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ABSTRACT

Fine-tuning vision-language models (VLMs) on robot teleoperation data to create
vision-language-action (VLA) models is a promising paradigm for training general-
ist policies, but it suffers from a fundamental tradeoff: learning to produce actions
often diminishes the VLM’s foundational reasoning and multimodal understanding,
hindering generalization to novel scenarios, instruction following, and semantic
understanding. We argue that this catastrophic forgetting is due to a distribution
mismatch between the VLM’s internet-scale pretraining corpus and the robotics
fine-tuning data. Inspired by this observation, we introduce VLM2VLA: a VLA
training paradigm that first resolves this mismatch at the data level by representing
low-level actions with natural language. This alignment makes it possible to train
VLAs solely with Low-Rank Adaptation (LoRA), thereby minimally modifying
the VLM backbone and averting catastrophic forgetting. As a result, the VLM
can be fine-tuned on robot teleoperation data without fundamentally altering the
underlying architecture and without expensive co-training on internet-scale VLM
datasets. Through extensive Visual Question Answering (VQA) studies and over
800 real-world robotics experiments, we demonstrate that VLM2VLA preserves
the VLM’s core capabilities, enabling zero-shot generalization to novel tasks that
require open-world semantic reasoning and multilingual instruction following.

1 INTRODUCTION
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Figure 1: We present VLM2VLA, a data pipeline and training methodology for fine-tuning VLMs into VLAs
while preserving their foundational perceptual and reasoning capabilities. Our policy retains its pretraining
knowledge, enabling strong VQA performance and superior generalization in real robotic manipulation tasks.

The pursuit of generalist robot policies capable of understanding and executing human commands
has been significantly advanced by the integration of vision-language models (VLMs) (Team et al.,
2025b; Bai et al., 2025; Team, 2025) throughout the autonomy stack. Trained on internet-scale
datasets of image-text pairs, these models have acquired sophisticated capabilities in perception,
semantic understanding, and commonsense reasoning. To endow robots with similar capabilities, the
prevailing paradigm involves fine-tuning pretrained VLMs on robot demonstration data, transforming
them into vision-language-action models (VLAs) that map from natural language commands and
visual observations to robot actions. This approach has yielded impressive results across a wide range
of robotic manipulation tasks (Kim et al., 2024; Black et al., 2024; Intelligence et al., 2025; Gao et al.,
2025; Brohan et al., 2023b;a; Padalkar et al., 2024; Team et al., 2025a).
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However, the standard methodology of fundamentally modifying the VLM’s architecture, tokenization
vocabulary, or a combination thereof, coupled with full parameter fine-tuning on robot imitation
learning data, introduces a crucial yet often overlooked trade-off. In adapting the VLM for robotic
control, we risk overfitting to the robot fine-tuning data, thereby overwriting the general-purpose
world knowledge acquired during pretraining (see Fig. 2). The consequences of this trade-off are
far-reaching: current VLAs often exhibit a diminished ability to generalize to novel objects, handle
linguistic variations, be robust to distractions, or reason about concepts outside the narrow scope of
their robotic training data (Kim et al., 2024; Brohan et al., 2023a; Hancock et al., 2024; Zhou et al.,
2025b).
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Figure 2: Traditional VLA training procedures often overfit to the robot
training data, sacrificing their original reasoning capabilities for low-
level action prediction (center). In contrast, VLM2VLA (right) preserves
the world understanding of the nominal VLM (left), allowing the model
to reason about potential safety risks instead of just motor commands.

Preserving the VLM’s founda-
tional world knowledge during
VLA fine-tuning is essential for
creating truly generalist robot
policies; consequently, numerous
techniques have been developed
to address this challenge. The
most common approach is to co-
train with non-robotic data. This
training regimen regularizes the
VLM against overfitting to robot
datasets, thereby mitigating the
loss of its foundational capabili-
ties (Brohan et al., 2023a; Intel-
ligence et al., 2025; Team et al.,
2025a). While these methods can mitigate knowledge loss, co-training with VLM-scale datasets is
inherently expensive and requires a carefully constructed dataset mixture for optimal performance.
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Figure 3: Distribution of action probabilities under
Gemma-3-12B-IT before fine-tuning on robot teleop-
eration data. The model assigns significantly higher
log-probabilities to actions represented as language com-
pared to those defined by explicit tokenization modifica-
tions, e.g., least likely token assignment.

This paper aims to preserve the world knowl-
edge of the VLM while adapting it for robotic
control without co-training. We address this
issue by resolving the distribution mismatch be-
tween the low-level action spaces needed for
robotic control and the image-text distributions
of the VLM’s pretraining corpus. This mismatch
often compels researchers to use full parame-
ter fine-tuning when training VLAs, which con-
tributes to catastrophic forgetting by overfitting
to the robot teleoperation data.

Our key insight is that while parameter-efficient
methods like Low-Rank Adaptation (LoRA)
(Hu et al., 2021) can avert catastrophic forget-
ting, their effectiveness relies on the fine-tuning
data being sufficiently close to the model’s pre-
trained representations. We therefore propose
resolving this representational mismatch at the

data level. Our data-centric approach re-represents robot actions as natural language descriptions,
thereby aligning the VLA fine-tuning data directly with the VLM’s pretrained representation space.
This alignment enables LoRA to effectively adapt the VLM for robotic control without significantly
perturbing its pretrained weights. Fig. 3 illustrates this idea, showing our language-based actions are
assigned significantly higher probabilities by the VLM backbone than actions mapped to arbitrary
tokens, a common strategy in state-of-the-art VLAs (Brohan et al., 2023b; Kim et al., 2024; Brohan
et al., 2023a; Padalkar et al., 2024; Lee et al., 2025). Our method is model agnostic and simple
to implement, obviating the need for sophisticated architectures, complex co-training schemes, or
multi-stage training procedures to achieve robust knowledge retention and superior generalization
capabilities.

Statement of Contributions. We present VLM2VLA, a data pipeline and training methodology
for fine-tuning VLMs into VLAs while preserving their foundational perceptual and reasoning
capabilities. Our core contributions are as follows: 1) Representing actions as language: We
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propose translating low-level robotic imitation data into text, thereby aligning the VLA fine-tuning
data with the VLM’s pretraining distribution to mitigate catastrophic forgetting. 2) A data re-labeling
and training pipeline for knowledge retention: Building on our action representation, we present
a scalable methodology for re-labeling robot teleoperation datasets for fine-tuning a VLM into a
VLA through LoRA. 3) Empirical validation of action and reasoning capabilities: We provide
extensive empirical validation showing our VLA preserves a suite of crucial capabilities that are often
lost in other state-of-the-art models. Specifically, our method’s efficacy is demonstrated through
extensive real-world evaluation (over 800 robotic experiments), showing generalization to novel
tasks with objects and language instructions unseen during training. Moreover, our policy averts
catastrophic forgetting, retaining over 85% of the base model’s performance across challenging VQA
benchmarks.

2 RELATED WORK

Vision-Language Action (VLA) Models: VLA models, which fine-tune pretrained VLM backbones
for robotic control, have become the dominant paradigm in training generalist robotic policies (Kim
et al., 2024; Black et al., 2024; Qu et al., 2025; Li et al., 2024; Driess et al., 2023; Team et al., 2025a;
NVIDIA et al., 2025; Yang et al., 2025; Lee et al., 2025). The central promise of this approach is
knowledge transfer: one can translate the rich semantic knowledge of the VLM, learned from internet-
scale pretraining, directly to action prediction. One challenge in adapting transformer-based VLMs
for action prediction is bridging the gap between their discrete, token-based nature and the continuous,
vector-valued representations utilized in robotic control. Consequently, many state-of-the-art VLAs
diverge architecturally in how they address the problem of action generation.

Action Representation in VLAs: The first dominant strategy is discretization, where continuous
action vectors are explicitly mapped to a finite set of tokens (Lee et al., 2025; Pertsch et al., 2025),
typically the VLM’s least likely tokens (Brohan et al., 2023b;a; Padalkar et al., 2024; Kim et al.,
2024). This approach casts robot control as a standard next-token prediction problem, allowing the
VLA to generate outputs autoregressively. The second paradigmatic strategy augments the VLM with
a separate, lightweight action head (e.g., using diffusion or flow-matching) to generate continuous
actions directly (Team et al., 2024; Black et al., 2024; Intelligence et al., 2025; Wen et al., 2025;
Zhou et al., 2025b;a). While this design choice enables faster action prediction (Pertsch et al., 2025),
it introduces new, randomly initialized parameters to the VLM during VLA fine-tuning which can
corrupt the original pretrained representations (Driess et al., 2025; Zhou et al., 2025b;a).

Our work introduces a third approach: representing actions as natural language descriptions all
within the VLM’s existing vocabulary. For instance, the command ‘move forward by 4.2 centimeters’
is treated as a standard text string, allowing our method to bootstrap the VLM’s intrinsic understanding
of numerical magnitude for grounding in physical space. We provide extensive experimental evidence
in Section 4.2 that this ‘actions as language’ representation is more effective for policy learning via
LoRA fine-tuning than strategies based on least likely token assignment. Unlike the concurrent work
of Grover et al. (2025), which use full parameter fine-tuning and co-training, we use only LoRA and
our action representation to preserve the VLM’s foundational reasoning capabilities.

Reasoning Models: To improve performance on complex, long-horizon tasks, a growing body
of work has focused on enabling VLAs to perform explicit reasoning. These methods typically
use a chain-of-thought approach (Wei et al., 2023), where the model first generates a high-level
plan or reasoning trace that then conditions the prediction of low-level actions. The form of this
reasoning varies across the literature. One set of approaches provides task-level context, leveraging
(vision) language models to generate natural language sub-goals or task plans that guide the policy
(Intelligence et al., 2025; Lin et al., 2025; Shi et al., 2025; Zhao et al., 2025; Ahn et al., 2022; Silver
et al., 2023; Shi et al., 2024; Clark et al., 2025; Huang et al., 2022; Zeng et al., 2022). A second set
of works condition the policy on more structured, mid-level representations like trajectory sketches,
code, or spatial affordances (Belkhale et al., 2024; Nasiriany et al., 2024; Li et al., 2025; Liang et al.,
2023; Cheng et al., 2025; Zhi et al., 2025; Zawalski et al., 2025).

Our work is distinct from prior VLAs and embodied reasoning models in that (1) we not only
represent high-level reasoning in language, but also represent low-level actions (e.g., end-effector
movements) using text, (2) we do not utilize any explicit action decoders, and (3) we train the VLA
solely with LoRA. We posit that modifications to the VLM, combined with full-parameter fine-tuning,

3
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Figure 4: VLM2VLA’s pipeline for annotating existing robot datasets Drob into Dlan described via natural
language. We use Gemini 2.5 (Team, 2025) to decompose each trajectory into sub-trajectories, each with an
associated subtask, motion plan, and action chunk.

create a distribution shift deleterious to the VLM’s world knowledge and reasoning capabilities. We
demonstrate evidence of this claim in Section 4.1.

Co-Training for Knowledge Retention: A critical and often overlooked phenomenon of many VLAs
is catastrophic forgetting, where the rich, general-purpose knowledge of the base VLM is lost (Zhou
et al., 2025b). To combat this, the most common effective strategy has been large-scale co-training
(Brohan et al., 2023a; Intelligence et al., 2025; Zhou et al., 2025a; Lee et al., 2025), which mixes
robotic and non-robotic datasets (e.g., VQA, image captioning). Co-training effectively regularizes
the VLA fine-tuning process, whereby the VLM is continuously trained on data drawn from its
pretraining distribution to preserve general reasoning and visual understanding. However, co-training
requires careful tuning of the mixture ratio between robotic and web data. This hyperparameter is
non-trivial and expensive to specify, requiring numerous training runs and real-world evaluations to
find an effective setting for both VQA performance and dexterous robotic control.

Advanced Training Schemes to Avert Catastrophic Forgetting: Sophisticated VLA training
procedures in Mixture-of-Experts (MoE)-style VLAs have recently been developed as an alternative
means of preventing catastrophic forgetting. For instance, Driess et al. (2025) attempt to shield the
VLM from otherwise destructive gradient updates of the action module via stop-gradient operators.
Moreover, Zhou et al. (2025a) have explored a sequential training procedure whereby the VLM’s
weights are frozen during training of the action expert. Our work challenges the necessity of co-
training and other sophisticated training schemes to prevent catastrophic forgetting; by representing
robot actions as natural language, our VLA can be effectively fine-tuned with only low-rank adaptation,
a simple procedure requiring no major architectural changes.

3 METHODOLOGY

In this section, we discuss our VLA training pipeline. Our approach is predicated on a simple
principle: to successfully leverage LoRA fine-tuning and avert catastrophic forgetting, we must first
align the robot data with the VLM’s existing representational space. To this end, we begin by first
translating robot teleoperation datasets into natural language descriptions. We posit that this data
transformation minimizes distribution shift incurred during LoRA fine-tuning (as evidence by Fig. 3),
thereby retaining the VLM’s nominal capabilities while enabling effective robot control.

3.1 ACTIONS AS LANGUAGE: A HIERARCHICAL REPRESENTATION

VLM2VLA frames action prediction as a three-stage VQA hierarchical reasoning process, which
has been shown to improve generalization to new tasks and environments (Zawalski et al., 2025;
Intelligence et al., 2025); the fundamental difference between our action representation and other
VLAs (Belkhale et al., 2024; Kim et al., 2024; Zawalski et al., 2025; Brohan et al., 2023a; Padalkar
et al., 2024; Clark et al., 2025) is that high-level and low-level actions are represented directly via
language. Let the main task be broken into a series of N steps, indexed by i:

High-Level Subtask Prediction (li): given observation ōi and language instruction L, the model
first describes what immediate subtask li is necessary to complete the main task.

Mid-Level Motion Planning (mi): conditioned on the current subtask and observation, the model
generates a spatially informative motion plan mi, with respect to the robot’s end-effector, detailing
the movements necessary to complete the subtask. Our motion plans describe only directional
movements, e.g., ‘move left’ and ‘move down and slightly forward.’ This coarse description was
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specifically chosen to benefit from the VLM’s latent spatial reasoning, which excels at these types of
tasks (Team et al., 2025b; Bai et al., 2025).

Low-Level Action Generation (āi): conditioned on the current subtask and motion plan, the policy
generates a variable-length action-chunk āi to execute directly on the robot. In practice, the action-
chunk is a list of lists, where each inner list contains the individual commands represented as text for
each degree of freedom (DoF) of the robot. In this work, we only considered translational DoFs.

Formally, the distribution we seek to capture with our VLA is pθ(āi,mi, li|ōi, L), which we decom-
pose as:

pθ(āi,mi, li|ōi, L) = pθ(li|ōi, L)︸ ︷︷ ︸
1) Subtask
Prediction

pθ(mi|li, ōi)︸ ︷︷ ︸
2) Motion
Planning

pθ(āi|mi, li, ōi)︸ ︷︷ ︸
3) Action

Generation

, (1)

where parameters θ are the weights of the robot policy. This parameterization corresponds to a
vision-language model (transformer) taking as input a sequence of multimodal image-text input
tokens and predicting a sequence of output text tokens. All observations reside in RGB image space.

The decomposition given in Equation (1) describes how our VLA operates at test-time. Every
action-chunk prediction is conditioned on the current observation, subtask description, and proposed
motion-plan; in practice, we generate all N subtasks at once given the initial observation ō0 and keep
this set fixed for the duration of the rollout.

To improve robustness of the policy, we operate in closed-loop fashion with a verifier. At the end of
every action-generation cycle, the verifier determines if the model should re-try the current subtask
or proceed onto the next one, a process which continues until all N subtasks are completed. In this
work, we utilize Gemini 2.5 Pro (Team, 2025) as the verifier (with details in Appendix C.5).

3.2 DATA CURATION: TRANSLATING ROBOT TRAJECTORIES INTO A HIERARCHICAL FORMAT

To teach a VLM the aforementioned spatially-grounded reasoning chain, we must first re-label
existing robot datasets in natural language. We assume access to a dataset of human teleoperated
robot trajectories, Drob, where each trajectory is a state-action sequence τ = {(ot, at)}Tt=0 of length
T controlling the relative position of the robot’s end-effector (Padalkar et al., 2024; Khazatsky et al.,
2025; Walke et al., 2024). Each trajectory comes equipped with a main-task language instruction L.
Our goal is to automatically describe each trajectory τ ∈ Drob at the levels described in Section 3.1 to
construct a new robot dataset annotated with natural language, Dlan. Herein, we utilize the subset of
the Bridgev2 dataset equipped with main-task instructions as Drob (Walke et al., 2024).

Our pipeline for constructing Dlan is similar in spirit to the data curation strategies of Clark et al.
(2025); Zawalski et al. (2025). We use Gemini (Team, 2025) to automatically annotate trajectories
and construct our our natural language dataset (see Fig. 4 for an illustration). Specifically, Gemini
will decompose each trajectory into a sequence of N steps. Each step i comes equipped with an initial
observation ōi, subtask li, motion plan mi, and variable-length action chunk āi, allowing us to repre-
sent the trajectory described via natural language, τ̄ , as the tuple τ̄ = {(ōi, li,mi, āi)}N−1

i=0 ∈ Dlan.
See Appendix A.1 and A.2 for additional details on dataset curation.

In summary, we transform our original robot dataset of state-action pairs into a dataset of image-text
pairs, thereby casting robotic control as a standard supervised fine-tuning task. We fine-tune the
Gemma-3-12B-IT model (Team et al., 2025b) using LoRA applied to all its linear modules using the
cross-entropy loss. This approach instills action prediction capabilities while preserving the VLM’s
world knowledge. Additional training details are outlined in Appendix D.

4 EXPERIMENTS

In this section, we evaluate VLM2VLA on a suite of tasks to answer the following questions:

Q1–Multimodal Understanding: Does VLM2VLA effectively preserve the base VLM’s multimodal
reasoning ability in standard VQA tasks after fine-tuning on robot data Dlan?

Q2–Robotic Manipulation: Can VLM2VLA achieve a level of in-distribution manipulation perfor-
mance that is competitive with state-of-the-art VLAs?
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Table 1: Multimodal understanding evaluation. Comparison of VLMs and VLAs across multi-
modal understanding benchmarks. We compare against Prismatic VLM (Karamcheti et al., 2024),
OpenVLA (Kim et al., 2024), ECoT (Zawalski et al., 2025), Gemma-3 (Team et al., 2025b), Mol-
moAct (Lee et al., 2025) and π0.5 (Intelligence et al., 2025). Our models preserve strong performance
across diverse multimodal understanding tasks despite training on robot data. The best and second
best results for each benchmark are shown in bold and underlined, respectively.

Method #Params MMMU MMStar MME OCRBench MMB-en MMB-cn TextVQA DocVQA InfoVQA AI2D ChartQA RealWorldQA

Prismatic VLM Family

Prismatic VLM 7b 35.0 38.8 1456.6 32.0 66.2 55.7 42.5 17.5 19.7 54.6 16.7 30.8
OpenVLA 7b 26.3 0 0 0 0 43.0 0 0 0 0 0 0

ECoT 7b 26.6 0 0 0.01 3.7 4.1 0 0 0 0 0 25.6

Gemma-3 Family (with VLM2VLA)

Gemma-3-4B-IT 4b 39.3 37.1 1205.8 70.2 68.6 64.3 61.5 68.8 40.9 70.5 50.3 44.0
Gemma-3-12B-IT 12b 46.0 46.3 1182.3 75.0 76.9 74.7 68.9 80.6 50.4 78.5 55.1 50.6

VLM2VLA-AT 12b 45.9 45.2 1082.2 65.5 70.9 66.8 64.2 74.6 44.8 74.1 41.8 44.5
VLM2VLA (Ours) 12b 42.7 48.0 1391.7 63.9 68.5 67.6 64.9 78.4 46.2 74.0 58.3 43.3

Open-Source Co-Trained VLAs

MolmoAct 7b 28.4 1.2 1224.5 52.7 55.1 46.3 57.5 58.7 41.9 2.0 55.9 8.6
π0.5 3b 24.0 21.7 1061.9 6.8 6.8 0.3 10.0 4.6 7.7 27.0 5.1 2.7

Q3–Reasoning Generalization: Does the preserved knowledge from Q1 directly enable VLM2VLA
to generalize to novel, out-of-distribution robotics tasks that require reasoning beyond the fine-tuning
data Dlan?

Baselines: We contrast our policy against two state-of-the-art tokenization-based VLAs: OpenVLA
(Kim et al., 2024), an autoregressive policy constructed from fine-tuning a pretrained 7B Prismatic
VLM on the large-scale Open-X-Embodiment dataset (Karamcheti et al., 2024; Padalkar et al., 2024),
and Embodied Chain-of-Thought (ECoT), a variant of OpenVLA trained to produce reasoning traces
before action prediction (Zawalski et al., 2025). ECoT, similar to VLM2VLA, is only fine-tuned on
the Bridgev2 dataset.

Ablations: We ablate our action representation by mapping the digits (0-9) in our robot action data
to the decoded strings of Gemma-3’s ten least likely tokens; therefore, during VLA fine-tuning, the
model will learn to autoregressively predict actions via these reserved tokens (see Appendix A.3).
We call this variation of our method, with action tokens, VLM2VLA-AT. To ensure an accurate
comparison, both models are trained identically and trained on the same data, except for the action
representation.

4.1 EVALUATION OF MULTIMODAL UNDERSTANDING

In this section, we quantify the extent to which VLM2VLA, and its variants, preserve their multimodal
understanding by thorough evaluation on numerous VQA benchmarks. As demonstrated by Table 1,
both OpenVLA and ECoT suffer from catastrophic forgetting relative to the original Prismatic VLM
(Karamcheti et al., 2024; Zhou et al., 2025b). In contrast, VLM2VLA experiences only minor
losses in performance across all VQA benchmarks, thereby conclusively answering Q1. While
the VLM2VLA-AT ablation achieved comparable VQA scores, suggesting that our LoRA training
scheme is primarily responsible for mitigating catastrophic forgetting, we argue this is a necessary
but not sufficient condition for creating a generalist policy. As we show in Section 4.2, the choice of
action representation is an important factor affecting generalization in downstream robotic tasks.

To compare VLM2VLA against state-of-the-art co-trained VLAs, we also evaluate two recently
released open-source models: MolmoAct (Lee et al., 2025) and π0.5 (Intelligence et al., 2025). While
MolmoAct is strong in VQA ability, VLM2VLA outperforms it across all reported benchmarks. We
acknowledge that model size is a confounding variable in the comparison, yet, the results in Table 1
demonstrate that our methodology is competitive with co-trained VLAs. On the other hand, the
significantly lower performance of π0.5 across most VQA benchmarks underscores that co-training is
not a guaranteed solution to catastrophic forgetting.

4.2 EVALUATING ROBOTIC MANIPULATION

Having established that VLM2VLA and its variants retain their foundational pretraining knowledge,
we now evaluate if this training procedure translates to robotic control. Specifically, we assess
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Figure 5: Comparative evaluation of VLA performance on in-distribution (ID) and out-of-distribution (OOD)
robotic manipulation tasks. VLM2VLA maintains high success rates on OOD tasks, highlighting its superior
generalization capabilities. Each bars corresponds to an average over thirty trials, except for the ‘Pick Up -T’
task, where each bar corresponds to an average over ninety trials.

VLM2VLA’s ability to perform robotic manipulation tasks of varying complexity in in-distribution
(ID) and out-of-distribution (OOD) scenarios. All real-world policy evaluations receive a total of
30 trials and are performed on a 6-DoF WidowX 250S robotic arm in a toy kitchen environment, as
prescribed in (Walke et al., 2024).

We compare VLM2VLA to the baselines and ablations on two ID tasks, one borderline ID task, and
two OOD tasks. The in-distribution experiments probe each policy’s action prediction capabilities
over short and long horizons. The out-of-distribution experiments investigate if the policies can
leverage the latent world knowledge of their VLM backbone to generalize beyond the VLA fine-
tuning data. All skills tested are ‘pick up’ or ‘pick and place’ tasks, which are common in policy
evaluation (Hancock et al., 2024; Snyder et al., 2025; Kim et al., 2024; Zawalski et al., 2025; Gao
et al., 2025), and we describe each in detail below.

Pick Up the Carrot (Pick Up): A baseline task testing the model’s fundamental localization and
grasping capabilities. This task is considered in-distribution because the task object (carrot) and
instruction are within the VLA fine-tuning data.

Put the Carrot On the Yellow Plate (Pick and Place): A longer horizon baseline task testing the
model’s ability to perform more complex actions. This task is considered in-distribution because the
object and instruction are within the VLA fine-tuning data.

Put the Eggplant In the Pan, Then Lift the Fish (Pick, Place, and Lift): A long-horizon, multi-step
task requiring the robot to perform both pick-and-place and pick-up actions. This task is borderline
in-distribution; the objects and instructions, when considered separately, are in-distribution, but not
when combined.

Pick Up the Carrot (Pick Up - T): A pick-up task with natural language instruction given in one of
three languages: Spanish, Mandarin, or Hindi. This task is considered out-of-distribution because
the instructions are not within the VLA fine-tuning dataset, thereby requiring the model to implicitly
translate the task. Two distractor objects are present in each trial to prevent the policy from inferring
the task from the observation alone.

Pick Up the Item Above Ash Ketchum (Pick Up - A): A pick-up task requiring the model to
first locate the pop-culture figure ‘Ash Ketchum’ and lift the correct object. This task is considered
out-of-distribution because VLAs are not trained to recognize semantic concepts like ‘Ash Ketchum,’
thereby requiring the model to leverage its latent world knowledge to succeed. Distractor logos
(‘NASA’) and objects are present. The item located above ‘Ash Ketchum’ varies in-between trials, as
does its location in the environment.

We report the full task success rates for all models in Fig. 5 (see Appendices C.1 to C.6 for additional
scoring and experimental details). For the multilingual translation tasks (Pick Up -T), we report the
average across all languages, which amounts to ninety trials per model.
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4.2.1 RESULTS OF BASELINES

On the ID pick-up and pick-and-place tasks, OpenVLA performs the best. This high performance
is likely explained by fine-tuning on the much larger Open-X-Embodiment dataset, which provides
broader coverage of common grasping skills. Nevertheless, the comparable success rates observed
for VLM2VLA answer Q2: the ‘action as language’ approach of VLM2VLA enables competitive
action prediction in a specific robot embodiment.

As task complexity increases, the advantage of a purely reactive policy, like OpenVLA, starts to
diminish. In the compositional task ‘Put the Eggplant In the Pan, Then Lift the Fish’, we found that
OpenVLA often successfully completes the first subtask (put the eggplant in the pan), but fails to
attempt the second. ECoT, on the other hand, normally generates motion plans to finish both subtasks,
but fails to execute them as accurately as OpenVLA. We found that of the three policies, for this task,
VLM2VLA not only generates correct hierarchical reasoning, but also executes them more frequently
(see Fig. 5 and Fig. 6).
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Figure 6: Analysis of task decomposition for OOD ma-
nipulation tasks. Points are awarded if the model’s task
plan correctly identifies the task object, and task destina-
tion, if present. See Appendix C.3 for additional details.

The OOD scenarios most clearly demon-
strate the benefits of our knowledge-preserving
pipeline. In the multilingual translation experi-
ment (Pick Up - T), our method significantly out-
performs both OpenVLA and ECoT. As shown
in Fig. 6 and Fig. 7, VLM2VLA frequently
translates the non-English language instruction
and identifies the correct object; this is a direct
application of the multilingual capabilities re-
tained by our model as reported in Section 4.1.
While ECoT does achieve a non-zero task suc-
cess rate, the results presented in Fig. 6 suggest
it may be relying on heuristics, such as simply
picking up the closest or most salient object in the near vicinity, rather than a genuine understanding
of the instruction.
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Figure 7: A qualitative demonstration of VLM2VLA’s
zero-shot multilingual capabilities. Given the language
instruction in Hindi (‘pick up the carrot’), our model
identifies the correct object amidst distractors (eggplant
and banana), demonstrating a genuine understanding of
the task.

This trend is even more pronounced in the ‘Pick
Up the Item Above Ash Ketchum’ task, requir-
ing a combination of both open-world semantic
knowledge (recognizing a pop-culture figure)
and spatial reasoning. Here, VLM2VLA is the
only model to achieve a meaningful success rate.
This result provides a positive answer to Q3: the
foundational world knowledge preserved by our
method can be leveraged to solve novel prob-
lems zero-shot.

4.2.2 RESULTS OF ABLATIONS

Section 4.1 demonstrated that LoRA fine-tuning
can mitigate catastrophic forgetting for both our
method and the token-based ablation, but does
the ‘actions as language’ representation actually
facilitate learning a more effective policy? The
results demonstrated in Fig. 5 and Fig. 6 show
our approach consistently outperforms the token-

based ablation across all manipulation tasks. While VLM2VLA-AT performs competitively on simple
ID tasks, its performance degrades as task complexity increases; this is seen most clearly in the
OOD setting despite retaining strong VQA capabilities. For instance, Fig. 6 shows VLM2VLA-AT
struggles with multilingual commands and scores only half as well as VLM2VLA in the ‘Pick Up the
Item Above Ash Ketchum’ task (achieving a success rate of just 30% to our model’s 60%). These
findings are suggestive of a disconnect between the VLM’s latent world knowledge and the action
token assignment achieved after fine-tuning.
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5 CONCLUSION AND DISCUSSION

In this work, we present VLM2VLA: a novel VLA training paradigm that addresses the challenge of
catastrophic forgetting often experienced when adapting a VLM for robotic control. We demonstrate
that by grounding the action prediction problem in natural language, LoRA can be used to train
manipulation policies without significantly degrading the backbone VLM’s foundational capabilities.
Our data-centric approach of treating ‘actions as language’ obviates the need for major architectural
modifications to the VLM or expensive co-training schemes. As our experiments show, the retained
latent world knowledge of VLM2VLA enables zero-shot generalization to novel tasks that require
open-world semantic reasoning. Ultimately, this work offers one path toward building generalist
policies by closing the gap between large-scale foundation models and real-world robotic control.

5.1 LIMITATIONS AND FUTURE WORK

Our approach has several limitations that present clear avenues for future work.

Inference latency. VLM2VLA generates actions autoregressively, which is inherently slow; in our
experiments, the median run-time required for one cycle of action generation was 6.1 seconds, though
subject to high variance (see Appendix C.6 for additional inference details). Future work could
explore more advanced decoding techniques to accelerate our hierarchical prediction scheme without
compromising the VLM’s pretrained representations.

Dexterous tasks. Our work has focused on translational end-effector control, which is suitable for
many simple pick-and-place tasks. While this design choice afforded strong action labeling from
Gemini, it precludes dexterous manipulation tasks which require nuanced action prediction, e.g.,
rotation. Moreover, the granularity at which we predict motion plans is coarse, and a logical next
step is to obtain fine-grained language annotations when constructing our VLA fine-tuning dataset.
As vision-language models become more adept at spatial reasoning, we anticipate this re-labeling
scheme will enable more precise robotic control.

Cross-embodiment learning. The scope of our work limited training to a specific robot embodiment,
thereby preventing the same policy from readily adapting to other robots, especially those which
utilize other means of low-level control, such as joint angles, which do not map easily to spatial
affordances. Yet, we believe our ‘actions as language’ relabeling scheme is a promising solution.
Using language as a common medium, it ought to be possible to describe all robot actions regardless
of embodiment. Therefore, performing VLM2VLA’s relabeling scheme could potentially be used to
train a cross-embodiment policy.

Improving or eliminating the verifier. Our method currently relies on a separate verifier module to
transition between subtasks, further slowing down inference speed. Future work could explore how
to better train the base VLM as a verifier, thereby averting this step altogether.

Larger-scale training. We are working towards scaling our training pipeline with larger robotics
datasets. We hypothesize that combining our language-based action representation with large-
scale training may unlock zero-shot generalization, open-world semantic reasoning, and instruction
following capabilities that go well beyond the state-of-the-art.

REPRODUCIBILITY STATEMENT

All models reported in this work are open-source; our work, VLM2VLA, is based on the publicly
available Gemma 3 model (Team et al., 2025b). We have attached an extensive Appendix providing
additional details of our approach. Information regarding our data curation procedure is available in
Appendices A.1 to A.3. Our VQA analysis is listed in Appendix B. Our hardware experiments are
described in Appendices C.1 to C.6. Full training details and the computational resources used are
provided in Appendix D.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and
Andy Zeng. Do as I can, not as I say: Grounding language in robotic affordances, 2022. URL
https://arxiv.org/abs/2204.01691.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL technical report, 2025.
URL https://arxiv.org/abs/2502.13923.

Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson, Yevgen
Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. RT-H: Action hierarchies using language, 2024.
URL https://arxiv.org/abs/2403.01823.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey
Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James
Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0: A vision-language-
action flow model for general robot control, 2024. URL https://arxiv.org/abs/2410.
24164.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. RT-
2: Vision-language-action models transfer web knowledge to robotic control, 2023a. URL
https://arxiv.org/abs/2307.15818.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter,
Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha
Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin
Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Van-
houcke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. RT-1: Robotics transformer for real-world control at scale, 2023b. URL
https://arxiv.org/abs/2212.06817.

An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Zaitian Gongye, Xueyan Zou, Jan Kautz, Erdem Bıyık,
Hongxu Yin, Sifei Liu, and Xiaolong Wang. NaVILA: Legged robot vision-language-action model
for navigation, 2025. URL https://arxiv.org/abs/2412.04453.

Jaden Clark, Suvir Mirchandani, Dorsa Sadigh, and Suneel Belkhale. Action-free reasoning for
policy generalization, 2025. URL https://arxiv.org/abs/2502.03729.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. PaLM-E: An embodied
multimodal language model, 2023. URL https://arxiv.org/abs/2303.03378.

10

https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2403.01823
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2412.04453
https://arxiv.org/abs/2502.03729
https://arxiv.org/abs/2303.03378


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Danny Driess, Jost Tobias Springenberg, Brian Ichter, Lili Yu, Adrian Li-Bell, Karl Pertsch, Allen Z.
Ren, Homer Walke, Quan Vuong, Lucy Xiaoyang Shi, and Sergey Levine. Knowledge insulating
vision-language-action models: Train fast, run fast, generalize better, 2025. URL https://
arxiv.org/abs/2505.23705.

Jensen Gao, Suneel Belkhale, Sudeep Dasari, Ashwin Balakrishna, Dhruv Shah, and Dorsa Sadigh.
A taxonomy for evaluating generalist robot policies, 2025. URL https://arxiv.org/abs/
2503.01238.

Shresth Grover, Akshay Gopalkrishnan, Bo Ai, Henrik I. Christensen, Hao Su, and Xuanlin Li. En-
hancing generalization in vision-language-action models by preserving pretrained representations,
2025. URL https://arxiv.org/abs/2509.11417.

Asher J. Hancock, Allen Z. Ren, and Anirudha Majumdar. Run-time observation interventions make
vision-language-action models more visually robust, 2024. URL https://arxiv.org/abs/
2410.01971.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models, 2022. URL https://arxiv.org/abs/2207.
05608.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. π0.5: a
vision-language-action model with open-world generalization, 2025. URL https://arxiv.
org/abs/2504.16054.

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
Sadigh. Prismatic VLMs: Investigating the design space of visually-conditioned language models,
2024. URL https://arxiv.org/abs/2402.07865.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Youngwoon
Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin Black,
Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pannag R
Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe, Ted
Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Baijal,
Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul
Foster, Jensen Gao, Vitor Guizilini, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng
Hu, Muhammad Zubair Irshad, Donovon Jackson, Charlotte Le, Yunshuang Li, Kevin Lin, Roy
Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani, Daniel Morton, Tony Nguyen, Abigail
O’Neill, Rosario Scalise, Derick Seale, Victor Son, Stephen Tian, Emi Tran, Andrew E. Wang,
Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani, Glen Berseth,
Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek Gupta, Dinesh Jayaraman, Joseph J
Lim, Jitendra Malik, Roberto Martı́n-Martı́n, Subramanian Ramamoorthy, Dorsa Sadigh, Shuran
Song, Jiajun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine, and Chelsea Finn.
DROID: A large-scale in-the-wild robot manipulation dataset, 2025. URL https://arxiv.
org/abs/2403.12945.

11

https://arxiv.org/abs/2505.23705
https://arxiv.org/abs/2505.23705
https://arxiv.org/abs/2503.01238
https://arxiv.org/abs/2503.01238
https://arxiv.org/abs/2509.11417
https://arxiv.org/abs/2410.01971
https://arxiv.org/abs/2410.01971
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2402.07865
https://arxiv.org/abs/2403.12945
https://arxiv.org/abs/2403.12945


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael
Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Benjamin Burch-
fiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. OpenVLA: An
open-source vision-language-action model, 2024. URL https://arxiv.org/abs/2406.
09246.

Jason Lee, Jiafei Duan, Haoquan Fang, Yuquan Deng, Shuo Liu, Boyang Li, Bohan Fang, Jieyu Zhang,
Yi Ru Wang, Sangho Lee, Winson Han, Wilbert Pumacay, Angelica Wu, Rose Hendrix, Karen
Farley, Eli VanderBilt, Ali Farhadi, Dieter Fox, and Ranjay Krishna. MolmoAct: Action reasoning
models that can reason in space, 2025. URL https://arxiv.org/abs/2508.07917.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
Sicheng Xu, Yizhong Zhang, Xiaofan Wang, Bei Liu, Jianlong Fu, Jianmin Bao, Dong Chen,
Yuanchun Shi, Jiaolong Yang, and Baining Guo. CogACT: A foundational vision-language-
action model for synergizing cognition and action in robotic manipulation, 2024. URL https:
//arxiv.org/abs/2411.19650.

Yi Li, Yuquan Deng, Jesse Zhang, Joel Jang, Marius Memmel, Raymond Yu, Caelan Reed Garrett,
Fabio Ramos, Dieter Fox, Anqi Li, Abhishek Gupta, and Ankit Goyal. HAMSTER: Hierarchical
action models for open-world robot manipulation, 2025. URL https://arxiv.org/abs/
2502.05485.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control, 2023. URL
https://arxiv.org/abs/2209.07753.

Fanqi Lin, Ruiqian Nai, Yingdong Hu, Jiacheng You, Junming Zhao, and Yang Gao. OneTwoVLA:
A unified vision-language-action model with adaptive reasoning, 2025. URL https://arxiv.
org/abs/2505.11917.

Soroush Nasiriany, Sean Kirmani, Tianli Ding, Laura Smith, Yuke Zhu, Danny Driess, Dorsa Sadigh,
and Ted Xiao. RT-Affordance: Affordances are versatile intermediate representations for robot
manipulation, 2024. URL https://arxiv.org/abs/2411.02704.
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Learning, 2025. URL https://github.com/huggingface/trl.

Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao,
Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea Finn,
and Sergey Levine. Bridgedata v2: A dataset for robot learning at scale, 2024. URL https:
//arxiv.org/abs/2308.12952.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. DexVLA:
Vision-language model with plug-in diffusion expert for general robot control, 2025. URL
https://arxiv.org/abs/2502.05855.

Jianwei Yang, Reuben Tan, Qianhui Wu, Ruijie Zheng, Baolin Peng, Yongyuan Liang, Yu Gu, Mu Cai,
Seonghyeon Ye, Joel Jang, Yuquan Deng, Lars Liden, and Jianfeng Gao. Magma: A foundation
model for multimodal ai agents, 2025. URL https://arxiv.org/abs/2502.13130.

Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning, 2025. URL https://arxiv.org/abs/
2407.08693.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker, Fed-
erico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke,
and Pete Florence. Socratic models: Composing zero-shot multimodal reasoning with language,
2022. URL https://arxiv.org/abs/2204.00598.

Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo
Li, Qianli Ma, Song Han, Chelsea Finn, Ankur Handa, Ming-Yu Liu, Donglai Xiang, Gordon
Wetzstein, and Tsung-Yi Lin. CoT-VLA: Visual chain-of-thought reasoning for vision-language-
action models, 2025. URL https://arxiv.org/abs/2503.22020.

Peiyuan Zhi, Zhiyuan Zhang, Yu Zhao, Muzhi Han, Zeyu Zhang, Zhitian Li, Ziyuan Jiao, Baoxiong
Jia, and Siyuan Huang. Closed-loop open-vocabulary mobile manipulation with gpt-4v, 2025.
URL https://arxiv.org/abs/2404.10220.

Zhongyi Zhou, Yichen Zhu, Junjie Wen, Chaomin Shen, and Yi Xu. ChatVLA-2: Vision-language-
action model with open-world embodied reasoning from pretrained knowledge, 2025a. URL
https://arxiv.org/abs/2505.21906.

14

https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2405.12213
https://github.com/huggingface/trl
https://arxiv.org/abs/2308.12952
https://arxiv.org/abs/2308.12952
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2502.05855
https://arxiv.org/abs/2502.13130
https://arxiv.org/abs/2407.08693
https://arxiv.org/abs/2407.08693
https://arxiv.org/abs/2204.00598
https://arxiv.org/abs/2503.22020
https://arxiv.org/abs/2404.10220
https://arxiv.org/abs/2505.21906


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhongyi Zhou, Yichen Zhu, Minjie Zhu, Junjie Wen, Ning Liu, Zhiyuan Xu, Weibin Meng, Ran
Cheng, Yaxin Peng, Chaomin Shen, and Feifei Feng. ChatVLA: Unified multimodal understanding
and robot control with vision-language-action model, 2025b. URL https://arxiv.org/
abs/2502.14420.

15

https://arxiv.org/abs/2502.14420
https://arxiv.org/abs/2502.14420


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DATA CURATION

A.1 PROMPTING

In this section, we showcase our Gemini prompting strategy to generate language-annotated robot
trajectories at scale. Our example is specific to the WidowX 250S robot embodiment, focusing solely
on translational degrees of freedom.

Below is our prompt given to Gemini to generate language-annotated robot trajectories. All text
within the prompt is invariant across robot trajectories, except for words/phrases designated in color,
which are trajectory-dependent.

Gemini Inputs and Prompt Template

Inputs:

Gemini is provided with the robot trajectory data τ = {(ot, at)}Tt=0 consisting of RGB
observations ot and actions at controlling the relative position of the robot’s end-effector.
Additionally, Gemini is provided with the main-task instruction L. We combine all
actions and instruction into a text file called trajectory log content.

Gemini Prompt

Attached are images of a robot performing a task, and the real actions in a text file
called trajectory log content. You are programming a 4-DoF robot arm (x,y,z,gripper).
Positive x points forward (negative x points backward) with respect robot’s end-effector.
Positive y points left (negative y points right) with respect to the robot’s end effector.
Positive z points up (negative z points down) with respect to the robot’s end-effector.
The gripper takes a binary value of 1 for open and 0 for closed.

Your task is to analyze the language instruction found in the trajectory log. Crucially,
first think step-by-step and explain your reasoning for each action phase necessary to
complete the instruction given all the images and their ordering during the trajectory. Be
short and concise. Output your reasoning as a structured JSON file.

Then, after you’ve explained your reasoning, give the actions with respect to (dx, dy, dz,
gripper) that the robot must execute to achieve this goal given the orientation described
previously, associating each action or group of actions with the natural language decom-
position you decided on. Store these actions in JSON format as a list of dictionaries,
where each dictionary has ’step description’ (string) and ’actions’ (list of lists represent-
ing [dx, dy, dz, gripper]). Make sure your actions match what is provided in the attached
.txt file. For example:
{{
"step_description": "Grasp the Pepper",
"actions": [

[0.010, 0.026, 0.002, 1.0],
[0.017, 0.033, 0.008, 1.0],
[0.003, 0.007, -0.018, 1.0],
[-0.006, 0.0, -0.015, 1.0],
[0.003, 0.002, 0.001, 0.0]

]
}}

Here is the trajectory log content: trajectory log content

In summary, Gemini 2.5 (Team, 2025) is given the entire trajectory τ = {(ot, at)}Tt=0 ∈ Drob and
main-task instruction L as context, as well as the robot’s coordinate system and sign convention in
the base frame. For example, the Bridgev2 dataset (Walke et al., 2024) utilizes the 6-DoF WidowX
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250S robotic arm, where movement in the positive ‘x’ direction corresponds to ‘forward’, negative
movement in the ‘y’ directions corresponds to ‘right,’ and so forth. Since all action sequences
are given as relative movements of the robot’s end-effector, the aforementioned coordinate system
provides strong spatial grounding for Gemini to construct high-quality language annotations and
determine the most appropriate timesteps to carve the trajectory into sub-trajectories. To address
potential concerns about auto-labeling errors, we manually inspected a random subset of Gemini’s
generated data for accuracy in subtask decomposition, motion-planning, and action prediction.

Initially, we solely used Gemini 2.5 Pro, but later switched to Gemini 2.5 Flash to save on costs. In
total, generating the entire dataset costed roughly $900.

A.2 DATA PREPARATION

After Gemini splits each trajectory into sub-trajectories, we found it helpful in policy training to
chunk the actions along a single dimension to have larger magnitudes; in particular, we found that
without this step, VLM2VLA often provided negligible action predictions, even though its predicted
motion-plans appears sensible.

In this work, we used a threshold along a single dimension, without sign change, of 2.5 centimeters
and an absolute threshold of 5 centimeters. We include an example of the data for training Gemma-3
before and after this post-processing step below:

Original Sub-Trajectory Action Data

Inputs:

The model is provided with the subtask ’Grasp the Yellow Pepper’ and image file:
obs 0.jpg.

Human Prompt

You are programming a 4-DoF robot arm. Based on the image (obs 0.jpg) and subtask
’Grasp the Yellow Pepper’, output the sequence of low-level [x, y, z, gripper] actions
needed to accomplish the task.

Model Output

[[ 0.000, 0.000, 0.000, 1.0],
[-0.002, 0.000, -0.007, 1.0],
[ 0.000, -0.004, -0.016, 1.0],
[ 0.002, -0.002, -0.014, 1.0],
[ 0.003, 0.000, -0.008, 1.0],
[ 0.002, 0.000, -0.011, 1.0],
[ 0.000, 0.000, -0.005, 1.0],
[ 0.000, 0.000, -0.007, 1.0],
[ 0.000, 0.000, -0.006, 1.0],
[ 0.001, -0.003, -0.003, 0.0]]

Post-Processed Sub-Trajectory Action Data

Inputs:

The model is provided with the subtask ’Grasp the Yellow Pepper’ and image file:
obs 0.jpg
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Human Prompt

You are programming a 4-DoF robot arm. Based on the image (obs 0.jpg) and subtask
’Grasp the Yellow Pepper’, output the sequence of low-level [x, y, z, gripper] actions
needed to accomplish the task.

Model Output

[[-0.002, -0.004, -0.023, 1.0],
[0.007, -0.002, -0.045, 1.0],
[0.0, 0.0, -0.006, 1.0],
[0.001, -0.003, -0.003, 0.0]]

We further augment our dataset with two additional sets of data. First we construct positive and
negative examples of subtask completion, each consisting of a tuple (ōi, ōj , li) with j distinct from
i: the robot successfully completed subtask i if and only if j = i+ 1. In principle, this data could
train the VLM as the verifier, but we found our model unable to reliably perform this step. We leave
addressing this shortcoming as future work.

Secondly, we train the model to predict which direction (e.g., left, right, or none) the robot should
move to complete a given subtask, using the same movement threshold of 2.5 centimeters. While we
do not query our VLA in this manner at run-time, we found this auxiliary training signal beneficial
for downstream performance.

A.3 ACTIONS AS TOKENS

For the action representation ablation, we cast the digits 0-9 to the tenth least likely tokens under the
Gemma-3-12B-IT model. We describe this mapping in the table provided in Table 2. In addition,
we provide an example of decoded model output under this mapping, identical to the one provided
above.

Table 2: Mapping of digits to the least likely tokens under the Gemma-3 model.

Digit Token Token ID
9 <unused6142> 262044
8 <unused6141> 262043
7 <unused6140> 262042
6 <unused6139> 262041
5 <unused6138> 262040
4 <unused6137> 262039
3 <unused6136> 262038
2 <unused6135> 262037
1 <unused6134> 262036
0 <unused6133> 262035
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Post-Processed Sub-Trajectory Action Data Under Action Tokenization

Model Output

[[-<unused6133>.<unused6133><unused6133><unused6135>, -<u
nused6133>.<unused6133><unused6133><unused6137>, -<unused
6133>.<unused6133><unused6135><unused6136>, <unused6134>.
<unused6133>],
[<unused6133>.<unused6133><unused6133><unused6140>, -<un

used6133>.<unused6133><unused6133><unused6135>, -<unused6
133>.<unused6133><unused6137><unused6138>, <unused6134>.<
unused6133>],
[<unused6133>.<unused6133>, <unused6133>.<unused6133>, -

<unused6133>.<unused6133><unused6133><unused6139>, <unuse
d6134>.<unused6133>],
[<unused6133>.<unused6133><unused6133><unused6134>, -<un

used6133>.<unused6133><unused6133><unused6136>, -<unused6
133>.<unused6133><unused6133><unused6136>, <unused6133>.<
unused6133>]]

B VQA EXPERIMENT DETAILS

We build our evaluation pipeline using the open-source framework lmms-eval1, which provides
standardized implementations of multimodal benchmark datasets, evaluation metrics, and inference
wrappers for a wide range of models. We report results for our VLM2VLA model (finetuned with
Gemma-3-12B backbone), two strong baselines (OpenVLA and ECoT, both Prismatic-7B backbone),
and the original instruction-tuned Gemma-3-4B and Gemma-3-12B models.

MolmoAct and π0.5 are designed to handle inputs from multiple cameras (e.g., exterior and wrist
views). However, since standard VQA benchmarks provide only a single image per sample, we use
the multi-view vision-language model to process single-image VQA benchmarks by utilizing only
the primary image input from each sample and masking the other image inputs. We use the π0.5-base
checkpoint for all π0.5 experiments.

C ROBOT MANIPULATION TASKS AND DETAILED RESULTS

C.1 EXPERIMENTS AND MANIPULATION EVALUATION METRICS

As described in Section 4.2, we evaluate all generalist robot policies on two in-distribution tasks, one
borderline in-distribution task, and two out-of-distribution tasks. Each policy received a total of 30
roll-outs for each task. In this section, we provide additional details on the scoring rubric used to
evaluate each method, giving special care to fairly evaluate planning and non-planning policies.

Pick Up the Carrot: The robot’s goal is to navigate to and lift up the carrot. There are no distractor
objects present. This experiment is considered within distribution because it is part of the Bridgev2
dataset.

Between trials, the carrot’s initial position varied between three possibilities: (i) directly below the
robot’s gripper, (ii) directly in front of the robot, (iii), in front and to the left or right of the robot. The
robot’s initial position was constant between trials.

Scoring: Partial credit (1 out of 2) is assigned if the robot makes contact with the carrot.

Put the Carrot On the Yellow Plate: The robot’s goal is to grasp the carrot, move to the plate,
and successfully release it on the plate. There are no distractor objects present. This experiment is
considered within distribution because it is part of the Bridgev2 dataset.

1https://github.com/EvolvingLMMs-Lab/lmms-eval
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Between trials, the carrot’s initial position varied between two possibilities: (i) directly in front of the
robot and (ii) in front and to the left or right of the robot. The robot’s initial position was constant
between trials.

Scoring: Partial credit (1 out of 2) is assigned if the robot makes contact with the carrot.

Put the Eggplant In the Pan, Then Lift the Fish: The robot’s goal is to grasp the eggplant, move
and release it in the pan, then navigate to and successfully lift the fish. This task is considered
borderline in-distribution because the individual subtasks are within distribution, but the combination
is not.

The eggplant is located to the right of the fish between all trials, which is located in front of and to
the right of the robot’s initial condition; all starting positions for the eggplant, pan, fish, and robot are
invariant across trials.

Scoring: For non-planning policies (OpenVLA), partial credit (1 out of 5) is awarded if the robot
makes contact with the eggplant, (2 out of 5) if the robot places the eggplant in the pan, (3 out of 5) if
the robot moved toward the fish, (4 out of 5) if the robot contacts the fish, and (5 out of 5) if the robot
lifts the fish.

For planning policies (ECoT, VLM2VLA), partial credit (1 out of 5) is awarded if the policy generates
a subtask decomposition or motion-plan with the correct primitives: grasping the eggplant, moving to
the pan, lifting the fish. The remaining partial credit is awarded the same as for non-plannign policies:
(2 out of 5) if the robot makes contact with the eggplant, (3 out of 5) if the robot places the eggplant
in the pan, (4 out of 5) if the robot contacts the fish, and (5 out of 5) if the robot lifts the fish.

Pick Up the Carrot (Multilingual Translation): The robot’s goal is to navigate to and lift up the
carrot. Instructions are given in one of three languages: Spanish, Mandarin, and Hindi. This task is
considered out of distribution because the language commands are not within the Bridgev2 dataset.

Between trials, the carrot’s initial position varied between three possibilities: (i) directly below the
robot’s gripper, (ii) directly in front of the robot, (iii), in front and to the left or right of the robot. The
robot’s initial position was constant between trials. Two distractor objects (banana and eggplant) are
present in each trial in an attempt to prevent the policy from inferring the task from the observation
alone.

Scoring: For non-planning policies (OpenVLA), partial credit (1 out of 2) is awarded if the robot
makes contact with the carrot. For planning policies (ECoT, VLM2VLA), partial credit (1 out of 2) is
awarded if the policy’s planning included the correct item ’carrot’ and the robot makes contact with
the carrot.

Pick Up the Item Above Ash Ketchum: The robot’s goal is to navigate to and lift up the object
situated above the pop-culture figure ’Ash Ketchum.’ This task is considered out of distribution
because the picture of ’Ash Ketchum’ is not present in the Bridgev2 dataset.

Between trials, the picture of ’Ash Ketchum’ varied between being either to the left or right of the
robot’s starting position, which remained invariant across trials. The target object is placed a few
centimeters above the picture to preclude partial observability.

Scoring: For non-planning policies (OpenVLA), partial credit (1 out of 2) is awarded if the robot
makes contact with the correct object. For planning policies (ECoT, VLM2VLA), partial credit (1
out of 2) is awarded if the policy’s planning included the correct item and the robot makes contact
with the item.

C.2 HARDWARE DETAILS

All real-world policy evaluations were performed on a 6-DoF WidowX 250S robotic arm in a toy
kitchen environment, as prescribed in (Walke et al., 2024). Images were captured with a Realsense
D435 camera mounted on the right side of the robot to provide a third-person point of view. The
initial conditions of task and distractor objects between trials were varied to ensure an accurate
appraisal of policy performance. Like the environment, all objects are drawn from the Bridgev2
dataset to prevent out-of-distribution failures.
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C.3 TASK DECOMPOSITION EVALUATION METRICS

In this section, we describe the scoring procedure used to generate Fig. 6. The objective was to
quantify each policy’s ability to interpret and break down a variety of user instructions. Performance
was measured by analyzing the textual output of each model’s chain-of-thought reasoning, or subtask
decomposition, whenever available.

For each task considered from Appendix C.1, a model’s reasoning was considered successful if
the model’s textual output contained a specific set of required keywords. The evaluation was case-
insensitive and manually checked to ensure all policies received a fair appraisal. The keywords and
synonyms are defined as follows:

eggplant: purple, aubergine

carrot: orange, gajar

pan: (no synonyms defined)

fish: (no synonyms defined)

We now specify the scoring rubric for each experiment which required analysis:

Put the Eggplant In the Pan, Then Lift the Fish: success required the simultaneous presence of
synonyms for ’eggplant,’ ’pan,’ and ’fish.’

Pick Up the Carrot (Multilingual Translation): success required the presence of a carrot synonym
in the model’s output. Interestingly, some subtask decompositions from VLM2VLA occasionally
contained the word ’gajar,’ the Hindi synonym for carrot, demonstrating direct translation abilities of
our method. This phenomena was not observed for Spanish nor Mandarin inputs.

Pick Up the Item Above Ash Ketchum: success required identifying the correct object for that
specific trial. The required keyword was either a synonym of carrot or eggplant, depending on the
ground truth object for that trial.

C.4 TEST-TIME PROMPTING

In this section, we describe the prompting strategies used in VLM2VLA to elicit grounded subtask
predictions, spatial reasoning for motion-planning, and translational action prediction.

First, given the initial image, we prompt VLM2VLA to break the main language instruction into a
series of subtasks.

Subtask Prediction Prompt

Describe the sequence of remaining high-level steps required to complete the overall task
’main task’, starting from the current state. Give your output as a list. Be specific and do not
skip steps. Here is an example for ’put the pot in the sink’: [’Move Down to Pot’, ’Grasp
Pot’, ’Lift Pot High’, ’Move Pot Left to the Sink’, ’Lower Pot to Sink’, ’Release’]. Start with
’Move to’

For a given subtask, we prompt VLM2VLA with the current observation and subtask.

Motion-Planning Prompt

Given the image, reason about what high-level actions the robot arm should take to complete
the task ”subtask”. +dx is forward, -dx is backward, +dy is left, -dy is right, +dz is up, -dz is
down, 1 is gripper open, 0 is gripper closed. Provide concise, accurate spatial reasoning.

Once a motion-plan is generated, VLM2VLA is prompted with that reasoning, current observation,
and subtask.
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Action Generation Prompt

You are programming a 4-DoF robot arm (x,y,z,gripper). +dx is forward, -dx is backward,
+dy is left, -dy is right, +dz is up, -dz is down, 1 is gripper open, 0 is gripper closed. Based
on the sub-task ’subtask’ and the reasoning ’motion-plan reasoning’, output the sequence of
low-level [dx, dy, dz, gripper] actions needed as a python list of lists. Be concise in direction
of movement. Example format: [[dx1,dy1,dz1, grip1], [dx2,dy2,dz2, grip2]]. PROVIDE
ONLY THE PYTHON LIST.

All outputs from VLM2VLA are generated using nucleus (top-p) sampling with p=0.95. We use
distinct temperature settings for each generation stage: 0.1 for motion planning and 0.5 for action
prediction. For the initial sub-task decomposition stage, the temperature is set to 0.5 for in-distribution
tasks and 1.0 for all other scenarios. The aforementioned hyperparameters were empirically found to
work well.

We use the default setting of greedy decoding for both the OpenVLA and ECoT baselines. The task
prompts varied slightly between policies to maximize performance of each model on a given task.
While all models received near identical commands, we followed the prompt formats suggested by
(Kim et al., 2024; Zawalski et al., 2025) for the baselines, and used our own for VLM2VLA and
VLM2VLA-AT (see Appendix C.4).

C.5 VERIFIER PROMPTING

To improve robustness of the policy, we operate in closed-loop fashion with a verifier V : O ×O ×
L × L → L, where O is the RGB image space and L is the language space; at the end of each
action-generation cycle, we query the verifier with the observations before (ōi) and after (ōi+1) action
execution (āi), as well as the current (li) and next (li+1) subtask. The verifier V (ōi, ōi+1, li, li+1)
will reason if the current subtask was completed successfully, given the observations and the next
subtask. The output from the verifier dictates the subtask used in the next action-generation cycle,
which continues until all N subtasks are completed. In this work, we utilize Gemini 2.5 Pro (Team,
2025) as the verifier, albeit one may train the model itself to do this step.

In this section, we describe the prompting strategies used in this work to query the external verifier if
the subtask was successfully completed.

Verifier Prompting Strategy

Inputs:

After having executed action chunk āi, Gemini is provided with two observations, (ōi,
ōi+1) and the current and next subtask (li, li+t).

Verifier Instructions

You are a precision-oriented robot inspector. Your primary job is to evaluate the two
images (ōi, ōi+1) if the ’Current Subtask’ (li) was executed with enough precision to
guarantee the success of the ’Next Subtask’ (li+1).

CRITICAL RULE: Judge the Precondition.

A ’move to’ action is ONLY successful if the final position is perfectly aligned for the
subsequent action, i.e., executing a grasp as the next step will result in a successful grasp.
A ’close enough’ position is a FAILURE if it jeopardizes the next step.

For a ’grasp’ subtask to succeed, the gripper MUST be centered directly above the
object’s grasp point in the preceding ’move’ step. Any significant offset or misalignment
in the ’after’ image is a failure.

Provide your analysis in the specified JSON format, following the turn-based examples.
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Expected Model Output (JSON)

{
"success": true,
"confidence": "High",
"reasoning": "This is a successful grasp because the
second image clearly shows the robot has successfully
grasped the eggplant."

}

C.6 INFERENCE LATENCY

We conducted a series of rollouts and measured the wall-clock time for a single inference cycle, which
we defined as the generation of both the mid-level reasoning trace and low-level action prediction.
All experiments were conducted on an NVIDIA A100 GPU. We collected data across 30 evaluation
runs and report the summary statistics in Table 3.

Table 3: Inference Latency Statistics (N=30 trials)

Statistic Value
Median 6.1 [s]
Mean (Average) 10.5 [s]
Standard Deviation 14.3 [s]
Interquartile Range (IQR) 5.0 - 6.7 [s]
Minimum 3.8 [s]
Maximum 48.8 [s]

The median of 6.1 seconds and small interquartile range demonstrate VLM2VLA is capable of fast
inference. However, the high standard deviation of 14.3 seconds warrants discussion. Our analysis of
the output logs revealed that 1) approximately 10% of cases triggered our retry mechanism due to
bad output formatting from our model, causing additional run-time and 2) a small subset of trials
exhibited unusually long run-times (> 45 seconds), suggesting a computational bottleneck.

These results highlight the importance of developing fast decoding schemes for low-latency perfor-
mance in real-world scenarios, which we reserve for future work.

D TRAINING DETAILS

We fine-tune the Gemma-3-12B-IT (Team et al., 2025b) model using the TRL library (von Werra
et al., 2025). Training is managed with Hugging Face’s Accelerate framework, utilizing a DeepSpeed
ZeRO Stage 2 configuration for efficient memory usage across multiple GPUs. We employ parameter-
efficient fine-tuning (PEFT) using low-rank adaptation (LoRA) to update the model weights.

To obtain the final checkpoint, we train the model on a single node with 4 NVIDIA A100 GPUs.
The final model was fine-tuned for one epoch, which we found sufficient for this work. In total, our
model required approximately 300 GPU hours. The key hyper-parameters used for this training run
are described in Table 4; notably, we found that using a small effective batch size worked well.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 4: VLM2VLA Training Hyper-parameters

Hyperparameter Value

Training Strategy
Base Model Gemma-3-12B-IT
Frameworks TRL, Accelerate, DeepSpeed (ZeRO Stage 2)
Fine-Tuning Method PEFT (LoRA)
Precision bfloat16 (BF16)

LoRA (PEFT) Configuration
Rank (r) 16
Alpha (α) 32
Target Modules q proj, k proj, v proj, o proj, up proj, down proj,

gate proj

Optimization
Optimizer AdamW
Learning Rate 5e-5
LR Scheduler Linear Decay
Adam Beta1 0.9
Adam Beta2 0.999
Adam Epsilon 1e-8

Dataloader Configuration
Global Batch Size 1
Per-Device Batch Size 1
Gradient Accumulation Steps 2
Effective Global Batch Size 8
Max Sequence Length 1024

E USAGE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this work, the authors utilized Large Language Models (LLMs) to support
various aspects of the research and writing process. The specific applications of LLMs in this paper
are outlined below:

Code Generation and Debugging: LLMs were employed to generate and debug code in the
preliminary stages of this work. This included creating Python scripts to generate the plots presented
herein. Moreover, LLMs assisted in debugging error logs when training VLM2VLA and proposing
the corresponding fixes.

Manuscript Preparation: LLMs were utilized to format tables in LaTeX code for use in this
manuscript. Additionally, LLMs aided in creating the template used in the Appendix to designate the
’Human Prompt’ and the ’Model Output.’

Writing Assistance: LLMs were queried to enhance the quality and readability of the manuscript.
This involved checking grammar, and suggesting edits to improve sentence structure, syntax, and
clarity, thereby helping to polish the final version.

24


	Introduction
	Related Work
	Methodology
	Actions as Language: A Hierarchical Representation
	Data Curation: Translating Robot Trajectories into a Hierarchical Format

	Experiments
	Evaluation of Multimodal Understanding
	Evaluating Robotic Manipulation
	Results of Baselines
	Results of Ablations


	Conclusion and Discussion
	Limitations and Future Work

	Data Curation
	Prompting
	Data Preparation
	Actions as Tokens

	VQA Experiment Details
	Robot Manipulation Tasks and Detailed Results
	Experiments and Manipulation Evaluation Metrics
	Hardware Details
	Task Decomposition Evaluation Metrics
	Test-Time Prompting
	Verifier Prompting
	Inference Latency

	Training Details
	Usage of Large Language Models (LLMs)

