT (d = 4) 79.3% 50.8%
UOT (d = 2) 73.5% 73.3%
UOT (d = 4) 56.9% 63.3%
GW (d = 2, 4) 98.1% 80.8%
MPGW (d = 2, 4) 23.7% 25.0%
UGW (d = 2, 4) 89.4% 90.0%
PGW (ours, d = 2, 4) 96.2% 100%

Table 2: Performance comparison across different methods and datasets.

discrepancy (UGW) (Séjourné et al., 2021), and our Partial Gromov-Wasserstein (PGW)
distance.
The parameter settings for GW, MPGW, UGW, and PGW are described in the previous
section. For the UOT method, we set the weight of Sinkhorn regularization to 0.1 and the
weight of the marginal penalty to 0.2.
Result. In Dataset 1, when data is in the 2D space, OT achieves an accuracy of 95.6%,
while UOT achieves 73.5%. OT’s accuracy is slightly lower than GW/PGW, but it remains
a strong classifier in this setting. In Dataset 2, UOT outperforms OT with an accuracy of
73.3% compared to 55.8%.
When the shapes are embedded into 4D space, the accuracy of OT and UOT drops signif-
icantly, ranging from 56.9% to 79.3%, far below the performance of GW and PGW. This
decline highlights the reliance of OT/UOT on absolute coordinates, which becomes more
problematic in higher dimensions. In contrast, GW-based methods (GW, MPGW, UGW,
PGW) remain unaffected, as they are invariant to absolute locations. Overall, regardless of
whether the data is in 2D or 4D space, OT and UOT consistently perform worse than GW
and its variants. The gap in performance becomes even more pronounced in 4D space.

P Other Numerical Implementations

P.1 Initial Methods

In this experiment, we discuss several different methods to define the initial guess in the
Frank-Wolfe algorithm proposed in this paper. Note some of these methods have been
applied in FW algorithms/Sinkhorn solvers in classical GW (Mémoli, 2011), Mass-constraint
GW (Chapel et al., 2020) and Unbalanced GW (Séjourné et al., 2021)
Given two mm-spaces X = (X, dX , µ),X = (Y, dY , ν), we consider the two cases:
Case 1: Dimensions of X and Y are the same. Note, in this case, we can define classical
OT/partial OT/unbalanced OT between µ and ν. Thus, (Chapel et al., 2020) proposed the
following “POT initilization” method:

γ(1) ← arg min
γ∈Γ≤,π(p,q)

〈L(X,Y ), γ〉F , (89)

where L(X,Y ) ∈ Rn×m, (L(X,Y ))ij = ‖xi − yj‖p for some fixed p ≥ 1 and

Γ≤,π(p, q) := {γ ∈ Rn×m
+ : (γ>1n)j ∈ {qYj , 0},∀j; γ1m ≤ p, |γ| = π}. (90)

The above problem can be solved by a Lasso (L1 norm) regularized OT solver.
Case 2: Dimensions of X and Y are different. The above technique can not be applied since
the problem (89) (in particular L(X,Y )) is not well-defined.
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In this case, (Séjourné et al., 2021) introduced the “FLB-UOT” method:

γ(1) ← arg min
γ∈Γ≤(p,q)

∫
X×Y

|sX,p(x)− sY,p(y)|pdγ(x, y) + λ(DKL(γ1,p) +DKL(γ2, q)),

(91)

where sX,p(x) =
∫
X
|x− x′|pdµ(x) and sY,p is defined similarly. The problem (91) is called

Hellinger Kantorovich, which is a classical unbalanced optimal transport problem. The
Sinkhorn solver can solve it (Chizat et al., 2018b).
Analog to the above method, we propose the third method, called “FLB-POT” (first lower
bound-partial optimal transport)

γ(1) ← arg min
γ∈Γ≤(p,q)

∫
X×Y

|sX,p(x)− sY,p(y)|2dγ(x, y) + λ(|p− γ1|+ |q− γ2|). (92)

The above problem is a partial OT problem and can be solved by classical linear program-
ming (Caffarelli & McCann, 2010).

P.2 Parameter Setting for PGW

Setting parameter λ in PGW is important in the numerical implementation. There are two
scenarios to consider:

• Both source and target measures contain outliers:
The parameter λ acts as an upper bound for the transported distance. Specifically,
if

‖dX(x, x′)− dY (y, y′)‖2 ≥ 2λ,

then either (x, y) or (x′, y′) will not be transported. - When the distance between
outliers and clean data is large, and the pairwise distances within the clean data
are relatively small, λ should be set to lie between these two scales.

• Only one measure contains outliers:
As stated in Lemma E.2, λ can be set sufficiently large to satisfy:

2λ ≥ max
x,x′∈X,y,y′∈Y

‖dX(x, x′)− dY (y, y′)‖2.

In the interpolation and shape retrieval experiments, we fall under the second sce-
nario, which does not require significant parameter tuning.
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Q Wall-Clock Time Comparison for Partial GW Solvers

In this section, we present the wall-clock time comparison between our method Algorithms
1, 2, the Frank-Wolf algorithm proposed in (Chapel et al., 2020), and its Sinkhorn version
(Peyré et al., 2016; Chapel et al., 2020). Note that these two baselines solve a mass constraint
version of the PGW problem, which we refer to as the “MPGW” problem. The proposed
PGW formulation in this paper can be regarded as a “Lagrangian formulation” of MPGW5

formulation to the PGW problem defined in (10). In this paper, we call these two baselines
the “MPGW algorithm” and the “Sinkhorn PGW algorithm”.
Numerical details. The data is generated as follows: let µ = Unif([0, 2]2) and ν =
Unif([0, 2]3), we select i.i.d. samples {xi ∼ µ}ni=1, {yj ∼ ν}mj=1, where n is selected from
[10, 50, 100, 150, ..., 10000] and m = n + 100, p = 1n/m, q = 1m/m. For each n, we set
λ = 0.2, 1.0, 10.0. The mass constraint parameter for the algorithm in (Chapel et al., 2020),
and Sinkhorn is computed by the mass of the transportation plan obtained by Algorithm 1
or 2. The runtime results are shown in Figure 12.
Regarding the acceleration technique, for the POT problem in step 1, our algorithms and
the MPGW algorithm apply the linear programming solver provided by Python OT package
(Flamary et al., 2021), which is written in C++. The Sinkhorn algorithm from Python OT
does not have an acceleration technique. Thus, we only test its wall-clock time for n ≤ 2000.
The data type is a 64-bit float number.
From Figure 12, we can observe the Algorithms 1, 2, and MPGW algorithm have a simi-
lar order of time complexity. However, using the column/row-reduction technique for the
POT computation discussed in previous sections and the fact the convergence behaviors
of Algorithms 1 and 2 are similar to the MPGW algorithm, we observe that the proposed
algorithms 1, 2 admits a slightly faster speed than MPGW solver.
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Figure 12: We test the wall-clock time of our Algorithm 1 and Algorithm 2, the MPGW
solver (Algorithm 1 in (Chapel et al., 2020)) , and the Sinkhorn algorithm (Peyré et al.,
2016). We denote these methods as “v1”, “v2”, “m” and “s”, respectively. The linear pro-
gramming solver applied in the first three methods is from POT (Flamary et al., 2021),
which is written in C++. The maximum number of iterations for all the methods is set to
be 1000. The maximum iteration for OT/OPT solvers is set to be 300n. The maximum
Sinkhorn iteration is set to be 1000. The convergence tolerance for the Frank-Wolfe algo-
rithm and the Sinkhorn algorithm are set to be 1e − 5. To achieve the best performance,
we set the number of dummy points to 1 for both MPGW and PGW.

5Due to the non-convexity of GW, we do not have a strong duality in some of the GW repre-
sentations. Thus, the Lagrangian form is not a rigorous description.
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R Positive Unlabeled Problem

R.1 Problem Setup

Positive unlabeled (PU) learning (Bekker & Davis, 2020; Elkan & Noto, 2008; Kato et al.,
2018) is a semi-supervised binary classification problem for which the training set only
contains positive samples. In particular, suppose there exists a fixed unknown overall dis-
tribution over triples (x, o, l), where x is data, l ∈ {0, 1} is the label of x, o ∈ {0, 1} where
o = 1, o = 0 denote that l is observed or not, respectively. In the PU task, the assump-
tion is that only positive samples’ labels can be observed, i.e., Prob(o = 1|x, l = 0) = 0.
Consider training labeled data Xpu = {(xpui , l)}ni=1 ⊂ {x : o = 1} and testing data
Xun = {xunj }mj=1 ⊂ {x : o = 0}, where xipXi ∈ Rd1 , xuj ∈ Rd2 . In the classical PU learning
setting, d2 = d1. However, in (Séjourné et al., 2021), this assumption is relaxed. The goal
is to leverage Xp to design a classifier l̂ : xu → {0, 1} to predict l(xu) for all xu ∈ Xu.6

Following (Elkan & Noto, 2008; Chapel et al., 2020; Séjourné et al., 2021), in this experiment,
we assume that the “select completely at random” (SCAR) assumption holds: Prob(o =
1|x, l = 1) = Prob(o = 1|l = 1). In addition, we use π = Prob(l = 1) ∈ [0, 1] to denote the
ratio of positive samples in testing set7. Following the PU learning setting in (Kato et al.,
2018; Hsieh et al., 2019; Chapel et al., 2020; Séjourné et al., 2021), we assume π is known.
In all the PU learning experiments, we fix π = 0.2.

R.2 Methodology

Similar to (Chapel et al., 2020) our method is designed as follows: We set p ∈ Rn, q ∈ Rm

as pXi = π
n , i ∈ [1 : n]; qYj = 1

m , j ∈ [1 : m]. Let Xp = (Xp, ‖ · ‖d1
,
∑n

i=1 p
X
i δxi

),Xu =

(Xu, ‖ · ‖d2
,
∑n

j=1 q
Y
j δyj

). We solve the partial GW problem PGWλ(Xp,Xu) and suppose γ
is a solution. Let γ2 = γ>1n. The classifier l̂ is defined by the indicator function

l̂γ(x
u) = 1{xu: γ2(xu)≥quantile}, (93)

where quantile is the quantile value of γ2 according to 1− π.
Regarding the initial guess γ(1), (Chapel et al., 2020) proposed a POT-based approach
when X and Y are sampled from the same domain, i.e., d1 = d2, which we refer to as “POT
initialization.”
When X,Y are sampled from different spaces, that is, d1 6= d2, the above technique (89) is
not well-defined. Inspired by (Mémoli, 2011; Séjourné et al., 2021), we propose the following
“first lower bound-partial OT” (FLB-POT) initialization:

γ(1) = arg min
γ∈Γ≤(p,q)

∫
X×Y

|sX,2(x)− sY,2(y)|2dγ(x, y) + λ(|p− γ1|+ |q− γ2|),

where sX,2(x) =
∫
X
|x−x′|2dµ(x) and sY,2 is defined similarly. The above formula is analog

to Eq. (7) in (Séjourné et al., 2021), which is designed for the unbalanced GW setting. To
distinguish them, in this paper, we call Eq. (7) in (Séjourné et al., 2021) as “FLB-UOT
initialization”.

R.3 Datasets

The datasets include MNIST, EMNIST, and the following three domains of Caltech Office:
Amazon (A), Webcam (W), and DSLR (D) (Saenko et al., 2010). For each domain, we
select the SURF features (Saenko et al., 2010) and DECAF features (Donahue et al., 2014).
For MNIST and EMNIST, we train an auto-encoder, respectively, and the embedding space
dimension is 4 and 6, respectively. See Figure 13 for the TSNE visualization of these
datasets.

6In the classical setting, the goal is to learn a classifier for all x. In this experiment, we follow
the setting in (Séjourné et al., 2021).

7In the classical setting, the prior distribution π is the ratio of positive samples of the original
dataset. For convenience, we ignore the difference between this ratio in the original dataset and
the test dataset.
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(a) MNIST (b) EMNIST

(c) Surf(A) (d) Decaf(A)

(e) Surf(D) (f) Decaf(D)

(g) Surf(W) (h) Decaf(w)

Figure 13: TSNE visulization for datasets MNIST,EMNIST,Caltech Office.
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R.4 Numerical Details and Performance

Accuracy Comparison. In Table 3 and Table 5, we present the accuracy results for the
MPGW, UGW, and the proposed PGW methods when using three different initialization
methods: POT, FLB-UOT, and FLB-POT.
Following (Chapel et al., 2020), in the MPGW and PGW methods, we incorporate the prior
knowledge π into the definition of p and q. Thus, it is sufficient to set mass = π for MPGW
and choose a sufficiently large value for λ in the PGW method. This configuration ensures
that the mass matched in the target domain Y is exactly equal to π. However, in the UGW
method (Séjourné et al., 2021), the setting is p = 1

n1n and q = 1
m1m.

Overall, all methods show improved performance in MNIST and EMNIST datasets. One
possible reason for this could be the better separability of the embeddings in MNIST and
EMNIST, as illustrated in Figure 13. Additionally, since MPGW and PGW incorporate
information from r into their formulations, they exhibit slightly better accuracy in many
experiments.
Numerical details. In this experiment, to prevent unexpected convergence to local minima
in the Frank-Wolf algorithms, we manually set α = 1 during the line search step for both
MPGW and PGW methods.
For the convergence criteria, we set the tolerance term for Frank-Wolfe convergence and the
main loop in the UGW algorithm to be 1e − 5. Additionally, the tolerance for Sinkhorn
convergence in UGW was set to 1e − 6. The maximum number of iterations for the POT
solver in PGW and MPGW was set to 500n. In addition, for MPGW, we set mass = 0.2
and for PGW method, based on lemma E.2, we set λ to be constant such that 2λ ≥
(max(|CX |)2 + max(|CY |)2). For UGW, as we directly apply the numerical method in
(Séjourné et al., 2023), where the prior knowledge π = 0.2 is not Incorporated in the setting
of p and q. Thus, in each experiment, we test different parameters (ρ, ρ2, ε) and select the
ones that result in transported mass close to π.
Regarding data types, we used 64-bit floating-point numbers for MPGW and PGW and
32-bit floating-point numbers for UGW.
For the MNIST and EMNIST datasets, we set n = 1000 and m = 5000. In the Surf(A) and
Decaf(A) datasets, each class contained an average of 100 samples. To ensure the SCAR
assumption, we set n = 1/2∗100 = 50 and m = 250. Similarly, for the Surf(D) and Decaf(D)
datasets, we set n = 15 and m = 75. Finally, for Surf(W) and Decaf(W), we used n = 20
and m = 100.
Wall-clock time In Table 4, we provide a comparison of wall-clock times for the MNIST
and EMNIST datasets.

Dataset Init Method Init Accuracy MPGW UGW PGW (ours)
M → M POT 100% 100% 95% 100%
M → M FLB-U 75% 96% 95% 96%
M → M FLB-P 75% 99% 95% 99%
M → EM FLB-U 78% 94% 95% 94%
M → EM FLB-P 78% 94% 95% 94%
EM → M FLB-U 75% 97% 96% 97%
EM → M FLB-P 75% 97% 96% 97%
EM → EM POT 100% 100% 95% 100%
EM → EM FLB-U 78% 94% 95% 94%
EM → EM FLB-P 78% 95% 95% 95%

Table 3: Accuracy comparison of the MPGW, UGW, and the proposed PGW method on
PU learning. Here, ‘M’ denotes MNIST, and ‘EM’ denotes EMNIST.
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Source Target Init Method Init Time MPGW UGW PGW (ours)
M(1000) M(5000) POT 0.5 7.2 152.0 7.4
M(1000) M(5000) FLB-U 0.02 30.5 152.6 27.8
M(1000) M(5000) FLB-P 0.5 27.8 144.9 26.9

EM(1000) EM(5000) POT 0.5 7.3 157.3 7.5
EM(1000) EM(5000) FLB-U 0.02 30.0 181.8 29.9
EM(1000) EM(5000) FLB-P 0.5 22.2 155.1 22.3
M(1000) EM(5000) FLB-U 0.02 34.0 157.9 34.4
M(1000) EM(5000) FLB-P 0.5 34.9 155.5 35.0

EM(1000) M(5000) FLB-U 0.02 24.3 139.3 22.2
EM(1000) M(5000) FLB-P 0.5 32.0 162.7 29.9
M(2000) M(10000) POT 1.7 31.1 1384.8 32.1
M(2000) M(10000) FLB-U 0.1 209.0 1525.8 192.5
M(2000) M(10000) FLB-P 1.7 208.0 1418.4 192.1
M(2000) EM(10000) FLB-U 0.1 165.1 1606.1 164.2
M(2000) EM(10000) FLB-P 1.7 224.1 1420.7 223.7

EM(2000) M(10000) FLB-U 0.1 149.1 1426.5 138.1
EM(2000) M(10000) FLB-P 1.7 113.9 1407.6 103.9
EM(2000) EM(10000) POT 1.6 32.4 1445.9 33.4
EM(2000) EM(10000) FLB-U 0.1 233.0 1586.3 233.9
EM(2000) EM(10000) FLB-P 1.8 142.1 1620.6 142.1

Table 4: In this table, we present the wall-clock time for the MPGW, UGW, and the
proposed PGW method, as well as three different initialization methods (POT, FLB-UOT,
FLB-POT). In the “Source” (or “Target”) column, M (or EM) denotes the MNIST (or
EMNIST) dataset, and the value 1000 (or 5000) denotes the sample size of X (or Y ). The
units of all reported wall-clock times are seconds.

S Compute Resources

All experiments presented in this paper are conducted on a computational machine with an
AMD EPYC 7713 64-Core Processor, 8 × 32GB DIMM DDR4, 3200 MHz, and an NVIDIA
RTX A6000 GPU.
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Dataset Init Method Init Accuracy MPGW UGW PGW (ours)
surf(A) → surf(A) POT 81.2% 74.7% 66.5% 74.7%
surf(A) → surf(A) FLB-U 64.9% 65.7% 66.5% 65.7%
surf(A) → surf(A) FLB-P 63.3% 66.5% 66.5% 66.5%
decaf(A) → decaf(A) POT 95.1% 95.1% 60.8% 95.1%
decaf(A) → decaf(A) FLB-U 78.0% 67.4% 83.7% 67.4%
decaf(A) → decaf(A) FLB-P 78.0% 74.7% 88.6% 74.7%
surf(D) → surf(D) POT 100% 100% 89.3% 100%
surf(D) → surf(D) FLB-U 62.7% 73.3% 84.0% 73.3%
surf(D) → surf(D) FLB-P 60.0% 60.0% 78.7% 60.0%
decaf(D) → decaf(D) POT 100% 100% 100% 100%
decaf(D) → decaf(D) FLB-U 76.0% 68.0% 70.7% 68.0%
decaf(D) → decaf(D) FLB-P 73.3% 73.3% 86.7% 73.3%
surf(W) → surf(W) POT 100.0% 100.0% 81.3% 100.0%
surf(W) → surf(W) FLB-U 76.0% 70.7% 81.3% 70.7%
surf(W) → surf(W) FLB-P 73.3% 68.0% 78.7% 68.0%
decaf(W) → decaf(W) POT 100% 100% 100% 100%
decaf(W) → decaf(W) FLB-U 73.3% 68.0% 62.7% 68.0%
decaf(W) → decaf(W) FLB-P 70.7% 70.7% 73.3% 70.7%
surf(A) → decaf(A) FLB-U 73.9% 83.7% 91.8% 83.7%
surf(A) → decaf(A) FLB-P 73.9% 83.7% 87.8% 83.7%
decaf(A) → surf(A) FLB-U 67.3% 67.3% 69.0% 67.3%
decaf(A) → surf(A) FLB-P 67.3% 68.2% 71.4% 68.2%
surf(D) → decaf(D) FLB-U 76.0% 76.0% 65.3% 76.0%
surf(D) → decaf(D) FLB-P 76.0% 76.0% 65.3% 76.0%
decaf(D) → surf(D) FLB-U 73.3% 62.7% 73.3% 62.7%
decaf(D) → surf(D) FLB-P 73.3% 73.3% 73.3% 73.3%
surf(W) → decaf(W) FLB-U 70.7% 70.7% 76.0% 70.7%
surf(W) → decaf(W) FLB-P 70.7% 70.7% 76.0% 70.7%
decaf(W) → surf(W) FLB-U 68.0% 68.0% 65.3% 68.0%
decaf(W) → surf(W) FLB-P 68.0% 68.0% 70.7% 68.0%

Table 5: In this table, we present the accuracy comparison of the MPGW, UGW, and the
proposed PGW method. We first describe the initialization method and report its accuracy,
followed by the accuracy of MPGW, UGW, and PGW. The prior distribution π = p(l = 1)
is set to be 0.2 in all experiments. To guarantee the SCAR assumption, for Surf(A) and
Decaf(A), we set n = 50, which is half of the total number of data in one single class. m is
set to be 250. Similarly, we set suitable n,m for Surf(D), Decaf(D), Surf(W), Decaf(W).
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Dataset Init Method Init Time MPGW UGW PGW (ours)
surf(A) → surf(A) POT 1.4e-3 1.9e-2 3.8 2.0e-2
surf(A) → surf(A) FLB-U 2.2e-3 1.8e-2 3.6 1.9e-2
surf(A) → surf(A) FLB-P 1.7e-3 1.8e-2 3.8 1.5e-2
decaf(A) → decaf(A) POT 1.7e-3 1.9e-2 7.3 1.9e-2
decaf(A) → decaf(A) FLB-U 9.6e-3 1.8e-2 6.8 1.5e-2
decaf(A) → decaf(A) FLB-P 2.0e-3 1.8e-2 6.7 1.6e-2
surf(D) → surf(D) POT 2.9e-4 5.8e-4 3.1 3.8e-4
surf(D) → surf(D) FLB-U 1.4e-3 3.0e-3 5.4 2.2e-3
surf(D) → surf(D) FLB-P 3.1e-4 2.9e-3 5.4 2.1e-3
decaf(D) → decaf(D) POT 3.1e-4 6.0e-4 3.3 3.6e-4
decaf(D) → decaf(D) FLB-U 1.4e-3 2.9e-3 5.8 2.1e-3
decaf(D) → decaf(D) FLB-P 3.4e-4 2.8e-3 5.3 2.0e-3
surf(W) → surf(W) POT 3.0e-4 6.0e-4 5.2 3.6e-4
surf(W) → surf(W) FLB-U 1.3e-3 2.9e-3 5.1 2.1e-3
surf(W) → surf(W) FLB-P 3.3e-4 2.9e-3 5.1 2.1e-3
decaf(W) → decaf(W) POT 3.3e-4 6.2e-4 3.3 3.4e-4
decaf(W) → decaf(W) FLB-U 1.2e-3 2.9e-3 5.8 2.1e-3
decaf(W) → decaf(W) FLB-P 3.3e-4 2.8e-3 5.4 2.0e-3
surf(A) → decaf(A) FLB-U 1.1e-1 2.8e-2 6.7 2.6e-2
surf(A) → decaf(A) FLB-P 1.9e-3 2.2e-2 0.2 2.1e-2
decaf(A) → surf(A) FLB-U 0.1 5e-2 6.7 4e-2
decaf(A) → surf(A) FLB-P 2e-3 1.8 6.8 1.5
surf(D) → decaf(D) FLB-U 1.8e-3 5.3e-3 6.0 2.3e-3
surf(D) → decaf(D) FLB-P 3.5e-4 3.9e-4 5.9 3.8e-4
decaf(D) → surf(D) FLB-U 1.8e-3 0.296 5.6 0.165
decaf(D) → surf(D) FLB-P 3.3e-4 0.218 5.6 0.170
surf(W) → decaf(W) FLB-U 1.8e-3 5.3e-3 5.0 2.3e-3
surf(W) → decaf(W) FLB-P 3.4e-4 4.1e-4 5.0 3.9e-4
decaf(W) → surf(W) FLB-U 1.8e-3 5.1e-3 5.8 2.1e-3
decaf(W) → surf(W) FLB-P 3.4e-4 2.9e-3 5.6 2.2e-3

Table 6: In this table, we present the wall-clock time comparison of the MPGW, UGW, and
the proposed PGW method. We report the initialization method and its wall-clock time,
followed by the wall-clock time of each of the methods MPGW, UGW, and PGW. The units
of all reported wall-clock times are seconds. The prior distribution π = p(l = 1) is set to be
0.2 in all experiments. To guarantee the SCAR assumption, for Surf(A) and Decaf(A), we
set n = 50, which is half of the total number of data in one single class. m is set to be 250.
Similarly, we set suitable n,m for Surf(D), Decaf(D), Surf(W), Decaf(W).
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