
Reverse Design of High-Activity High-Stability Acidic OER Catalysts Based on MatterGen 

Zhihao Wanga, Lei Wang*b Xiaonan Wang*a
 

a Department of Chemical Engineering, Tsinghua University, Beijing 100084, China wangxiaonan@tsinghua.edu.cn 

b Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, 
Singapore wanglei8@nus.edu.sg 

  
1. Introduction 

The reverse design of high-activity and high-
stability acidic oxygen evolution reaction (OER) 
catalysts presents a significant challenge, as these 
materials must simultaneously satisfy 
thermodynamic stability, resistance to corrosion 
under low pH conditions, and strong catalytic 
performance. Traditional experimental and screening 
methods often encounter limitations such as a 
restricted sample space and high trial-and-error 
costs. In contrast, a generative model such as 
MatterGen [1] offers an innovative solution by 
directly generating crystal structures through 
diffusion-based modeling. With the support of large-
scale data, MatterGen can learn the distribution of 
stable materials and precisely control desired 
properties through conditional fine-tuning. In this 
way, it provides a powerful framework for identifying 
new materials that fall below the convex hull energy 
threshold, maintain corrosion resistance in strongly 
acidic media, and exhibit high catalytic activity for 
OER. 
 
2. Methodology 
2.1 Comprehensive Dataset Construction 

The workflow begins by preparing and 
constructing a comprehensive dataset. The dataset 
comprises two parts. The unlabeled dataset, sourced 
from public databases such as Materials Project [2], 
Inorganic Crystal Structure Database (ICSD) [3], and 
Open Quantum Materials Database (OQMD) [4], 
provides fundamental crystal structure information 
for pre-training MatterGen to generate valid 
structures. The labeled dataset is curated from 
literature on acidic OER catalysts, containing key 
performance metrics such as adsorption energies for 
critical intermediates, convex hull energy, 
overpotential, and degradation time. This part is used 
to fine-tune the model, ensuring that generated 
materials not only remain thermodynamically stable 
but also meet specific catalytic requirements. By 
matching every catalyst entry with its corresponding 
crystal structure, we can first build a unified 
degradation-stability database for OER catalysts 
under acidic conditions. 

 
2.2 Baseline Model Pre-Training 

Once data preparation is complete, the baseline 
model is pre-trained on the unlabeled dataset. During 
this phase, MatterGen learns to generate valid crystal 
structures through its diffusion process by capturing 
the intrinsic distribution and diversity of crystal 
configurations. This unsupervised training step 
establishes a foundational understanding of material 
structures, which serves as the groundwork for 
subsequent property-guided fine-tuning. 

 
 

2.3 Conditional Fine-Tuning and Generative Process 
Building on the pre-trained model, adapter 

modules are integrated to incorporate additional 
property constraints relevant to acidic OER catalysts. 
In this fine-tuning stage, metrics such as 
overpotential, corrosion resistance, and convex hull 
energy are employed to steer the model toward 
generating materials that meet specific performance 
requirements. Classifier-free [5] guidance further 
allows dynamic control over the enforcement of each 
property during generation, ensuring that the 
resulting structures balance thermodynamic stability 
with optimized catalytic efficacy. 

 
2.4 Candidate Screening 

The next stage involves screening and validating 
the generated candidates. Rapid computational 
methods—such as machine learning force fields 
(MLFF) or simplified density functional theory (DFT) 
calculations—provide an initial check of 
thermodynamic and catalytic indicators. Only those 
candidates demonstrating promise across essential 
benchmarks (below-threshold hull energies, 
acceptable corrosion properties, and encouraging 
OER performances) advance to more detailed DFT 
analyses.  

 
2.5 Experimental Validation 

The final phase involves experimental synthesis 
and electrochemical testing of the top-performing 
candidates. By evaluating catalytic performance 
under laboratory conditions, the practical efficacy of 
each candidate is validated and real-world data on 
corrosion resistance and overpotential is collected. 
This experimental feedback is then incorporated into 
the model to refine its predictive capabilities, guiding 
subsequent iterations of catalyst design. 

 
3. Conclusion 

In summary, the reverse design strategy outlined 
here leverages a generative model trained on 
expansive datasets, followed by property-guided fine-
tuning and comprehensive validation. By 
systematically combining thermodynamic stability 
criteria, acid-resistant performance indicators, and 
catalytic efficiency requirements, the method targets 
materials that not only resist corrosion in highly 
acidic environments but also drive OER at lower 
overpotentials. This approach underscores the 
effectiveness of MatterGen in condition-specific 
crystal structure generation, offering a new avenue 
for rational catalyst design. Beyond providing viable 
candidate catalysts for acid-based OER, this workflow 
can be generalized to other advanced materials 
discovery tasks, illustrating the potential of data-
driven generative modeling to accelerate innovation 
in materials science. 
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