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A TWO-PLAYER MINIMAX GAMES

In this section, we will look at the setting of two minimax games more closely.

Consider a class of hypotheses F and class of probability distributions P . In addition, consider
a loss function L : F × X → R that is convex in its first argument. We consider two players
whose pure strategy sets are F and P respectively. The loss and reward of the players is given by
F (f, µ) = Ex∼p[L(f, x)] and the minmax value of the game is

max
p∈P

min
f∈F

F (f, µ) . (11)

Note that this game is convex in the hypothesis player and concave in the distribution player. The
objective of the game for the hypothesis player is trying to find a hypothesis that has low loss on
the worst case distribution from class P . Conversely, the distribution player is trying to construct a
distribution that is as hard as possible for the hypothesis player to learn.

Also, note that under reasonable conditions on F and P , we have the minimax theorem holds, see
(Schapire & Freund, 2013, Chapter 6)

max
p∈P

min
f∈F

Ex∼p[L(f, x)] = min
f∈∆(F)

max
p∈P

Ex∼p[L(f, x)]. (12)

Here, ∆(F) is the set distributions over functions F . From this, we can see that as long as we are
allowed to aggregate functions from the base class, we have can do as well as we could if we had
access to the distribution

The interesting algorithmic question would be to find a distribution over hypothesis that achieves the
minimum above. Note that the loss function is stochastic and thus, we need to formalize the access
the player has to the loss function. In applications of interest for us, we focus on settings where We
will formulate this in the following stochastic way.
Definition 2. An algorithm ORACLE is said to be a (β, δ) weak-gradient if

⟨ORACLE(f, p),∇fF (f, p)⟩ ≥ β (13)

with probability 1− δ.

Here∇f denotes the functional gradient of F . This notion is similar to the weak learning assumptions
usually used in the boosting literature. Given such an oracle one can ask for methods similar to first
order methods for convex optimization, such as gradient descent, to solve the minimax problem.
These algorithms iteratively maintain candidate solutions for the both the players and update each of
these using feedback from the state of the other player. In our particular setting, the hypothesis player
updates using the vector h in eq. (2).

Motivating Example Let F be a class of hypotheses, let P is the set of all distributions over a
finite sample set {x1, . . . , xn} and let L be the 0-1 loss. Note that in this setting, the oracle from
definition 2 is analogous to weak learning. In this setting, from the minmax theorem and the existence
of a weak learner, we get that there is a single mixture of hypothesis of

∑
i αifi such that loss under

every distribution in P which corresponds to zero training error. Thus we can think of boosting
algorithms as approximating this minmax equilibrium algorithmically. Similarly, the weak learning
condition in Suggala et al. (2020) is similar in spirit to the condition above.

With the condition from Definition 2, one can consider many frameworks for solving minimax games.
One high general technique is to consider two no-regret algorithms for online convex optimization to
play against each other. Let us briefly look at the definition of regret in this setting.
Definition 3 (No-Regret). Let K,A be convex sets. At each time, a player observes a point xt ∈ K
and chooses an action at ∈ A. The regret of the algorithm is defined as

RT = max
a∈A

T∑
t=1

⟨a, xt⟩ −
T∑

t=1

⟨at, xt⟩. (14)

Online learning is a well-studied area of machine learning with a rich set of connections to various
areas in mathematics and computer science. In particular, there are frameworks in order to construct
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algorithms such as follow-the-perturbed leader, follow-the-regularized leader and mirror descent. In
particular, our algorithm can be seen as a version of mirror descent with the entropy regularizer and
theorem 1 as a version of the regret guarantee for the algorithm. In addition to the ones mentioned
above, There are several other frameworks considered to solve minimax games such as variational
inequalities, extragradient methods, optimistic methods and so on. We believe this framework is
a useful one to consider for many learning tasks, especially in settings where we have function
approximation.

B PROOFS

Here, we provide a proof of Theorem 1, which is restated below:

Theorem. Suppose the class F satisfies that for all f ∈ F , ∥f − g∥∞ ≤ G∞. Let F = {ft} be the
ensemble after T rounds of Algorithm 1, with the final output Ft =

1
T

∑T
t=1 ft. Then for T ≥ ln 2N

and

η =
1

G∞

√
ln 2N

T

we have for all j

∥Ft,j − gj∥∞ ≤ G∞

√
ln 2N

T
− 1

T

T∑
t=1

γt(j)

where Ft,j and gj are the jth coordinates of the functions Ft and g respectively.

Proof. For simplicity, we assume that ft and g are scalar valued functions, since the proof goes
through coordinate-wise. At each time, define the edge of the weak learning algorithm to be

γt =
∑
i

K+
t (i)(ft(xi)− g(xi)) +

∑
i

K−
t (i)(g(xi)− ft(xi))

Let Zt denote the normalizing constant at time t, that is,

Zt =
∑
i

K+
t (i) exp (−η (ft (xi)− g(xi))) +K−

t (i) exp (η (ft (xi)− g(xi)))

From the update rule, we have

K+
T+1(i) =

K+
T (i)eη(fT (xi)−g(xi))

ZT

=
K+

1 (i) exp
(
−η
∑T

t=1 (ft (xi)− g(xi))j

)
∏T

t=1 Zt

=
K+

1 (i) exp (−ηT (FT (xi)− g(xi))∏T
t=1 Zt

and similarly

K−
T+1(i) =

K−
1 (i) exp (ηT (FT (xi)− g(xi))∏T

t=1 Zt
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First, we bound ln(Zt):

ln(Zt) = ln

(∑
i

K+
t (i) exp(−η(ft(xi)− g(xi))) +

∑
i

K−
t (i) exp(η(ft(xi)− g(xi)))

)

≤ ln

(∑
i

K+
t (i)

(
1− η(ft(xi)− g(xi)) + η2(ft(xi)− g(xi))

2
)

+
∑
i

K−
t (i)

(
1 + η(ft(xi)− g(xi)) + η2(ft(xi)− g(xi))

2
))

≤ ln

(
1− η

∑
i

K+
t (i)(ft(xi)− g(xi)) + η

∑
i

K−
t (i)(ft(xi)− g(xi)) + η2G2

∞

)
≤ −ηγt + η2G2

∞

where the second step follows from the identity exp(x) ≤ 1 + x + x2 for x ≤ 1, provided that
η ≤ 1

G∞
. This gives us a bound on regression error after T rounds:

−ηT (FT (xi)− g(xi)) = ln(K+
T+1(i))− ln(K+

1 (i)) +

T∑
t=1

ln(Zt)

≤ ln

(
K+

T+1(i)

K+
1 (i)

)
+

T∑
t=1

−ηγt + η2G2
∞

= ln

(
K+

T+1(i)

K+
1 (i)

)
+ η2TG2

∞ − η

T∑
t=1

γt

≤ ln 2N + η2TG2
∞ − η

T∑
t=1

γt

Where the last bound follows since K+
1 = 1

2N and K+
T+1 ≤ 1. Similarly, we have the bound

ηT (FT (xi)− g(xi)) ≤ ln 2N + η2TG2
∞ − η

T∑
t=1

γt

Combining the two equations we get that

sup
i
|FT (xi)− g(xi)| = ∥FT − g∥∞ ≤

ln 2N

ηT
+ ηG2

∞ −
1

T

T∑
t=1

γt

If we choose η = 1
G∞

√
ln 2N
T to minimize this expression, then we get the following bound on

regression error:

∥Ft − g∥∞ ≤ −
1

T

T∑
t=1

γt +G∞

√
ln 2N

T

which is exactly Equation (10). Note that the value of η only satisfies the condition η ≤ 1
G∞

when
T ≥ ln 2N , which is the time horizon after which the bound holds. This finishes the proof of
Theorem 1

Now, we provide a proof of Theorem 2 which follows from the VC dimension bound and Theorem 1.
Before we begin, we setup some notation. Given a function f , distributionD over space X ×Y where
X is the input space and Y is the label space, and data D consisting of N iid samples (x, y) ∼ D, we
define

êrr(f) = Pr
(x,y)∼D

[sign(FT (x) ̸= y)] err(f) = Pr
(x,y)∼D

[sign(FT (x) ̸= y)]
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Theorem (Excess Risk). Suppose data D contains of N iid samples from distribution D. Suppose
that the function g has large margin on data D, that is

Pr
x∼D

[|g(x)| < ϵ] < ϕ

Further, suppose that the class CT has VC dimension d, then for

T ≥ 4G2
∞ ln 2N
ϵ2

, with probability 1 − δ over the draws of data D, the generalization error of the ensemble FT

obtained after T round of Algorithm 1 is bounded by

err(FT ) ≤ êrr(g) +O

(√
d ln(N/d) + ln(1/δ)

N

)
+ ϕ

Proof. Recall the following probability bound (Schapire & Freund, 2013, theorem 2.5) which follows
Sauer’s Lemma:

Pr [∃f ∈ CT : err(f) ≥ êrr(f) + ϵ] ≤ 8
(me

d

)d
e−mϵ2/32

which holds whenever |D| = N ≥ d. It follows that with probability 1 − δ over the samples, we
have for all f ∈ CT

err(f) ≤ êrr(f) +O

(√
d ln(N/d) + ln(1/δ)

N

)
(15)

Since we choose T =
4G2

∞ ln 2N
ϵ2 , by Theorem 1, we have

∀x ∈ D : ∥Ft − g∥1 ≤ G∞

√
ln 2N

T
≤ ϵ

2
Since g has ϵ margin on data with probability ϕ, we have

êrr(Ft) ≤ êrr(g) + ϕ (16)

Combining eqs. (15) and (16), we get

err(FT ) ≤ êrr(g) +O

(√
d ln(N/d) + ln(1/δ)

N

)
+ ϕ

which completes the proof.

C DATASET INFORMATION AND TRAINING RECEPIES

We use four publicly available real world datasets in our experiments. The train-test splits for all the
dataset as well as the sources are listed here:

Dataset Train-samples Test-samples Source

CIFAR-10 50000 10000 Krizhevsky et al.
SVHN-10 73257 26032 Netzer et al. (2011)
Google-13 52886 6835 Warden (2018)
DSA-19 6800 2280 Dua & Graff (2017)

We use two synthetic datasets in our experiments, ellipsoid and cube. To construct the ellipsoid
dataset, we first sample a 32× 32 matrix B, each entry sampled iid. We define A := BTB as our
positive semi-definite matrix, and I[xTAx ≥ 0] determines the label of a data point x. We sample
10k points uniform randomly from [−1, 1]32 and determines their labels to construct our data sample.
We randomly construct a 80-20 train-test split for our experiments.

To construct cube, we first sample 16 points uniform randomly from [−1, 1]32 and randomly split
them into 4 equal sets, say {S1, . . . , S4}. As before, we sample 10k points uniformly from [−1, 1]32
and determine the label y(x) of each point x as,

y(x) = argmin
i

min
x′∈Si

∥x− x′∥.
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D MODEL INFORMATION, EXPERIMENTAL DETAILS AND ADDITIONAL
RESULTS

D.1 BASE MODEL CONFIGURATION

The base class configurations used for all our experiments in Figure 2 is provided in Tables 2, 3, 4
and 5. Note that we use standard model architectures provided with Pytorch and the parameters
correspond to the corresponding function arguments in the pytorch implementation.

Teacher model Residual Blocks Embedding dims Strides

ResNet56
1 8 1

2,2 8,8 1,1
2,2 16,16 1,2

2,2,3 16,32,64 1,2,2

Table 2: Base model configuration used for ResNet20 and ResNet56 distillation on CIFAR-10.

Teacher model Blocks growth-rate

DenseNet121
4, 8 12

4, 8, 8 6
8, 16, 12 6

Table 3: Configuration used for DenseNet121 distillation on CIFAR-100.

Teacher model hid. dims.

LSTM128

4,4
16,8

20,12
20,32

Table 4: Configuration used for LSTM128
distillation on Google-13.

Teacher model hid. dims.

GRU32
4,4

8,16
16,16
32,16

Table 5: Configuration used for GRU32 distilla-
tion on DSA-19.

D.2 TRAINING RECEPIES

We use stochastic gradient descent (SGD) with momentum for all our experiements. For experiments
on CIFAR100 and CIFAR10, we use a learning rate of 0.1, a momentum paramter of 0.9, and weight
decay of 5× 10−4. We train for 200 epochs and reduce the learning rate by a factor of 0.2 in after
30%, 60% and 90% of the epoch execution. For experiments with time series data, Google-13 and
DSA-19, we use a fixed learning rate of 0.05 and a momentum of 0.9. We do not use weight decay or
learning rate scheduling for time-series data.

D.3 ADDITIONAL RESULTS

FLOPS measurement. To measure the total floating point operations required for inference, we
use the Deep Speed framework Rasley et al. (2020). We randomly initialize a single sample with
batch-size set to 1, and profile it to obtain our values for FLOPs for all real-world data sets.

Connections, parallelization and execution schemes. Our focus in this work has been sequential
execution of the models. While reusing previously computed features is clearly beneficial for finding
weak learners in this setup, the presence of connections across models prevent them from being
scheduled together for execution whenever otherwise possible. To manage this trade off between
parallelization and expressivity, we try to restrict the number of connections to at most one between
models, and further restrict the connection to later layers of the model. Connections in the later layers
of networks impose fewer sequential blocks in inference and allows for better parallelization.
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(a) Sequential schedule

(b) Hybrid schedule

Figure 4: A schematic description of a sequential execution scheme for an ensemble of four models,
being evaluated one after the other from left to right. The last model in the ensemble reuses the
actions of the previous one, causing a blocking dependency. Thus we cannot trivially execute all
models in parallel. However, since the connection is between the last layers of the network, we can
construct hybrid execution schemes as in (b). Here, pairs of models are executed in together.

Let ϕt,l(x) denote the activation produced at layer l by the weak learner at round t, on data-point x.
Then some of the connections we consider are

• ϕ(t,l)(x)− ϕ(t+1,l)(x), to learn the error in features at layer l.

• ϕ(t,l)(x) + id(x), standard residual connection at layer l.

• ϕ(t+1,l)[ϕ(1,l)(x), . . . , ϕt,l)(x)], dense connections at layer l across rounds.
• Simple accumulation operations.
• Recurrent networks: LSTM and GRU.
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