
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Neural Networks Are Graphs

A. Related Work

Earlier works that operate on high-level statistics or the parameters of neural networks try to predict their final perfor-
mance (Baker et al., 2017), hyper-parameters used for training (Eilertsen et al., 2020), and the generalization perfor-
mance (Unterthiner et al., 2020). These works simply flatten the parameters and disregard the innate symmetry of neural
network weights and biases. This is undesirable because models that are functionally identical (obtained by permuting the
weights and biases appropriately) can receive vastly different predictions. A recent work performs different 3D tasks on
implicit neural representations (De Luigi et al., 2023). They apply a set neural network on the set of vectors that includes all
weight matrix rows and biases. This captures the wrong symmetries (the model is not equivariant/invariant to permuting the
rows and columns of adjacent weight matrices as in equation 1 and 2), so they require a particular training method for the
implicit neural representations to try to limit this issue.

A few recent works propose accounting for the permutation symmetry in neural networks by characterizing equivariant affine
transformations on the parameter vector (Navon et al., 2023; Zhou et al., 2023). They do this via a complicated weight sharing
pattern in the weight matrix of the affine transformation and show that this leads to significantly improved results compared
to non-equivariant baselines. In contrast, in our work, we propose a graph-based representation for neural networks’ weight
spaces. This enables us to leverage the rich literature on graph neural networks, avoiding complications involving computing
the weight sharing patterns of different neural network architectures or finding the right hyperparameters for the new
architectures. This means that our method is more flexible: varying architectures are simply represented as different graph
structures, which are easily handled by the graph neural network model. This flexibility also means that models with and
without skip connections (which in principle have the same set of weights) can be distinguished. In contrast, the existing
methods only support one architecture at a time because a different architecture requires changing the structured weights.

6


