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A RELATED WORK

We mainly introduce recent value based MARL works with CTDE paradigm. Value decomposition is a
popular approach for credit assignment in fully cooperative MARL methods with CTDE paradigm. VDN
(Sunehag et al., 2017) learns a joint Q value function based on a share reward function. In VDN, where the
joint Q value function is linearly factorized into individual utility functions. By contrast, QMIX (Rashid
et al., 2018) substitutes the linear factorization with a monotonic factorization, where the weights and bias
are produced from the global state through a mixing network. Based on QMIX, SMIX (Wen et al., 2020)
replaces the TD(0) Q-learning target with a TD(λ) SARSA target. Qatten (Yang et al., 2020b) adds an
attention network before the mixing network of QMIX. QPD (Yang et al., 2020a) decomposes the joint
Q value function with the integrated gradient attribution technique, which directly decomposes the joint
Q-values along trajectory paths to assign credits for agents. However, due to the representation limitation of
the joint Q value function, these methods suffer from the relative overgeneralization. As a result, they can not
guarantee the optimal coordination.

Some of recent works try to solve the representation limitation directly through joint Q value function with
complete expressiveness capacity. QTRAN learns a joint Q value function with complete expressiveness
capacity and introduces two soft regularizations to approximate the IGM condition. QPLEX (Wang et al.,
2020) achieves the complete expressive under IGM condition theoretically through a dueling mixing network,
where the complete expressiveness capacity is introduced by the mixing of individual advantage functions.
However, as the state space and the joint action space increase exponentially as the number of agents grows,
it is impractical to learn the complete expressiveness in complicated MARL tasks, which may result in
convergence difficulty and performance deterioration.

The other works improve the coordination from different perspectives. WQMIX (Rashid et al., 2020) tries
to solve the underestimation of the optimal joint values that arise from the representation limitation, where
an auxiliary network with complete expressiveness capacity is applied to distinguishes samples with low
expressive values. By placing a predefined weight on these samples, WQMIX can alleviate the underestimation
of optimal joint Q values. According to Appendix E, a relative higher weight on the superior samples helps to
eliminate non-optimal stable points. Therefore, WQMIX is effective to overcome relative overgeneralization
to some degree, which is verified by our experiments on predator-prey. However, the joint Q value function
under monotonic factorization depends heavily on the reward function, which is unavailable and task-specific.
As a result, a heuristic weight has to be adopted in WQMIX, which can not guarantee the optimal coordination.

MAVEN (Mahajan et al., 2019) focuses on the poor exploration that arises from the representation limitation
and introduces a latent space for hierarchical control, which achieves temporally extended exploration.
UneVEn (Gupta et al., 2021) solves the target task by learning a set of related tasks simultaneously with a
linear decomposition of universal successor features, which improves the joint exploration. Both methods
raise the proportion of superior samples through an improved joint exploration, which helps to eliminate
non-optimal stable points according to Eq.8. However, it requires an enormous exploration to raise the
proportion of superior samples under large joint action space, which may reduce the sample efficiency. In
practice, both methods apply small noise for joint exploration, where the proportion of superior samples
increases slightly. As a result, both methods are insufficient to ensure the optimal coordination.
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related works IGM condition TGM condition
IQL No No
VDN Yes No

QMIX Yes No
SMIX Yes No
Qatten Yes No
QDP No No

QTRAN No Yes
MAVEN Yes No
UneVEn Yes No
WQMIX Yes No
QPLEX Yes Yes

GVR(ours) Yes Yes

Table 1: Whether related works ensure the IGM and TGM condition.

B JOINT Q VALUES REPRESENTED BY TRUE Q VALUES FOR TWO-AGENT LINEAR
VALUE DECOMPOSITION

B.1 DERIVATION

Consider a two-agent fully cooperative task without experience replay. the joint Q value functionQ(u1i , u
2
j , τ )

is linearly factorized into two utility functions U1(u1i , τ
1) and U2(u2j , τ

1).

Q(u1i , u
2
j , τ ) = U1(u1i , τ

1) + U2(u2j , τ
2) (1)

where u1i , u
2
j ∈ {u1, · · · , um} denote the individual actions of agent 1,2 respectively. {u1, · · · , um} is the

discrete individual action space. Specially, we denote the individual greedy action of agent 1,2 with u1i∗ ,
u2j∗ respectively. For briefness, we denote Q(u1i , u

2
j , τ ), Ua(uai , τ

a) with Qij , Uai (a ∈ {1, 2}) respectively.
Under ε−greedy visitation, we have

U1
i =

ε

m

m∑
k=1

(Qik − U2
k ) + (1− ε)(Qij∗ − U2

j∗)

U2
j =

ε

m

m∑
k=1

(Qkj − U1
k ) + (1− ε)(Qi∗j − U1

i∗)

(2)

where Qij is the true Q value. The sum of two utility functions over all actions equals to

m∑
i=1

U1
i +

m∑
j=1

U2
j =

ε

m

 m∑
i=1

m∑
k=1

Qik +

m∑
j=1

m∑
k=1

Qkj −m
m∑
k=1

(U1
k + U2

k )


+ (1− ε)

[
n∑
i=1

(Qij∗ +Qi∗j)−m(U1
i∗ + U2

j∗)

] (3)

Notice that U1
i∗ + U2

j∗ = Qi∗j∗ , and
∑m
i=1

∑m
k=1Qik =

∑m
j=1

∑m
k=1Qkj =

∑m
i=1

∑m
j=1Qij , we have

m∑
k=1

(U1
k + U2

k ) =
2ε

m(1 + ε)

m∑
i=1

m∑
j=1

Qij +
1− ε
1 + ε

m∑
k=1

(Qi∗k +Qkj∗)− m(1− ε)
1 + ε

Qi∗j∗ (4)
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According to Eq.2 and Eq.4, for ∀i, j ∈ [1,m], the joint Q value function equals to

Qij = U1
i + U2

j

=
ε

m

[
m∑
k=1

(Qik +Qkj)−
m∑
k=1

(U1
k + U2

k )

]
+ (1− ε)(Qi∗j +Qij∗ −Qi∗j∗)

=
ε

m

m∑
k=1

(Qik +Qkj) + (1− ε)(Qi∗j +Qij∗)− 2ε2

m2(1 + ε)

m∑
i=1

m∑
j=1

Qij −
1− ε
1 + ε

Qi∗j∗

− ε(1− ε)
m(1 + ε)

m∑
k=1

(Qi∗k +Qkj∗)

(5)

Notice that Qij is related to the joint greedy Q value Qi∗j∗ . In order to remove it, we put i∗ and j∗ into Eq.5.

Qi∗j∗ =
ε2

m

m∑
k=1

(Qi∗k +Qkj∗)− ε2

m2

m∑
i=1

m∑
j=1

Qij + (1− ε2)Qi∗j∗ (6)

Substituting Eq.6 into Eq.5, the joint Q values can be represented by true Q values as

Qij =
ε

m

m∑
k=1

(Qik +Qkj) + (1− ε)(Qi∗j +Qij∗)− ε2

m2

m∑
i=1

m∑
j=1

Qij

− ε(1− ε)
m

m∑
k=1

(Qi∗k +Qkj∗)− (1− ε)2Qi∗j∗
(7)

B.2 VERIFICATION

We verify the expression of Eq.7 in a two-agent matrix game, where the payoff matrix is shown in Table2(a).
Since the episode length is 1, an mlp shared by two agents is adopted as the policy network. The policy
network is trained for 200 iterations (100 episodes per iteration) over 5 seeds. According to Table2(b) and
2(c). There are two stable points, which consists with our calculation. The error of joint Q values between
calculation and test is lower than 3%.

8 -12 -12
-12 0 0
-12 0 6

(a)

7.40
(7.38±0.02)

-8.33
(-8.27±0.12)

-7.93
(-7.86±0.13)

-8.33
(-8.33±0.18)

-24.06
(-23.87±0.09)

-23.66
(-23.56±0.17)

-7.93
(-7.93±0.09)

-23.66
(-23.53±0.12)

-23.26
(-23.19±0.20)

(b)

-24.38
(-24.34±0.25)

-14.52
(-14.52±0.11)

-9.32
(-9.43±0.15)

-14.52
(-14.47±0.18)

-4.65
(-4.65±0.11)

0.55
(0.54±0.08)

-9.32
(-9.28±0.21)

0.55
(0.56±0.12)

5.75
(5.75±0.09)

(c)

Table 2: Verification of calculated stable points for two-agent LVD. (a) The payoff matrix. (b),(c) Comparison
between calculation and test, where the test results are shown in parentheses. The numbers in bold denote the
max joint Q values, and the greedy policy is marked with a pink background.
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C JOINT Q VALUES REPRESENTED BY TRUE Q VALUES FOR TWO-AGENT
MONOTONIC VALUE DECOMPOSITION

For two-agent monotonic value decomposition, the joint Q value function is decomposed as Qij = ω1(s)U1
i +

ω2(s)U2
j + V (s), where ω1 and ω2 are the coefficients of U1

i and U2
j respectively. V (s) is the bias, which

is the same for all joint actions under a given state. For brevity, we omit the input. Referring to Eq.2, the
individual utility functions with coefficients equal to

ω1U1
i =

ε

m

m∑
k=1

[
Qik − ω2U2

k − V
]

+ (1− ε)
[
Qij∗ − ω2U2

j∗ − V
]

=
ε

m

m∑
k=1

[
Qik − ω2U2

k

]
+ (1− ε)

[
Qij∗ − ω2U2

j∗
]
− V

ω2U2
j =

ε

m

m∑
k=1

[
Qkj − ω1U1

k − V
]

+ (1− ε)
[
Qi∗j − ω1U1

i∗ − V
]

=
ε

m

m∑
k=1

[
Qik − ω2U2

k

]
+ (1− ε)

[
Qij∗ − ω2U2

j∗
]
− V

(8)

Referring to the derivation of Eq.4, we have

m∑
k=1

(ω1U1
k + ω2U2

k ) =
2ε

m(1 + ε)

m∑
i=1

m∑
j=1

Qij +
1− ε
1 + ε

m∑
k=1

(Qi∗k +Qkj∗)− m(1− ε)
1 + ε

Qi∗j∗ −mV (9)

According to Eq.8 and Eq.9, we have

Qij =
ε

m

m∑
k=1

(Qik +Qkj) + (1− ε)(Qi∗j +Qij∗)− 2ε2

m2(1 + ε)

m∑
i=1

m∑
j=1

Qij

− 1− ε
1 + ε

Qi∗j∗ −
ε(1− ε)
m(1 + ε)

m∑
k=1

(Qi∗k +Qkj∗)

(10)

In order to remove Qi∗j∗ from Eq.10, let i = i∗ and j = j∗.

Qi∗j∗ =
ε2

m

m∑
k=1

(Qi∗k +Qkj∗)− ε2

m2

m∑
i=1

m∑
j=1

Qij + (1− ε2)Qi∗j∗ (11)

Substituting Eq.11 into Eq.10, we have

Qij =
ε

m

m∑
k=1

(Qik +Qkj) + (1− ε)(Qi∗j +Qij∗)− ε2

m2

m∑
i=1

m∑
j=1

Qij

− ε(1− ε)
m

m∑
k=1

(Qi∗k +Qkj∗)− (1− ε)2Qi∗j∗
(12)
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D STABLE POINTS UNDER ITS

D.1 PROOF 1

Given the greedy action u∗ = {u1∗, · · · , un∗} and any action us = {u1s, · · · , uns }(us 6= u∗), assuming
Q(s,u∗) > 0 (i.e. Qits(s,u) = (1− α)Q(u∗, τ ) for inferior samples), under the hardest exploration case
where uas 6= ua∗(∀a ∈ [1, n]), the utility function of individual action uas(a ∈ [1, n]) is consist of two parts

Ua(uas , τ
a) =(1− η1)

(1− α)Q(u∗, τ )−
mn−1−1∑

k

[
p(uas , u

−a
k )

p(uas)− p(us)

−a∑
i

U i(uik, τ i)

]
+ η1

[
Qits(s,us)−

−a∑
i

U i(uis, τ i)

] (13)

where η1 = ( εm )n−1, and −a represents the collection of all agents expect agent a. η1 and 1 − η1 are the

proportion (in all samples containing uas ) of sample us and inferior samples respectively.
∑mn−1

k {uas , u−ak }
is the collection of all samples containing uas , and p(uas , u

−a
k ) is the corresponding probability of each

sample. Notice the superscript of the first
∑

in Eq.24 is mn−1 − 1, where the sample us is excluded.
p(uas) − p(us) =

∑mn−1

k p(uas , u
−a
k ) = ε

m − ( εm )n is the normalization coefficient. We ignore the other
potential superior samples. Notice

(1− η1)

mn−1−1∑
k

[
p(uas , u

−a
k )

p(uas)− p(us)

−a∑
i

U i(uik, τ i)

]
+ η1

−a∑
i

U i(uik, τ i)

=

mn−1∑
k

[
p(uas , u

−a
k )

p(uas)

−a∑
i

U i(uis, τ i)

] (14)

Therefore,

Ua(uas , τ
a) =(1− η1)(1− α)Q(u∗, τ )−

mn−1∑
k

[
p(uas , u

−a
k )

p(uas)

−a∑
i

U i(uik, τ i)

]
+ η1Qits(s,us) (15)

The joint Q value function Q(us, τ ) can be acquired

Q(us, τ ) =

n∑
a=1

Ua(uas , τ
a)

= n(1− η1)(1− α)Q(u∗, τ )−
n∑
a=1

mn−1∑
k

[
p(uas , u

−a
k )

p(uas)

−a∑
i

U i(uik, τ i)

]
+ nη1Qits(s,us)

(16)
Similarly, for the greedy action u∗, we have

Q(u∗, τ ) =

n∑
a=1

Ua(ua∗, τa)

= n(1− η2)(1− α)Q(u∗, τ )−
n∑
a=1

mn−1∑
k

[
p(ua∗, u−ak )

p(ua∗)

−a∑
i

U i(uik, τ i)

]
+ nη2Q(s,u∗)

(17)
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where η2 = (1 − ε + ε
m )n−1. Notice p(ua,u−a)

p(ua) is independent to action ua for decentralized execution,

therefore p(ua∗,u−a
k )

p(ua∗) =
p(ua

s ,u
−a
k )

p(ua
s )

. Let Q(s,us) = (1 + eQ)Q(s,u∗) ,according to Eq.16 and Eq.17, we
have

∆Q(us, τ ) = Q(us, τ )−Q(u∗, τ ) = n(η1 − η2) [Q(s,u∗)− (1− α)Q(u∗, τ )] + nη1eQQ(s,u∗)
(18)

For monotonic value decomposition, Eq.23 also holds since the expressions of Q(u∗, tau) and Q(us, tau)
do not change. Verification of Eq.18 is provided in the experimental part of the main body.

Since Q(u, τ ) is an expectation of Q(s,u), for ∀u ∈ Un, Q(u, τ ) < max Q(s,u) holds. If the u∗ is exact
the optimal action, i.e., u∗ = argmaxuQ(s,u), for ∀us ∈ Un, eQ < 0 and Q(u∗, τ )−Q(s,u∗) < 0 hold.
Therefore, for ∀us ∈ Un, ∆Q(us, τ ) < 0 holds, which indicate when the greedy action is the optimal action,
the joint Q value of the optimal action is the maximal, i.e., there is always an optimal stable point under
ITS.

D.2 PROOF 2

Given the greedy action u∗ = {u1∗, · · · , un∗} and any action us = {u1s, · · · , uns }(us 6= u∗), assuming
Q(s,u∗) > 0 (i.e. Qits(s,u) = (1− α)Q(u∗, τ ) for inferior samples), under the hardest exploration case
where uas 6= ua∗(∀a ∈ [1, n]), the utility function of uas equals to

Uaua
s

=
( ε
m

)n−1
[
C0
n−1(mn−1 − 1)(1− α)Q(u∗, τ ) +Q(s,us) + f1(

−a∑
o

m∑
i=1

Uouo
i
,

n∑
a=1

Uaua∗)

]

+ · · ·+
( ε
m

)n−t
(1− ε)t−1

[
Ct−1
n−1m

n−t(1− α)Q(u∗, τ ) + ft(

−a∑
o

m∑
i=1

Uouo
i
,

n∑
a=1

Uaua∗)

]
+ · · ·

+ (1− ε)n−1

[
Cn−1
n−1 (1− α)Q(u∗, τ ) + fn(

−a∑
o

m∑
i=1

Uouo
i
,

n∑
a=1

Uaua∗)

]

=(1− α)Q(u∗, τ ) +
( ε
m

)n−1

[Q(s,us)− (1− α)Q(u∗, τ )] + ftotal(

−a∑
o

m∑
i=1

Uouo
i
,

n∑
a=1

Uaua∗)

(19)
where −a represents the collection of all agents except agent a. ft(t ∈ [1, n]) and ftotal are mappings from
{
∑−a
o

∑m
i=1 Uouo

i
,
∑n
a=1 Uaua∗} to R. We ignore the other potential superior samples. The joint Q value

function of us equals to

Q(us, τ ) =
n∑
a=1

Uaua
s

= n(1− α)Q(u∗, τ ) + n
( ε
m

)n−1

[Q(s,us)− (1− α)Q(u∗, τ )] + nftotal(

−a∑
o

m∑
i=1

Uouo
i
,

n∑
a=1

Uaua∗)

(20)
Next we calculate the joint Q value of the greedy action. The utility function of the individual greedy action
ua∗(a ∈ [1, n]) equals to

Uaua∗ =(1− α)Q(u∗, τ )

+ (1− ε+
ε

m
)n−1 [Q(s,u∗)− (1− α)Q(u∗, τ )] + ftotal(

−a∑
o

m∑
i=1

Uouo
i
,

n∑
a=1

Uaua∗)
(21)
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The joint Q value of greedy action equals to

Q(u∗, τ ) =

n∑
a=1

Uaua∗ = n(1− α)Q(u∗, τ )

+ n(1− ε+
ε

m
)n−1 [Q(s,u∗)− (1− α)Q(u∗, τ )] + nftotal(

−a∑
o

m∑
i=1

Uouo
i
,

n∑
a=1

Uaua∗)

(22)

Notice η1 = ( εm )n−1, η2 = (1 − ε + ε
m )n−1 and Q(s,us) = (1 + eQ)Q(s,u∗) according to Eq.20 and

Eq.22

∆Q(us, τ ) = Q(us, τ )−Q(u∗, τ )

= nη1 [(1 + eQ)Q(s,u∗)− (1− α)Q(u∗, τ )]− nη2 [Q(s,u∗)− (1− α)Q(u∗, τ )]

= n(η1 − η2) [Q(s,u∗)− (1− α)Q(u∗, τ )] + nη1eQQ(s,u∗)

(23)

which consist with Eq.18 in Proof 1.

E LVD AND MVD UNDER ITS WITH SUPERIOR SAMPLE WEIGHT

E.1 DERIVATION OF ∆Q(s, us)

Given the greedy action u∗ and a superior action us (i.e. Q(s,us) > Q(s,u∗)) assuming Q(s,u∗) > 0
(i.e. Qits(s,u) = (1− α)Q(u∗, τ ) for inferior samples), under the hardest exploration case where ua∗ 6=
uas(∀a ∈ [1, n]), the utility function of individual action uas(a ∈ [1, n]) is consist of two parts

Ua(uas , τ
a) =(1− η1,w)

(1− α)Q(u∗, τ )−
mn−1−1∑

k

[
p(uas , u

−a
k )

p(uas)− p(us)

−a∑
i

U i(uik, τ i)

]
+ η1,w

[
Qits(s,us)−

−a∑
i

U i(uis, τ i)

] (24)

where η1,w = wη1
1+(w−1)η1

, η1 = ( εm )n−1 and w is a sample weight on the superior samples. Please refer to
Eq.24 for more details about the notations. According to Eq.14, we have

mn−1−1∑
k

[
p(uas , u

−a
k )

p(uas)− p(us)

−a∑
i

U i(uik, τ i)

]

=
1

(1− η1)

mn−1∑
k

[
p(uas , u

−a
k )

p(uas)

−a∑
i

U i(uik, τ i)

]
− η1

(1− η1)

−a∑
i

U i(uis, τ i)
(25)

Substituting the left side of Eq.25 into Eq.24

Ua(uas , τ
a) =(1− η1,w)(1− α)Q(u∗, τ )− 1− η1,w

1− η1

mn−1∑
k

[
p(uas , u

−a
k )

p(uas)

−a∑
i

U i(uik, τ i)

]

+
η1 − η1,w

1− η1

−a∑
i

U i(uis, τ i) + η1,wQits(s,us)

(26)
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Notice that
n∑
a=1

−a∑
i

U i(uis, τ i) = (n− 1)

n∑
a=1

U i(uis, τ i) = (n− 1)Q(us, τ ) (27)

The joint Q value function Q(us, τ ) can be acquired

Q(us, τ ) =

n∑
a=1

Ua(uas , τ
a) =n(1− η1,w)(1− α)Q(u∗, τ ) + (n− 1)

η1 − η1,w
1− η1

Q(us, τ )

+ nη1,wQits(s,us)−
1− η1,w
1− η1

n∑
a=1

mn−1∑
k

[
p(uas , u

−a
k )

p(uas)

−a∑
i

U i(uik, τ i)

]
(28)

According to Eq.17, we have

n∑
a=1

mn−1∑
k

[
p(ua∗, u−ak )

p(ua∗)

−a∑
i

U i(uik, τ i)

]
= n(1− η2)(1− α)Q(u∗, τ ) + nη2Q(s,u∗)−Q(u∗, τ )

(29)
Substituting the left side of Eq.29 into Eq.28[

1− (n− 1)
η1 − η1,w

1− η1

]
Q(us, τ ) =n(1− η1,w)(1− α)Q(u∗, τ ) + nη1,wQits(s,us)

−1− η1,w
1− η1

[n(1− η2)(1− α)− 1]Q(u∗, τ )− nη2
1− η1,w
1− η1

Q(s,u∗)

(30)
where η2 = (1− ε+ ε

m )n−1. Eq.31 can be further simplified as

Q(us, τ ) =
n(1− α)(η2 − η1) + 1

1 + n(w − 1)η1
Q(u∗, τ ) + n

w(1 + eQ)η1 − η2
1 + n(w − 1)η1

Q(s,u∗) (31)

Therefore,

∆Q(us, τ ) = Q(us, τ )−Q(u∗, τ ) =n
(1− α)(η2 − η1)− (w − 1)η1

1 + n(w − 1)η1
Q(u∗, τ )

+ n
w(1 + eQ)η1 − η2
1 + n(w − 1)η1

Q(s,u∗)

(32)

When w = 1, Eq.32 degenerate to Eq.18 (i.e., the case without sample weight). For monotonic value
decomposition, Eq.32 also holds since the expressions of Q(u∗, τ ) and Q(us, τ ) do not change.

When ∆Q(us, τ ) > 0, argmaxuQ(u, τ ) 6= u∗, which suggests current greedy action is unstable. If u∗ is a
non-optimal action, to destabilize it, let ∆Q(us, τ ) > 0, assuming Q(u∗, τ ) ≈ Q(s,u∗) we have

w >
α(η2 − η1)

eQη1
(33)

When us = argmaxuQ(s,u), we obtain the lower bound ofw, which suggest the non-optimal stable points
can be eliminated by a large enough weight on the superior sample under ITS.
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E.2 VERIFICATION OF THE EFFECT OF SUPERIOR SAMPLE WEIGHTS UNDER ITS.

We carry out experiments in matrix games to evaluate the effect of the weight on the superior sample under
ITS, where the payoff matrix is defined as

Qits =

{
6(1 + eQ) u = {0, 0}
6 u = {2, 2}
random(−20, 6) others

(34)

An introduction of the matrix game can be found in the experimental part. An mlp shared by all agents is
adopted as the agent network, which is trained for 1000 iterations (100 episodes per iteration) over 5 seeds,
where α = 0.1, ε = 0.2 and eQ = 1/3.

mn 32 52 102 33 34

Calculated w0 (Eq.33) 3.60 6.00 12.00 50.32 659.50
Tested ∆Q(us, τ ) (Eq.32) 0.01 ±0.06 0.02 ±0.16 0.22 ±0.13 -0.02 ±0.30 -0.48 ±0.75

Tested Q(u∗, τ ) 5.95 ±0.02 5.97±0.02 5.98 ±0.01 5.90 ±0.06 5.93 ±0.03

Table 3: Evaluation of the sample weight on superior samples for LVD under ITS. w0 denotes the lower
bound of required sample weight to eliminate the non-optimal stable points when ∆Q(us, τ ) = 0. m is the
individual action space size and n is the number of agents.

From Table3, the joint Q value of greedy action approximately equals to its true Q value (i.e., Q(u∗, τ ) ≈
Q(s,u∗) = 6) under ITS. Besides, the required sample weight to eliminate the non-optimal stable points
grows exponentially as the number of agent grows, which introduces instability in the joint Q values.

F LVD AND MVD UNDER ITS WITH SUPERIOR EXPERIENCE REPLAY

Given the greedy action u∗ and a superior action us (i.e. Q(s,us) > Q(s,u∗)) assuming Q(s,u∗) > 0
(i.e. Qits(s,u) = (1 − α)Q(u∗, τ ) for inferior samples), under the hardest exploration case where uas 6=
ua∗(∀a ∈ [1, n]), the utility function of individual action uas(a ∈ [1, n]) is consist of two parts

Ua(uas , τ
a) =(1− η1,ser)

(1− α)Q(u∗, τ )−
mn−1−1∑

k

[
p(uas , u

−a
k )

p(uas)− p(us)

−a∑
i

U i(uik, τ i)

]
+ η1,ser

[
Qits(s,us)−

−a∑
i

U i(uis, τ i)

] (35)

where η1,ser = w+η1
1+w , η1 = ( εm )n−1 and w is a sample weight on the superior samples from the superior

buffer. Please refer to Eq.24 for more details about the notations. Following the derivation provided in
Appendix E.1, we have[

1− (n− 1)
η1 − η1,ser

1− η1

]
Q(us, τ ) = n(1− η1,ser)(1− α)Q(u∗, τ ) + nη1,serQits(s,us)

−1− η1,ser
1− η1

[n(1− η2)(1− α)− 1]Q(u∗, τ )− nη2
1− η1,ser

1− η1
Q(s,u∗)

(36)

Eq.36 can be further simplified as

Q(us, τ ) =
n(1− α)(η2 − η1) + 1

1 + nw
Q(u∗, τ ) + n

(w + η1)(1 + eQ)− η2
1 + nw

Q(s,u∗) (37)

9
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where η2 = (1− ε+ ε
m )n−1. Therefore,

∆Q(us, τ ) = Q(us, τ )−Q(u∗, τ ) =n
(1− α)(η2 − η1)− w

1 + nw
Q(u∗, τ )

+ n
(w + η1)(1 + eQ)− η2

1 + nw
Q(s,u∗)

(38)

When w = 0, Eq.38 degenerate to Eq.18 (i.e., the case without samples form superior buffer). For
monotonic value decomposition, Eq.38 also holds since the expressions of Q(u∗, tau) and Q(us, tau) do
not change.

If u∗ is a non-optimal action, to destabilize it, let ∆Q(us, τ ) > 0. A sufficient condition for ∆Q(us, τ ) > 0
is both terms in the right side of Eq.38 are no less than 0. As a result,

η2
1 + eQ

− η1 ≤ w ≤ (1− α)(η2 − η1) (39)

To ensure η2
1+eQ

−η1 < η2
1+eQ

−η1, let α =
eQ

1−eQ . According to Eq.39, SER can eliminate the non-optimal
stable points by a selecting a suitable value of w for superior samples.

G WORKING PRINCIPLE OF GVR AND THE ALGORITHM

The working principle of GVR is shown in Fig.1, and the algorithm is given in Algo.1. for details about
notations please refer to Appendix F.

Figure 1: The working principle of GVR. In the training stage of each iteration, we acquire the training batch
by concating the trajectories sampled from the replay buffer and the superior buffer. Then we calculate the
loss of Q(u, τ ) and V (s) referring to their targets. After that, we update the priority of the trajectories in
training batch and restore the trajectories to the superior buffer according to the updated priority.
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Algorithm 1 Greedy-based Value Representation

Initialize parameters θa for agents and θc for critic
Initialize replay buffer Dr and superior buffer Ds

Initialize hyperparameter α ∈ (0, 1], weight w = (1− α)(η2 − η1)
for iteration i = 1, 2, 3, · · · do

Interact with environment and store transitions to Dr

Sample batch br from Dr

Take out the top-k trajectories bs from Ds

Concat batches btotal = br + bs
for trajectory τ = 1, 2, 3, · · · in btotal do

Reset priority pτ = 0
for step t = 1, 2, 3, · · · do

if trajectory is from bs then
Calculate agent loss for superior samples lossa = w|Qits(st,ut) − Qθa(ut, τt)|2 ∗
I(Q(st,ut) > Vθc(s))

else
Calculate agent loss lossa = |Qits(st,ut)−Qθa(ut, τt)|2

end if
if Vθc(s) < Q(s,u) or u = u∗ then

Calculate critic loss lossc = |Q(st,ut)− Vθc(s)|2
end if
if Vθc(s) < Q(s,u) then

Update priority pτ = pτ + 1
end if

end for
Restore τ to Db according to pτ

end for
Update θa and θc

end for
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H EFFECT OF REWARD FUNCTION AND ε ON STABLE POINTS.

We conduct experiments in two-agent matrix games to verify the effect of reward function and ε on stable
points. An mlp shared by two agents is adopted as the agent network. The ratios of different stable points are
counted with ε increasing from 0 to 0.99. At each value of ε, 100 times of independent training and test are
executed. Each training includes 2000 episodes. The experiments are carried out over 5 seeds. According
to Fig.2, the stable points changes with both true Q value and ε. As ε grows, there becomes only one stable
point. We ignore situations with non-unique optimal stable points (e.g., [[1,0],[0,1]]), where the stable points
can also be calculated referring to Eq.7.

Figure 2: Median test ratios of stable points (i.e., test probability of different convergence) under 100 times of
independent training vs ε. The payoff matrices are shown in the upper-left of each subgraph. The greedy
actions in different stable points are marked with different colors (blue for {u1∗, u2∗} = {0, 0} and orange for
{u1∗, u2∗} = {2, 2}). Take subgraph (a) as an example, when ε = 0.4, the ratios of two stable greedy actions
({0, 0} and {2, 2}) approximate 0.35 and 0.65 respectively. In the presented examples, when ε > 0.857
and ε > 0.75, there becomes almost only one stable point, which consists with the calculated threshold
(denoted by red dash lines) from Eq.7.

I EXPERIMENTAL SETTINGS AND ADDITIONAL EXPERIMENTS

I.1 ABLATION STUDIES

Figure 3: Ablation studies on the effect of ITS and SER.
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We conduct ablation studies to investigate the effect of GVR. We first evaluate the effect of inferior target
shaping (ITS) and superior experience replay (SER) on QMIX. The experimental settings are the same as the
comparative experiments of predator-prey before. The experiments are carried out over 5 seeds.

It can be seen from the Fig.3 that in task with punishment -2, both ITS and SER helps to solve the problem.
In task with punishment -5, due to the extreme negative return of inferior samples, SER alone is unable to
solve the problem. Meanwhile, in spite of the shaped reward by ITS, the proportion of superior samples is
very small, leading to instability during training.

Figure 4: Ablation studies on the parameter α.

We also investigate the effect of the parameter α on GVR. The experimental settings for SMAC and predator-
prey are the same as the corresponding comparative experiments before. The experiments are carried out over
5 seeds.

It can be seen from the Fig.4 that a too small or too large value of α leads to poor performance. According to
the definition of ITS target, the α determines the gap the joint Q values between greedy samples and inferior
samples. As a result, a too-small value of α brings the risk of confusion between these two kinds of samples.
Meanwhile, a too-big value of α may prevent the update from a greedy action to a superior action.

I.2 COMPARISON WITH JOINT EXPLORATION METHODS

Figure 5: Comparison between GVR, MAVEN and UneVEn.

We compare our method with MAVEN and UneVEn on SMAC. The experiment results are given in Fig.5,
where GVR shows the best performance. Besides, to further investigate the scalability of our method, we
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Figure 6: Comparison between GVR and baselines on two super hard SMAC tasks.

investigate the performance of GVR on two other super hard tasks of SMAC, and the experiment results are
shown in Fig.6.

REFERENCES
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