A Appendix

A.1 Proof of Lemmal[ll

Proof. Using the e-ISS property in Assumption (I} we have:

T N T t—1
1 i 1 1 i) (i i i
TNZDxiHsTNZZ(vat 1 ’an,i)u;)—kaw,i)n)

i=1 t=1 i=1t=1 \ k=1
@ 7 1SN R0, 0 0
ST,TN Z 1By uy” = fo +w || ®)
P i=1 t=1
T N R R N R BT
Si TN ZZHBt up — f w3
P i=1 t=1
where (a) and (b) are from geometric series and Cauchy-Schwarz inequality respectively. O

A.2 Proof of Lemmal[2l

This proof is based on the proof of Theorem 4.1 in [28].

Proof. For any © € K; and &) € Ky we have
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where we have (a) because fgi) is convex. Note that the total regret of A; is T' - o( N') because G*) is
scaled up by a factor of 7. O

A.3  Proof of Theorem[3]

Proof. Since © € K; and c¢("N) € Ky, applying Lemmawe have
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Recall that the definition of Egi) is eﬁ“(é, ¢) = HF(ng(xgi); 0),é) — ygi) %, and yf@ = ft(i) - wﬁi).
Therefore we have
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Then applying Lemma|[I| we have
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where (a) uses (I0). O

A4  Proof of Corollary[q]
Before the proof, we first present a lemma [27]] which shows that the regret of an Online Gradient
Descent (OGD) algorithm.

Lemma 7 (Regret of OGD [27]]). Suppose fi.7(x) is a sequence of differentiable convex cost
Sunctions from R™ to R, and K is a convex set in R™ with diameter D, i.e., Vx1,x9 € K, |21 —
2a|| < D. We denote by G > 0 an upper bound on the norm of the gradients of f1.7 over K, i.e.,
IVfi(x)|| < Gforallt € [1,T] and x € K.

The OGD algorithm initializes x1 € K. At time step t, it plays x4, observes cost fi(x;), and updates
xe11 by I (a2 — eV fe(x4)) where T is the projection onto K, i.e., Ui (y) = argmingcx ||z —y||.
OGD with learning rates {n; = GL\/E} guarantees the following:

th ) — min th ) < GD\F (13)

Define R(.A;) as the total regret of the outer-adapter A, and R(Az) as the total regret of the inner-

adapter Ap. Recall that in Theorem 3| we show that ACE(OMAC) < = \/ W2 4+ %_
Now we will prove Corollary 4] by analyzing R(A;) and R(A;) respectively.

Proof of Corollary[} Since the true dynamics f(z, ) = Y;(2)0 + Ys(z)c?), we have
67(6,8) = [ (2")6 + Ya(ay")e - Yi(2")0 = Ya(ay)el) + . (14)

Recall that gt( (¢) = Ve Z(l CIRN Agi)) - ¢, which is convex (linear) w.r.t. ¢. The gradient of g,gi) is

upper bounded as
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() _ 2K, for all 4, the regret of A, at each outer iteration is

From Lemma using learning rates 7, ~ = AV
upper bounded by 3K.C»+/T. Then the total regret of A; is bounded as

R(As) < 3K,CoNVT. (16)
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Now let us study Aj. Similarly, recall that G() (@) = Zt 1 Ve K( )(9(’) z)) ©, which is convex
(linear) w.r.t. ©. The gradient of G () is upper bounded as
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From Lemma using learning rates 7j(") = TQCIf ?ﬁ’ the total regret of A, is upper bounded as
R(Ay) < 3KeTC1VN. (18)
Finally using Theorem 3] we have
ACE(OMAC) < 7\/W2 + R(A1) + R(A2)
1—0p TN
N 19)
< W2+ 3(KeC + K.Cy—=).
1—p¢ (Kol 75+ KeOr )

Now let us analyze ACE(baseline adaptive control). To simplify notations, we define Y (x) =
[V1(z) Ya(x)]: R® — R™*(P+M) and & = [O;¢] € RPH". The baseline adaptive controller updates
the whole vector & at every time step We denote the ground truth parameter by a9 = [6; c(i)],
and the estimation by a\” = [0\"; &{]. We have [|a?|| < /K2 + K2. Define K = {& = [0;¢] :
6] < Ke,||é]| < K.}, which is a convex set in RP17.

Note that the loss function for the baseline adaptive control is Zﬁ” (&) = ||17(x§i))d -V (argi))@ -
Ya(x (Z)) @) 4 w,ﬁ” |?. The gradient of lz(f) is
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whose norm on K is bounded by

\/4([(12 4 K2)(2K Ko + 2K K, + W)? = \/012 v o2, @1

/ 2
Therefore, from Lemma|7| running OGD on K with learning rates Ko+ Ke ives the followin,
g g \/7 g g

guarantee at each outer iteration:

Zgﬂ ) < 3\/K3 + K2\/C2 + C]VT. (22)
Finally, similar as (12) we have
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Note that this bound does not improve as the number of environments (i.e., V) increases. O
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A.5 Proof of Theorem

Proof. For any O € Ky and N ¢ IC2 we have
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Then combining with Lemma [T]results in the ACE bound. O

A.6 Proof of Theorem

Proof. Note that in this case the available measurement of f at the end of the outer iteration 7 is:
y =Y (@Pec) —w? 1<j<i1<t<T. (25)

Recall that the Ridge-regression estimation of 6 is given by
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Note that y§j) = (VT ® Y(xij))) - vec(©) — wg D = Zt(j)vec(G)) — w,&j). Define V; = Al +
> Sr Z9T 79) Then from the Theorem 2 of [32] we have
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for all ¢ with probability at least 1 — 4. Note that the environment diversity condition implies:
Vi > Q(3)I. Finally we have
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where (a) uses (28).

Finally we have
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for all ¢ with probability at least 1 — J. (b) is from and (3I). Then with Lemma|[l] we have (with
probability at least 1 — 9)
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If we relax the environment diversity condition to ©(v/7), in ([28) we will have O( Log( \’}F/ J) ). Therefore
O(log(NT/(S)) 1 . O(log(NT/))
in (33) the last term becomes =522 Zl_ 17 < N O

A.7 Experimental details
A.7.1 Theoretical justification of Deep OMAC

Recall that in Deep OMAC (Table@m Sectlon the model class is F(¢(z;0),¢) = ¢(x;0) - &,

where ¢ : R® — R™*" is a neural network parameterized by 6. We provide the following proposition
to justify such choice of model class.

Proposition 1. Let f(z,8): [-1,1]" x [-1,1]" = Rbean analytic function of [z, c] € [-1, 1]nth
forn,h > 1. Then for any e > 0, there exist h(e) € Z, a polynomial $(z) : [—1,1]" — R™M€) and
another polynomial c(¢) : [—1,1]" — R™) such that

max ||f(z,¢) — ¢(z) ()] < e

[z,8l€[~1,1]n+h

and h(e) = O((log(1/€))").

Note that here the dimension of ¢ depends on the precision 1/¢. In practice, for OMAC algorithms,
the dimension of ¢ or c (i.e., the latent space dimension) is a hyperparameter, and not necessarily
equal to the dimension of ¢ (i.e., the dimension of the actual environmental condition). A variant of
this proposition is proved in [34]]. Since neural networks are universal approximators for polynomials,

this theorem implies that the structure ¢(z; ©)¢ can approximate any analytic function f(z, ¢), and
the dimension of ¢ only increases polylogarithmically as the precision increases.

A.7.2 Pendulum dynamics model and controller design

In experiments, we consider a nonlinear pendulum dynamics with unknown gravity, damping and
external 2D wind w = [w,; w,] € R?. The continuous-time dynamics model is given by

ml%0 — mlgsinf = u+f(9,9,0(w))7 (34)
—_—

unknown
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Figure 2: Trajectories (top) and force predictions (bottom) in the pendulum experiment from one
random seed. The wind condition is switched randomly every 2 s (indicated by the dashed red lines).
The performance of OMAC improves as it encounters more environments while baseline not.

where ) . )
f(0,6,c(w)) =1 X Fyinga— a10 +ml(g— g)siné,
N—— ~—~ N———

air drag damping gravity mismatch
(35)
10 cos
Fyina = az - [Ir]l2 - 7,7 = w — - .
—10sin 6

This model generalizes the pendulum with external wind model in [35] by introducing extra modelling
mismatches (e.g., gravity mismatch and unknown damping). In this model, «; is the damping
coefficient, cv is the air drag coefficient, r is the relative velocity of the pendulum to the wind,
Flying 1s the air drag force vector, and ['is the pendulum vector. Define the state of the pendulum as
& = [0; ). The discrete dynamics is given by

0,466 16 0 .
Tip1 = |- mlc}tsinet-&-uf—&-f(ét booy | = [ } zﬁ—[ 5 ](ut+mlgs1n9t+f(xt,c)), (36)
Oy + 6 - X et 0 1 mi®
——— ——
A B
where 9 is the discretization step. We use the controller structure u; = —Kxy —mlgsin 6y — f for all

6 controllers in the experiments, but different controllers have different methods to calculate f (e.g.,

the no-adapt controller uses f = 0 and the omniscient one uses f = f). We choose K such that
A — BK is stable (i.e., the spectral radius of A — BK is strictly smaller than 1), and then the e-ISS
assumption in Assumption [I|naturally holds. We visualize the pendulum experiment results in fig. [2]

A.7.3 Quadrotor dynamics model and controller design

Now we introduce the quadrotor dynamics with aerodynamic disturbance. Consider states given by
global position, p € R?, velocity v € R3, attitude rotation matrix R € SO(3), and body angular
velocity w € R3. Then dynamics of a quadrotor are
p =, mv =mg+ Rfr + f, (37a)
R = RS(w), Jo=Jw X w+T, (37b)
where m is the mass, J is the inertia matrix of the quadrotor, S(-) is the skew-symmetric mapping, g
is the gravity vector, fr = [0,0,T]" and 7 = [r;, 7, 7,] | are the total thrust and body torques from

four rotors, and f = [f5, fy, f-]T are forces resulting from unmodelled aerodynamic effects and
varying wind conditions. In the simulator, f is implemented as the aerodynamic model given in [36].

Controller design. Quadrotor control, as part of multicopter control, generally has a cascaded
structure to separate the design of the position controller, attitude controller, and thrust mixer
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(allocation). In this paper, we incorporate the online learned aerodynamic force f in the position
controller via the following equation:

fo=—mg—m(Kp-p+Kp-v)— f, (38)

where Kp, Kp € R3*3 are gain matrices for the PD nominal term, and different controllers have
different methods to calculate f (e.g., the omniscient controller uses f = f). Given the desired
force f4, a kinematic module decomposes it into the desired Ry and the desired thrust 7}; so that

R -[0,0, Td]T ~ f4. Then the desired attitude and thrust are sent to a lower level attitude controller
(e.g., the attitude controller in [51]]).
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