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ABSTRACT

On general visual recognition tasks, CLIP has demonstrated remarkable few-shot
performance by aligning image and text modalities. However, CLIP’s sole re-
liance on the class (CLS) embedding for image representation limits its capacity
to capture spatially fine-grained features, which are crucial for fine-grained classi-
fication tasks, where subtle differences (e.g., bird species, car models) depend on
small, localized variations rather than just the overall object outline. To address
this, we introduce INFER, a feature enhancement strategy for CLIP that enhances
image embeddings with spatial information intelligently extracted from patch em-
beddings as well as the CLS embedding. To this end, INFER leverages attention
heads to compute attention-weighted features of both the patch and CLS embed-
dings. The most informative heads for each class, identified by their alignment
with class text embeddings, are selected to enrich the patch and CLS features,
which are then integrated through a lightweight fusion module. In the few-shot
learning paradigm, INFER establishes new SOTA performance, highlighting the
underutilized potential of CLIP’s internal attention mechanisms and providing a
generalizable framework for patch-level enhancement in CLIP.

1 INTRODUCTION

The advent of vision-language models (VLMs) has transformed computer vision, enabling robust
few-shot generalization across a wide range of tasks. In particular, Contrastive Language–Image
Pre-training (CLIP) has emerged as a cornerstone, achieving remarkable performance in aligning
visual and textual modalities through contrastive learning on large-scale image–text datasets Radford
et al. (2021). Despite CLIP’s impressive capabilities, an inherent limitation persists that hinders its
effectiveness in real-world applications. CLIP’s architecture relies exclusively on the class (CLS)
embedding at the last layer of vision encoder for its final image representation, discarding the rich
spatial and semantic information encoded in patch embeddings across multiple layers Dong et al.
(2023); Zhou et al. (2022a). This design choice, while computationally efficient, discards fine-
grained visual details that are crucial for distinguishing semantically similar classes. The problem is
particularly pronounced in fine-grained recognition tasks, where rich spatial semantics are essential.

Studies in patch-inclusive representation learning have demonstrated the potential of leveraging
patch-level information for image segmentation tasks. MaskCLIP Dong et al. (2023) pioneered
extracting dense labels from CLIP by directly utilizing patch embeddings, while ZegFormer Ding
et al. (2022) separated the class-agnostic grouping from segment-level classification, providing in-
sights into how spatial information can be effectively incorporated into patches.

While patch-inclusive studies highlight the importance of spatial information, recent advances in
vision transformer (ViT) interpretation and attention analysis reveal that different heads capture dis-
tinct types of visual information, ranging from low-level textures to high-level semantic relationships
Zhang et al. (2022); Gandelsman et al. (2023). This observation suggests that treating all attention
heads in CLIP equally can be suboptimal, since some heads contribute more effectively to specific
classification tasks than others. Moreover, patch-to-patch attention patterns within transformer lay-
ers encode valuable spatial relationships and contextual dependencies that remain unexploited in
CLIP’s current formulation. This suggests that further work is needed to determine which heads are
most useful and what information they capture to better exploit CLIP’s internal representations for
fine-grained classification.
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(a) Heatmaps of CLIP and INFER. (b) Benchmark performance across datasets.

Figure 1: (a) The heatmaps of CLIP and INFER. (b) Classification accuracy on ten different datasets
across diverse domains. INFER consistently outperforms all competing approaches, including the
current SOTA method, 2SFS Farina et al. (2025).

Fine-grained classification poses a particularly challenging setting where subtle inter-class differ-
ences, such as variations in texture, shape, or local part configurations, are crucial for accurate
recognition. Prompt-based adaptation has become a dominant paradigm for tuning VLMs in few-
shot settings. Methods such as CoOp Zhou et al. (2022c), CoCoOp Zhou et al. (2022b), and their
successors (e.g., PLOT++ Chen et al. (2022), MaPLe Khattak et al. (2023), ProGrad Zhu et al.
(2023)) learn discrete or soft prompt vectors that condition the text encoder. These approaches often
enhance generalization by introducing multiple prompts, aligning prompt updates with CLIP’s gra-
dients, or coupling prompts across modalities. Despite their effectiveness, prompt-based techniques
still remain global in nature: they modify only the textual context while leaving visual embeddings
unchanged. As a result, they often struggle to capture fine-grained spatial cues and can be sensitive
to clutter or background noise.

Another line of work introduces lightweight modules or residual layers within the encoders to adapt
representations. Adapter-based techniques such as MMA Yang et al. (2024) and classifier-oriented
methods like TaskRes Yu et al. (2023) and LP+ Huang et al. (2024) improve alignment or discrimi-
nation by inserting trainable components at intermediate or final layers. Most recently, 2SFS Farina
et al. (2025) fine-tunes only normalization layers in a two-stage schedule before training a classi-
fier. These methods achieve strong performance with relatively few parameters but often require
carefully staged optimization.

We introduce Embedding INtegration with FEature Refinement (INFER), a novel framework that
improves CLIP’s performance in recognition tasks. INFER avoids prompt learning and encoder
modifications by adopting an embedding-integration strategy that combines the enriched CLS and
patch embeddings through a fusion module. These embeddings are enhanced by our feature en-
hancement mechanism, yielding more discriminative and robust representations while preserving
the frozen backbone. Figure 1 provides the qualitative and quantitative analysis of INFER. Figure
1(a) presents the heatmaps of standard CLIP and INFER, showing that INFER produces more spa-
tially focused and semantically aligned activations by selectively enhancing CLS as well as patch
features through informative attention heads. Figure 1(b) shows that INFER establishes new SOTA
performance across diverse domains, outperforming all completing methods, including the current
SOTA method, 2SFS Farina et al. (2025).

INFER operates on three key insights: (i) Effective fine-grained visual understanding requires both
global context (captured by the CLS embedding) and local spatial relationships (encoded in patch
embeddings), (ii) Selectively enhancing the spatial and semantic information in patch and CLS
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Figure 2: (a) INFER extends CLIP by leveraging both the CLS and patch embeddings. The vision
encoder produces CLS and patch embeddings, which are first enriched by our feature enhancement
mechanism. These enriched CLS and patch embeddings are then dynamically integrated through
a lightweight fusion module, which consists of CNN-MLP networks, while keeping the pretrained
CLIP encoders frozen. (b) Illustration of the feature enhancement mechanism. Attention weights
across layers and heads capture diverse semantic features. For each embedding, coefficients ζi are
computed by selecting the most informative heads, leading to enriched CLS and patch embeddings
that retain fine-grained spatial and contextual cues.

embeddings can improve the model’s discriminative capability, and (iii) Different attention heads
contribute unequally to the final classification decision. INFER has three key contributions:

• Dynamic Integration Mechanism: We design a method that intelligently integrates the CLS
embedding and other patch embeddings, allowing the model to leverage both global context
and fine-grained spatial information based on the specific characteristics of each image.

• Attention-based Feature Enhancement Mechanism: To enhance the CLS and patch embed-
dings, we introduce a systematic method for identifying and selecting the most discrimina-
tive attention heads across multiple transformer layers, enabling the construction of more
meaningful enhanced feature representations that align with target semantics.

• Comprehensive Evaluation: We provide extensive numerical results, which show that IN-
FER sets new SOTA performance across diverse datasets, including fine-grained tasks.

2 RELATED WORK

2.1 ATTENTION HEAD ANALYSIS

The attention mechanism has become fundamental to modern vision architectures, including ViT,
demonstrating that transformer architectures can achieve competitive performance compared to con-
volutional networks Dosovitskiy et al. (2020). Some attention heads focus on local texture pat-
terns, while others capture global shape information or semantic relationships between objects. The
method proposed in Clark et al. (2019) demonstrated that many attention heads in Bidirectional En-
coder Representations from Transformers (BERT) can be removed without significant performance
degradation, suggesting that not all heads contribute equally to model performance. Similar findings
are reported for ViT, where selective modification of attention heads can improve both efficiency
and accuracy Michel et al. (2019). TextSpan Gandelsman et al. (2023) provided important insights
into the decomposition of CLIP’s final image representation into contributions from individual im-
age tokens. Their work demonstrated that patch-level information can be effectively utilized for
interpretability and localization tasks, suggesting that similar principles could be applied to enhance
classification performance. The PaCa-ViT Chefer et al. (2021) particularly emphasizes the impor-
tance of meaningful cluster assignments and attention patterns, showing that learned clusters can
provide semantically meaningful visual tokens beyond simple patches. CLIP-PGS Pei et al. (2025)
further supports this with their attention-based feature enhancement mechanism, where they identify
the most informative attention heads based on alignment with class text embeddings.
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2.2 PATCH-INCLUSIVE REPRESENTATION LEARNING FOR IMAGE SEGMENTATION

Recent studies in image segmentation tasks have provided valuable insights into leveraging CLIP’s
patch-level representations for patch-based representation learning. MaskCLIP Dong et al. (2023)
pioneered the extraction of dense labels from CLIP by directly utilizing patch embeddings, demon-
strating that CLIP’s internal representations contain rich spatial information that can be effectively
used for segmentation. SegViT Zhang et al. (2022) proposed an attention-to-mask module that di-
rectly utilizes spatial attention patterns for segmentation. Their approach demonstrated that attention
mechanisms can be used not only for feature extraction but also for generating spatial masks, pro-
viding a natural bridge between attention patterns and spatial understanding. CLIP-PGS Pei et al.
(2025) introduces a patch generation-to-selection strategy that enhances CLIP’s training efficiency
while preserving critical semantic content. This work demonstrates that careful patch selection can
improve both efficiency and semantic integrity.

2.3 ADAPTATION AND FEW-SHOT FINE-TUNING STRATEGIES

Few-shot fine-tuning has heavily been explored for CLIP adaptation, with methods such as CLIP-
Adapter Gao et al. (2021) introducing lightweight residual-style adapters that can be trained with
limited data. Tip-Adapter Zhang et al. (2021) further advanced this direction by proposing a training-
free adaptation approach that constructs adapters from cached few-shot training features. MMA
Yang et al. (2024) introduced lightweight multi-modal adapters into both vision and text encoders
to better align and adapt representations with minimal parameter cost. LP++ Huang et al. (2024)
proposes a strong linear probing baseline that blends image and text prototypes through convex
optimization for few-shot tasks. CLIP-LoRA Zanella & Ben Ayed (2024) applies low-rank param-
eterization to tune VLMs efficiently, reducing trainable parameters while preserving adaptation ca-
pacity. Most recently, 2SFS Farina et al. (2025) splits adaptation into two stages by first fine-tuning
LayerNorms for general features, then training a classifier for specialization.

Prompt-based adaptation has gained significant attention as an alternative to parameter updates.
CoOp Zhou et al. (2022c) introduced learnable prompts that can be optimized to adapt CLIP’s text
encoder to specific tasks, while CoCoOp Zhou et al. (2022b) extended this approach to conditional
prompts that vary based on input images. to reduce forgetting. KgCoOp Yao et al. (2023) enhances
prompt tuning by incorporating external knowledge into context vectors, resulting in more semanti-
cally meaningful and robust prompts.

3 EMBEDDING INTEGRATION WITH FEATURE REFINEMENT (INFER)

We propose INFER based on the following insights: (i) Patch embeddings retain valuable spatial
information that can complement global representations captured by CLS embedding, (ii) Different
heads at different layers capture different information that can be selectively used to reweight the
CLS and patch embeddings to improve performance, and (iii) Attention patterns encode diverse and
meaningful spatial relationships useful for prediction tasks. Building on these insights, the proposed
INFER is an approach that effectively utilizes patch embeddings as well as CLS embedding for
fine-grained classification. INFER first enriches the patch and CLS embeddings by our proposed
feature enhancement mechanism with effective head selection. Then INFER dynamically integrates
the enriched CLS and patch embeddings through a lightweight fusion module. INFER offers a new
solution for few-shot learning in VLMs.

3.1 STANDARD APPROACH

Consider a VLM, such as CLIP, which is composed of a vision encoder processing images I and
a text encoder processing text t. For a ViT-based vision encoder, the output of layer l = 1, · · · , L
is denoted by Zl =

[
zl0, z

l
1, · · · , zlN−1

]
∈ Rd×N , where zl0 ∈ Rd is the CLS embedding, and

zli ∈ Rd, i = 1, · · · , N −1 represent the (N −1) patch embeddings in layer l. In the standard setup,
the CLS embedding zL0 at the last layer of ViT is projected, using projection matrix P ∈ Rd′×d,
onto the joint image-text embedding space, yielding the image representation MCLS

img (I) as follows:

MCLS
img (I) = PzL0 ∈ Rd′

. (1)
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Given the text representation, Mtxt (t), for input text t, their cosine similarity is determined by

βCLS
I,t = cos

(
MCLS

img (I) ,Mtxt (t)
)
∈ R, (2)

and this cosine similarity is used for model training and inference.

A drawback of this standard approach is that the image representation relies exclusively on the
CLS embedding zL0 , without utilizing the remaining patch embeddings zLi , i = 1, . . . , N −1, which
preserve fine-grained spatial cues critical for detailed image understanding. To address the limitation
of the standard approach, we propose INFER by intelligently leveraging the information from all
patch embeddings as well as the CLS embedding, thereby capturing fine-grained spatial cues.

3.2 INFER: FEW-SHOT EARNING FRAMEWORK

INFER introduces a few-shot learning mechanism that intelligently combines the enhanced CLS
and patch embeddings, enabling dynamic alignment of global and local visual representations. Fig-
ure 2(a) provides an overview of INFER, while Figure 2(b) illustrates the proposed feature enhance-
ment mechanism in detail.

The goal of INFER is to leverage both the patch embeddings {zLi }
N−1
i=1 and the CLS embedding zL0

from the final layer to construct the image representation, M INFER
img (I), which can be expressed as

M INFER
img (I) = P · g

(
zL0 , z

L
1 , · · · , zLN−1

)
∈ Rd′

, (3)

where g : Rd×N → Rd denotes a function that merges all embeddings to a vector of dimension d.
In our approach, before actual combining, each embedding zLi is first scaled (or enhanced) by a co-
efficient ζi for i = 0, · · · , N − 1, where ζi selectively enhances zLi by leveraging attention weights
(from the CLS token to the i-th patch token) of select heads of ViT. This procedure captures the
patch-level relevance to the CLS embedding. The enhanced embeddings {ζizLi }

N−1
i=0 are combined

by a small fusion module composed of a 3-layer CNN, fCNN, and a single MLP layer, fMLP. Specif-
ically, fCNN is first used to combine the enhanced patch embeddings {ζizLi }

N−1
i=1 , and then fMLP is

used to fuse the CNN output with the enhanced CLS embedding ζ0z
L
0 as follows:

M INFER
img (I) = P · fMLP

(
ζ0z

L
0 , fCNN

(
ζ1z

L
1 , · · · , ζN−1z

L
N−1

))
∈ Rd′

. (4)

The reason for using a CNN to first combine {ζizLi }
N−1
i=1 is that patch embeddings inherently retain

2D spatial structure, since each embedding corresponds to a spatial patch of the input image. Rather
than flattening or averaging these spatially distributed features (which discard spatial relations),
CNN captures localized patterns and relationships across neighbouring enhanced patches.

Few-shot learning of INFER consists of two stages: In Stage 1, ζi are determined leveraging the
attention weights and, in Stage 2, fCNN and fMLP are trained. Each stage is detailed in the following.

(Stage 1) Feature Enhancement by ζi: To enrich both the CLS embedding and the patch embed-
dings, INFER leverages the attention weights from the CLS token to the i-th patch token, which
quantify how much information each patch contributes to the global representation. This provides
three key benefits: (i) CLS-to-patch attention highlights the most informative regions, implicitly
capturing object boundaries or salient semantic parts, (ii) patch embeddings can be reweighted to
incorporate their relative importance in the global context, leading to more discriminative and con-
textually meaningful features, and (iii) patches with high CLS attention often correspond to seman-
tically critical elements, such as distinctive object parts or complementary components of a scene.
In this way, INFER harnesses CLS-guided attention to selectively enhance feature representations,
yielding enriched embeddings that better capture both global and local visual cues.

To quantify how strongly CLS token attends to the i-th patch token at each head at each layer, we
consider attention weight αl,h

i,0 = softmaxi
(

1√
dH

(kl,h
i )T (ql,h

0 )
)
, where ql,h

0 ∈ RdH is the query

vector of CLS token, kl,h
i ∈ RdH is the key vector of the i-th token, dH = d

H is the per-head
dimensionality, and H is the number of heads per layer. An approach to determine ζi is to take into
account all attention weights αl,h

i,0 ∈ R of all heads and all layers:

ζi =
1

L ·H

L∑
l=1

H∑
h=1

αl,h
i,0 , i = 0, · · · , N − 1. (5)
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In INFER, this strategy of capturing CLS-to-patch attention is further improved in two key ways.
First, in the ViT, deeper layers usually capture more semantic and global information, as the CLS
attention scores in later layers better reflect the model’s final “understanding” and representation of
the image Gandelsman et al. (2023). Based on this inspiration, only the last L̂ layers (e.g., four
layers) are leveraged rather than all L layers. Second, we note that not all attention heads contribute
equally: different heads specialize in capturing different types of information and some heads may
contain less meaningful information or just noise for certain classes. Therefore, treating all heads
equally can attenuate the signal from the most informative ones. In light of this, we select a set of
J most informative heads at each layer for the i-th embedding, denoted by Hl

i, thereby focusing on
the most relevant attention patterns for each embedding. Together, ζi is refined as:

ζi =
1

L̂ · J

L∑
l=L−L̂+1

∑
h∈Hl

i

αl,h
i,0 , i = 0, · · · , N − 1. (6)

To construct Hl
i, we apply the few-shot samples to the frozen ViT and extract the attention weights

αl,h
i,0 , the patch embeddings zLi , and the text embedding Mtxt(t). We then project the weighted patch

embeddings αl,h
i,0z

L
i onto the joint embedding space to obtain el,hi = Pαl,h

i,0z
L
i ∈ Rd′

, and compute
its cosine similarity with the text embedding Mtxt(t):

ϕl,h
i = cos

(
el,hi ,Mtxt(t)

)
∈ R, i = 0, · · · , N − 1;h = 1, · · · , H; l = L− L̂+ 1, · · · , L. (7)

We now construct the set Hl
i of head indices by selecting, for each embedding for each layer, the J

heads with the largest ϕl,h
i values as follows:

Hl
i = topJ

(
{ϕl,h

i }Hh=1

)
, i = 0, · · · , N − 1; l = L− L̂+ 1, · · · , L, (8)

where topJ(·) denotes the function that returns the set of indices corresponding to the largest J
values from the input set.

In INFER, feature enhancement is performed per class to capture class-specific discriminative fea-
tures by selecting informative heads and reweighting patch and CLS embeddings. Assuming that
there are C classes, few-shot samples are given for each class c ∈ {1, · · · , C}. The attention
weights, now denoted by αl,h,c

i,0 , from CLS token to the i-th token of head h at layer l for class c, are
determined and stored. This process yields el,h,ci , ϕl,h,c

i , Hl,c
i , and ζci . For a given image I , INFER

then generates C class-specific image embeddings M INFER,c
img (I) , c = 1, · · · , C, constructed from

the corresponding stored values of ζci .

(Stage 2) Integration of Enhanced Features by fCNN and fMLP: INFER integrates the enriched
CLS and patch embeddings obtained from Stage 1 to capture both global and local cues. To achieve
this, a lightweight fusion module is introduced (Figure 2(a), Equation 4). Specifically, fCNN is
applied to combine the patch embeddings to preserve their spatial structure and local interactions,
while fMLP combines the resulting representation with the CLS embedding. This design ensures
that fine-grained local information is aligned with global semantics, yielding more discriminative
representations for classification.

Given few-shot samples, the cosine similarity between M INFER,c
img (I) and Mtxt (t) is determined as:

βINFER,c
I,t = cos

(
M INFER,c

img (I) ,Mtxt (t)
)
∈ R. (9)

Following the standard CLIP loss formulation, the image-to-text loss Limage and text-to-image loss
Ltext are computed, but with

∑C
c=1 β

INFER,c
I,t replacing βCLS

I,t . The final training loss is LINFER =
Limage + Ltext. Using LINFER, we first train fCNN with the few-shot samples. With fCNN frozen, we
then train fMLP on the same samples using LINFER again.

3.3 INFER: INFERENCE FRAMEWORK

Given an unknown image I and a set of C candidate classes, INFER produces C class-specific
image embeddings, M INFER,c

img (I) , c = 1, · · · , C, constructed from the stored values of ζci . To
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evaluate alignment between these embeddings and the candidate text embeddings, we compute the
cosine similarity as follows:

βINFER,c,c′

I,t = cos
(
M INFER,c

img (I) ,Mtxt (tc′)
)
∈ R, c ∈ {1, · · · , C}, c′ ∈ {1, · · · , C}, (10)

where tc′ denotes the text corresponding to the c′-th class. For prediction, INFER aggregates the
similarities across all class-specific image embeddings and selects the class with the highest align-
ment with the text embedding:

copt = arg max
c′∈{1,··· ,C}

C∑
c=1

βINFER,c,c′

I,t . (11)

This inference rule effectively chooses the class whose text embedding achieves the strongest overall
alignment with all class-specific views of the image.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS AND DATASETS

For experiments, we adopt both CLIP ViT-B/32 (with 12 layers with 12 attention heads per layer)
and CLIP ViT-L/14 (with 24 layers with 16 attention heads per layer). For few-shot fine-tuning, we
used 16 samples per class for each dataset. The batch size is 32 with a total iteration of 100. We
used an Adam optimizer with a learning rate of 0.001 and the cross-entropy loss. INFER leverages
the best J = 4 attention heads per layer from the final L̂ = 4 layers for feature enhancement.
The rationale for this selection is provided in Section 4.3.3. Model performance is evaluated using
overall accuracy as the metric.

A broad range of datasets are considered, including ImageNet (Deng et al., 2009), with 1,000 classes,
OxfordPet (Parkhi et al., 2012), with 37 breeds of cats and dogs, Cars (Krause et al., 2013), with 196
car models categorized by make, model, and year, Flowers102 (Nilsback & Zisserman, 2008) con-
taining 102 flower categories, Food101 (Bossard et al., 2014), with 101 food categories, Caltech101
(Fei-Fei et al., 2004) which contains 101 object categories plus one background/clutter category,
SUN397 (Xiao et al., 2010),which includes 397 scene categories, UCF101 Soomro (2012), with
101 human action categories, EuroSat Helber et al. (2019) with 10 land-use and land-cover cate-
gories, and FGVCAircraft (Maji et al., 2013) which contains 100 aircraft variants, emphasizing for
fine-grained recognition between visually similar categories.

4.2 RESULTS

Table 1 reports the results of INFER obtained from our own simulations, while the remaining results
are reproduced from Table 2 of 2SFS Farina et al. (2025). Although 2SFS is the current SOTA,
INFER achieves superior performance over it and all other baselines, establishing new SOTA.The
results highlight INFER’s ability to capture fine-grained spatial cues that are often missed when re-
lying solely on the CLS embedding. On scene-level and generic object recognition datasets (e.g.,
SUN, EuroSAT, Flowers, Caltech), INFER surpasses the strong baselines, showing that the method
generalizes beyond fine-grained classification. On fine-grained recognition datasets (e.g., CARS,
FGVC, DTD, UCF), INFER also consistently achieves the best results, outperforming SOTA base-
lines. Its strength lies in an attention-guided feature enhancement and the dynamic integration of the
enhanced CLS and patch embeddings, enabling more expressive and robust multimodal representa-
tions.

4.3 ABLATION STUDIES

4.3.1 EFFECTIVENESS OF THE PROPOSED DYNAMIC INTEGRATION MECHANISM

Figure 1(a) presents heatmaps of the standard CLS embeddings and the INFER embeddings, show-
ing that INFER effectively leverages patch information to produce richer representations. In Figures
3(a)–(d), the confusion matrix and the t-SNE visualization at the last layer of standard CLIP and
INFER are presented for the MNIST dataset. It is clear that standard CLIP is heavily biased towards
some classes, while INFER can effectively diagonalize the confusion matrix.
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Backbone Method ImageNet SUN FGVC EuroSAT CARS FOOD PETS Flowers Caltech DTD UCF Mean

ViT-B/32

CLIP Zero-Shot 61.9 62.0 19.3 45.1 60.4 80.5 87.5 67.0 91.1 42.6 62.2 61.8
CoOp 66.8 69.2 30.8 73.4 64.6 81.9 91.0 82.5 94.3 59.7 75.3 71.8
CoCoOp 66.1 69.8 34.5 74.0 64.0 81.7 91.4 82.3 94.1 59.0 75.5 72.0
TIP-Adapter-F 64.0 71.4 29.8 71.7 68.0 81.9 90.1 88.7 94.8 58.1 76.5 72.3
CLIP-Adapter 64.7 71.4 30.7 71.8 68.9 81.7 90.1 88.7 94.8 58.1 76.5 72.5
KgCoOp 65.4 71.3 32.0 70.1 77.3 81.7 90.8 86.1 94.4 65.1 77.5 73.8
MaPLe 66.7 72.2 36.0 81.3 66.9 82.1 91.9 95.0 95.1 65.8 77.3 75.1
ProGrad 68.1 73.2 38.0 82.0 66.7 80.2 91.1 96.3 95.5 65.6 77.2 75.5
CLIP-LoRA 68.4 74.0 37.2 92.8 75.2 81.7 90.5 96.0 95.2 68.2 80.2 78.1
MMA 68.8 74.5 40.2 90.1 73.5 81.4 91.5 96.3 95.6 70.9 81.7 78.6
NormFit 65.6 72.5 35.2 75.1 74.4 80.9 89.8 89.3 95.5 69.4 80.5 76.7
2SFS 68.4 74.8 40.2 92.1 80.2 80.8 90.3 96.3 95.8 70.4 82.3 79.2
INFER (ours) 70.2 75.2 40.6 94.2 82.7 82.8 92.6 96.7 96.3 71.2 83.6 80.5

(±0.12) (±0.18) (±0.08) (±0.13) (±0.10) (±0.05) (±0.06) (±0.15) (±0.17) (±0.09) (±0.10) (±0.11)

ViT-L/14

CLIP Zero-Shot 72.9 67.6 32.6 58.0 76.8 91.0 93.6 79.4 94.9 54.2 72.2 72.1
CoOp 78.0 78.2 52.0 89.0 89.0 93.6 99.1 97.5 97.4 77.3 88.4 85.4
CoCoOp 77.3 78.6 54.4 89.3 89.2 93.6 99.1 97.4 97.3 74.0 87.4 85.3
TIP-Adapter-F 77.3 79.3 52.9 89.5 86.1 91.6 94.6 97.3 97.5 74.0 87.8 84.4
CLIP-Adapter 78.0 79.3 53.0 89.7 86.1 91.6 94.6 97.3 97.5 74.0 87.8 84.5
KgCoOp 78.3 79.6 53.6 89.0 88.0 93.6 98.9 97.4 97.4 75.0 87.3 85.3
MaPLe 78.4 79.7 59.0 90.3 88.0 92.9 98.8 97.4 97.5 75.4 87.8 85.9
ProGrad 78.3 79.9 58.7 89.7 88.2 92.9 98.9 97.5 97.4 75.5 87.6 85.9
CLIP-LoRA 79.9 79.9 58.8 92.8 89.2 93.2 98.9 97.5 97.5 75.8 88.0 86.5
MMA 79.0 80.4 64.1 92.9 89.0 92.9 98.9 97.5 97.5 75.8 88.0 86.9
NormFit 78.2 78.8 56.1 90.2 88.8 91.6 97.9 97.5 97.4 74.5 87.9 85.4
2SFS 79.4 80.3 64.1 92.9 90.3 91.1 95.5 99.1 97.5 78.0 89.5 87.1
INFER (ours) 80.9 81.5 65.2 95.2 91.7 94.0 99.6 99.6 98.0 80.1 91.0 88.8

(±0.05) (±0.03) (±0.02) (±0.03) (±0.04) (±0.03) (±0.04) (±0.02) (±0.02) (±0.03) (±0.05) (±0.03)

Table 1: Classification accuracy across diverse datasets with ViT-B/32 and ViT-L/14 backbones.

(a) (b) (c) (d)

Figure 3: Confusion matrix of (a) standard CLIP, and (b) INFER. t-SNE visualization at the outputs
of (c) standard CLIP, and (d) INFER.

4.3.2 CLASS-SPECIFIC ATTENTION HEAD SELECTION

The proposed feature enhancement mechanism dynamically selects optimal attention heads, and
reweights the CLS and patch embedding such that the most discriminative attention patterns are
preserved. Figure 4 shows the distribution of selected attention heads for 10 classes of CIFAR-10.
Each subplot corresponds to a class, with the x-axis denoting the head index (1–12) and the y-axis
representing the number of times each head is selected. The results indicate that different classes
emphasize distinct subsets of heads, suggesting that INFER tailors its head selection to class-specific
visual cues rather than relying on a fixed universal pattern. The variation across classes highlights
both shared and specialized semantic structures captured by CLIP’s attention heads. For instance,
animal categories (e.g., cat, dog, frog, horse) frequently exploit a broader range of heads, reflect-
ing the need to capture fine-grained textures and shapes, while vehicle categories (e.g., airplane,
car, truck) concentrate more heavily on a few dominant heads that encode geometric and struc-
tural features. This demonstrates that INFER not only identifies universally informative heads but
also dynamically exploits discriminative heads that align with semantic distinctions between object
categories, thereby enhancing the robustness of the learned representations.

4.3.3 ABLATION ON J AND L̂

Figure 5 explores the effect of the hyperparameters J and L̂ on INFER. In Figure 5(a), accuracy
increases with J up to 4 but declines when more heads are used, suggesting that too many attention
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Figure 4: Head selection across ten CIFAR-10 classes in INFER with ViT-B/32. Each subfigure
corresponds to one class. The x-axis denotes the head index. The y-axis shows the number of times
each head is selected (and included Hl,c

i ) for the last four layers when the total number of trials is 16
for each class. For each head, the bars in blue, orange, green, and red represent Layers 12, 11, 10,
and 9, respectively. For each class, a head may not be selected at all or may be selected at multiple
layers. Results indicate that different heads of different layers specialize in different classes, and
INFER dynamically exploits this diversity through its feature enhancement mechanism.

(a) Ablation on the number J of attention heads (b) Ablation on the number L̂ of layers

Figure 5: Ablation studies of INFER. (a) Effect of the number J of attention heads selected, showing
that accuracy improves up to J = 4 and then declines. (b) Effect of the number L̂ of layers leveraged,
with peak accuracy observed at L̂ = 4.

heads introduce noise and reduce performance. In Figure 5(b), accuracy peaks at L̂ = 4, indicat-
ing that the last four layers provide the most meaningful cues, while additional layers contribute
redundancy and lead to a slight drop. These results establish J = 4 and L̂ = 4 as effective choices,
validating the design of INFER.

5 CONCLUSION

We introduced INFER to improve CLIP’s image representations by leveraging semantically infor-
mative attention heads to selectively enhance both CLS and patch embeddings. By operating en-
tirely within CLIP’s frozen backbone, INFER avoids architectural modifications and preserves the
model’s generalization ability. Our method not only improves the performance on few-shot classifi-
cation benchmarks but also provides valuable interpretation into CLIP’s internal attention dynamics.
The simplicity and modularity of INFER make it applicable to a wide range of downstream tasks
and foundation models. Future work may explore the extension of INFER to multi-modal retrieval
or segmentation scenarios.

9
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REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our work. Detailed descriptions of the INFER
architecture, training setup, and evaluation protocols are provided in Sections 3 and 4. Additional
ablation studies and visualizations are provided to further clarify design choices. The datasets used
(ImageNet, SUN, FGVC-Aircraft, EuroSAT, CARS, Food, Pets, Flowers, Caltech, DTD, and UCF)
are publicly available. For transparency, we release anonymized complete source code and in-
structions as part of the supplementary material, enabling independent verification of all experi-
mental results.

USE OF LARGE LANGUAGE MODEL

We used ChatGPT solely to polish grammar and wording.

REFERENCES

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer vision–ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings, part VI 13, pp. 446–461. Springer, 2014.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
782–791, 2021.

Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, and Kun Zhang.
Plot: Prompt learning with optimal transport for vision-language models. arXiv preprint
arXiv:2210.01253, 2022.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jian Ding, Nan Xue, Gui-Song Xia, and Dengxin Dai. Decoupling zero-shot semantic segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11583–11592, 2022.

Xiaoyi Dong, Jianmin Bao, Yinglin Zheng, Ting Zhang, Dongdong Chen, Hao Yang, Ming Zeng,
Weiming Zhang, Lu Yuan, Dong Chen, et al. Maskclip: Masked self-distillation advances con-
trastive language-image pretraining. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10995–11005, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Matteo Farina, Massimiliano Mancini, Giovanni Iacca, and Elisa Ricci. Rethinking few-shot adapta-
tion of vision-language models in two stages. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 29989–29998, 2025.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In 2004 conference
on computer vision and pattern recognition workshop, pp. 178–178. IEEE, 2004.

Yossi Gandelsman, Alexei A Efros, and Jacob Steinhardt. Interpreting clip’s image representation
via text-based decomposition. arXiv preprint arXiv:2310.05916, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv preprint
arXiv:2110.04544, 2021.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Yunshi Huang, Fereshteh Shakeri, Jose Dolz, Malik Boudiaf, Houda Bahig, and Ismail Ben Ayed.
Lp++: A surprisingly strong linear probe for few-shot clip. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 23773–23782, 2024.

Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
baz Khan. Maple: Multi-modal prompt learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 19113–19122, 2023.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances
in neural information processing systems, 32, 2019.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Gensheng Pei, Tao Chen, Yujia Wang, Xinhao Cai, Xiangbo Shu, Tianfei Zhou, and Yazhou Yao.
Seeing what matters: Empowering clip with patch generation-to-selection. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 24862–24872, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

K Soomro. Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

Lingxiao Yang, Ru-Yuan Zhang, Yanchen Wang, and Xiaohua Xie. Mma: Multi-modal adapter for
vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 23826–23837, 2024.

Hantao Yao, Rui Zhang, and Changsheng Xu. Visual-language prompt tuning with knowledge-
guided context optimization. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 6757–6767, 2023.

Tao Yu, Zhihe Lu, Xin Jin, Zhibo Chen, and Xinchao Wang. Task residual for tuning vision-language
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10899–10909, 2023.

Maxime Zanella and Ismail Ben Ayed. Low-rank few-shot adaptation of vision-language models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1593–1603, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bowen Zhang, Zhi Tian, Quan Tang, Xiangxiang Chu, Xiaolin Wei, Chunhua Shen, et al. Segvit: Se-
mantic segmentation with plain vision transformers. Advances in Neural Information Processing
Systems, 35:4971–4982, 2022.

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv
preprint arXiv:2111.03930, 2021.

Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from clip. In European
conference on computer vision, pp. 696–712. Springer, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16816–16825, 2022b.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022c.

Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient for
prompt tuning. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
15659–15669, 2023.

12


	Introduction
	Related Work
	Attention head analysis
	Patch-inclusive representation learning for image segmentation
	Adaptation and few-shot fine-tuning strategies

	Embedding INtegration with FEature Refinement (INFER)
	Standard Approach
	INFER: Few-shot earning framework
	INFER: Inference framework

	Experiments
	Implementation details and Datasets
	Results
	Ablation studies
	Effectiveness of the proposed dynamic integration mechanism
	Class-Specific Attention Head Selection
	Ablation on J and 


	Conclusion

