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ABSTRACT

Despite recent advancements in latent diffusion models that generate high-
dimensional image data and perform various downstream tasks, there has been
little exploration into perceptual consistency within these models on the task of
No-Reference Image Quality Assessment (NR-IQA). In this paper, we hypothe-
size that latent diffusion models implicitly exhibit perceptually consistent local
regions within the data manifold. We leverage this insight to guide on-manifold
sampling using perceptual features and input measurements. Specifically, we
propose Perceptual Manifold Guidance (PMG), an algorithm that utilizes pre-
trained latent diffusion models and perceptual quality metrics to obtain percep-
tually consistent multi-scale and multi-timestep feature maps from the denois-
ing U-Net. We empirically demonstrate that these hyperfeatures exhibit high
correlation with human perception in IQA tasks. Our method can be applied
to any existing pretrained latent diffusion model and is straightforward to in-
tegrate. To the best of our knowledge, this paper is the first work to explore
Perceptual Consistency in Diffusion Models (PCDM) and apply it to the NR-
IQA problem in a zero-shot setting. Extensive experiments on IQA datasets
show that our method, PCDM, achieves state-of-the-art performance, underscor-
ing the superior zero-shot generalization capabilities of diffusion models for NR-
IQA tasks. The source code will be made publicly available upon publication at
https://perceptual-consistency-in-dm.github.io
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Figure 1: An overview of our proposed approach: (a) shows the transition of latent samples across
latent manifolds, highlighting the steps of DDIM and PMG. (b) depicts the content bias (green) on
the manifold M0 ≈ D(Z0), showing that the guidance term in red (PMG) pushes a data sample
(x′0|t ∼ D(z

′
0|t)) towards the perceptually consistent region (orange) of the manifold.
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1 INTRODUCTION

Score-based diffusion models have advanced significantly in recent years and have achieved re-
markable success at synthesizing high-quality images across diverse scenes, views, and lighting
conditions (Ho et al. (2020); Song & Ermon (2019); Song et al. (2020b); Zhang et al. (2023a)).
Latent Diffusion Models (LDMs), which embed data into a compressed latent space, enhance com-
putational efficiency (Rombach et al. (2022)). Diffusion models provide strong data priors that
effectively capture the intricacies of high-dimensional data distributions, making them powerful for
generative tasks. Conditional generation using posterior sampling has become crucial for solving
various real-world low-level vision problems (Kawar et al. (2022); Chung et al. (2023); Rout et al.
(2024); Song et al. (2023a)). Additionally, several methods leverage the rich internal representations
of diffusion models by extracting either hand-selected single or subsets of features from a denoising
U-Net for downstream tasks (Tumanyan et al. (2023); Ye et al. (2023); Xu et al. (2023a); Baranchuk
et al. (2021)). Despite these advancements in addressing tasks like inverse problems, segmentation,
and semantic keypoint correspondence, there has been little exploration into perceptual consistency
of diffusion models for No-Reference Image Quality Assessment (NR-IQA).

NR-IQA aims to evaluate image quality in line with human perception without a high-quality refer-
ence image (Wang & Bovik (2006)). It plays a crucial role in optimizing parameters for image pro-
cessing tasks, such as resizing, compression (Feng et al. (2023); Liu et al. (2023)), and enhancement
(Hou et al. (2024); Fei et al. (2023); Zhang et al. (2024)). Early NR-IQA methods used hand-crafted
natural scene statistics features (Zhang et al. (2015); Mittal et al. (2012); Saad et al. (2012)), and have
evolved into learning-based quality metrics (Madhusudana et al. (2022); Tu et al. (2021); Ke et al.
(2021); Saini et al. (2024)). While learning-based methods show promise, they often lack generaliz-
ability. With the advent of generative models, some authors have explored the use of pixel diffusion
models for NR-IQA tasks (Li et al. (2024b); Babnik et al. (2024); Wang et al. (2024)). While these
approaches show impressive progress, they are often ad hoc, focusing on tasks like quality feature
denoising and image restoration by converting NR-IQA problems into Full-Reference IQA (FR-
IQA) ones. Additionally, training on specific IQA datasets limits their generalizability. By contrast,
our goal is to utilize pretrained latent diffusion models without fine-tuning, leveraging perceptual
guidance to extract intermediate multi-scale and multi-time features, termed diffusion hyperfeatures
(Luo et al. (2024)), for NR-IQA.

Figure 2: Median SRCC scores of NR-IQA
methods across authentic distortion IQA datasets,
demonstrating the superior performance of our
method.

At the core of our method is the manifold hy-
pothesis: real data does not occupy the entire
pixel space but instead lies on a smaller under-
lying manifold. Previous works (Chung et al.
(2022b); He et al. (2023); Sun et al. (2023))
have used the manifold concept for guided sam-
ple generation and solving inverse problems. In
IQA, deep models aim to learn distortion man-
ifolds that correlate highly with human percep-
tual quality (Agnolucci et al. (2024); Su et al.
(2023); Guan et al. (2018); Gao et al. (2024)).
These manifolds represent regions within the
data manifold that contain perceptually con-
sistent samples, with content bias further nar-
rowing these regions. Towards further ad-
vancing progress in this direction, we propose
Perceptual Manifold Guidance (PMG) to en-
sure perceptually consistent on-manifold sam-
pling, conditioned on perceptual metric features and the quality measurement process itself. Fig. 1
provides an overview and conceptual visualization of our approach. Unlike previous state-of-the-art
CNN or transformer-based IQA models that only utilize the final feature layer, we extract inter-
mediate multi-scale and multi-time features, termed diffusion hyperfeatures (Luo et al. (2024)),
from a denoising U-Net for NR-IQA. As shown by Ghildyal et al. (2024), intermediate features of
foundation models outperform state-of-the-art learned metrics based on final feature layers. Our
method, Perceptual Consistency in Diffusion Model (PCDM), is a framework for extracting percep-
tually consistent diffusion hyperfeatures from unconditionally pretrained latent diffusion models,
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featuring: (1) no additional fine-tuning or training, (2) generalizability across diverse distortions
and image types, and (3) the first use of latent diffusion models for NR-IQA in a zero-shot setting.
We theoretically prove that PMG guides sampling towards perceptually consistent regions on the
image manifold in latent diffusion models, and experimental results on NR-IQA datasets support
this. We evaluate PCDM against both supervised and unsupervised state-of-the-art methods on ten
IQA datasets, consistently achieving superior results (see Fig. 2). With its effectiveness and gen-
eralizability, PCDM can serve as a robust framework for NR-IQA. Below, we summarize our key
contributions:

• We introduce a novel approach for leveraging unconditional latent diffusion models to tackle the
challenging task of No-Reference Image Quality Assessment without any fine-tuning or additional
training.

• We design a manifold guidance scheme that ensures the sampling process remains on the mani-
fold and close to perceptually consistent region. We theoretically demonstrate that our perceptual
guidance keeps gradient updates on the tangent spaces of the data manifold, maintaining prox-
imity to the local perceptually consistent manifold. We also utilize intermediate multi-scale and
multi-time features from the denoising U-Net, resulting in high correlation with human perceptual
judgments.

• Extensive experiments on both authentic and synthetic IQA datasets demonstrate that our method
achieves state-of-the-art performance. To the best of our knowledge, this is the first approach to
introduce perceptual guidance in latent diffusion models for zero-shot NR-IQA.

2 BACKGROUND

2.1 NR-IQA

Early successful NR-IQA methods relied on handcrafted features based on deviations from expected
natural scene statistics (NSS) models (Ruderman & Bialek (1994); Mittal et al. (2012); Saad et al.
(2012)) but these struggle to generalize across diverse and combined distortions. Deep learning
introduced CNN-based models (Ke et al. (2021); Saha et al. (2023); Zhang et al. (2023b)) and
transformer-based architectures such as MUSIQ (Ke et al. (2021)), TReS (Golestaneh et al. (2022b)),
and TRIQ (You & Korhonen (2021)) deliver improved performance, but are limited by datasets that
lacked comprehensive distortion coverage and/or inadequately large or representative numbers of
human quality annotations. To better capture the complex relationship between image content and
perceived quality, manifold learning techniques have been explored (Agnolucci et al. (2024); Su
et al. (2023); Guan et al. (2018); Gao et al. (2024)). These approaches aim to uncover intrinsic low-
dimensional structures within high-dimensional data, thereby aligning more closely with human
visual perception. They generally rely on the following hypothesis:

Assumption 1: (Strong Manifold Hypothesis). For a given data distribution X ∈ RD, the actual
data points are concentrated on a k-dimensional locally linear subspace manifoldM ⊂ RD, such
that k ≪ D .

Latent diffusion models have demonstrated strong representation learning capabilities when trained
on large-scale datasets containing a wide range of authentic and synthetic distortions (Rombach et al.
(2022); Zhang et al. (2023a)), but their application to NR-IQA problems remains underexplored (Li
et al. (2024b); Babnik et al. (2024); Wang et al. (2024)).

We demonstrate that latent diffusion models implicitly learn perceptually consistent manifolds due
to their extensive training data and ability to capture data priors through score matching. By lever-
aging the learned score function sθ with perceptual guidance from a perceptual metric ψp, and
extracting diffusion hyperfeatures H =

⋃T
t=0 ht =

⋃T
t=0

⋃L
l=0 sθ(xt, t)|l, where T represents the

total sampling steps and L is a subset of intermediate layers, we align features from the denoising
network sθ at different time steps with human perceptual judgments.

2.2 DIFFUSION MODELS

Score-Based Diffusion Models.

3
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We begin by reviewing the fundamentals of diffusion models, focusing on the Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al. (2020)). Let x0 ∼ p(X) represent samples from the data dis-
tribution. Diffusion models define the generative process as the reverse of a noising process, which
can be represented by the variance-preserving stochastic differential equation (VP-SDE) (Song et al.
(2020b)) x(t), t ∈ [0, T ]:

dx = −βt
2
xdt+

√
βtdw (1)

where βt ∈ (0, 1) is the noise schedule of the process, a monotonically increasing function of t,
and w is a d-dimensional standard Wiener process. This SDE is defined such that x0 ∼ p(X) when
t = 0, and as t→ T , the distribution approaches a standard Gaussian, i.e., xT ∼ N (0, I). Our goal
is to learn the reverse-time SDE corresponding to equation (1):

dx =

[
−βt

2
x− βt∇xt

log p(xt)

]
dt+

√
βtdw̄ (2)

where dw̄ is a reverse-time Wiener process and dt runs backward, and ∇xt
log p(xt) is the score

function (Song et al., 2020b). We approximate the score function using a neural network sθ(xt, t)
parameterized by θ, trained via denoising score matching (Vincent, 2011):

θ∗ = argmin
θ

Et∈[0,T ],xt∼p(xt|x0),x0∼p(X)

[
∥sθ(xt, t)−∇xt

log p(xt|x0)∥22
]
. (3)

Once sθ is learned, we approximate the reverse-time SDE and generate clean data by iteratively
solving Equation 2 from noisy samples (Song & Ermon (2019)).

Denoising Diffusion Implicit Models (DDIM). To address the slow generation of DDPM, Song
et al. (2020a) proposed Denoising Diffusion Implicit Models (DDIMs), which define a non-
Markovian diffusion process for faster sampling. The DDIM sampling update is:

xt−1 =
√
ᾱt−1x̂0|t +

√
1− ᾱt−1 − σ2

t sθ(xt, t) + σtϵ t = T, . . . , 0, (4)

where αt = 1 − βt, ᾱt =
∏t

i=1 αi, σt =
√

(1− ᾱt−1)/(1− ᾱt)
√
1− ᾱt/ᾱt−1 corresponds to

DDPM sampling, and when σt = 0 sampling becomes deterministic, where ϵ ∼ N (0, I). The term
x̂0|t is direct estimation of the clean data x0 from noisy data xt, calculated using Tweedie’s formula
(Efron (2011)):

x̂0|t =
1√
ᾱt

(
xt +

√
1− ᾱt, sθ(xt, t)

)
(5)

Conditional Diffusion Models.

For conditional generation using unconditional diffusion models (Song et al. (2020b); Chung et al.
(2022b); Yu et al. (2023)), a common approach is to replace the score function in equation 2 with
a conditional score function ∇xt

log p(xt|y), where y is the conditioning variable. Using Bayes’
rule, the conditional score function can be decomposed into the unconditional score function and
a likelihood term: ∇xt

log p(xt|y) = ∇xt log p(xt) + ∇xt log p(y|xt), Incorporating this into the
reverse SDE yields:

dx =

[
−βt

2
x− βt (∇xt

log p(xt) +∇xt
log p(y|xt))

]
dt+

√
βtdw̄ (6)

The above SDE can be treated as a two-step process, the first getting an unconditional denoised
sample xt−1, followed by the gradient update with respect to xt. Since, the likelihood term
∇xt

log p(y|xt) is generally intractable, the second term approximates a gradient update to mini-
mizing the guidance loss around the denoised sample xt−1.

x′t−1 =
√
ᾱt−1x̂0(xt) +

√
1− ᾱt−1 − σ2

t sθ(xt, t) + σtϵ (7)

xt−1 = x′t−1 − ζ∇xtG(x0|t, y) (8)

where ζ is a tunable step size. Here, Tweedie’s estimate x0|t is used since the guidance term is
defined on the clean data x0, i.e., Gt(xt, y) ≈ Ep(x0|xt)[Gt(x0, y)] ∼ G(x0|t, y). The guidance
term is optimized over a neighborhood around xt ∈ RD.

Many methods use equation 8 for conditional generation and various vision tasks (Chung et al.
(2022b); Kawar et al. (2022); Yu et al. (2023); Song et al. (2023b)). For example, Chung et al.
(2022b) define an l2 loss term as

∣∣y −A(x0|t)∣∣22, whereA represents a known differentiable forward
degradation model, effectively guiding the generated sample to match the condition y.

4
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3 PERCEPTUAL CONSISTENCY IN DIFFUSION MODEL

As discussed in Section 1, we address the limited applicability of pixel diffusion models by using the
more efficient Latent Diffusion Models (LDMs). The diffusion process in LDMs naturally generates
on-manifold perceptually consistent samples without requiring additional models to estimate tangent
spaces of the data manifold (Srinivas et al. (2023); Bordt et al. (2023); He et al. (2023)), as we will
demonstrate in this section.

In LDMs, the diffusion process operates within the latent space, training a score function sθ(zt, t).
Let x ∈ RD represent the original high-dimensional data, and let E : RD → Rk be an encoder
and D : Rk → RD be a decoder, where k ≪ D. The embeddings in the latent space are given by
z = E(x) ∈ Rk.

To guide the sampling process towards the perceptually consistent region on the manifold and ensure
perceptually consistent hyperfeature extraction from the denoising score function, we propose the
following framework. An overview of our proposed sampling process is depicted in Fig. 1, which
illustrates the step-by-step guidance for extracting perceptually aligned features in the latent space.

3.1 PERCEPTUAL MANIFOLD GUIDANCE

We propose using perceptual features from an input measurement y derived via a perceptual metric
ψp in the conditional score function, leading to∇zt log p(zt|ψp(y), y). The choice of ψp is detailed
in Section 4 and Appendix D. Before redefining the sampling steps, let’s first consider the noisy
sample manifolds.

Given Assumption 1, Chung et al. (2022a;b) show that noisy data xt is probabilistically concentrated
on a (D − 1)-dimensional manifoldMt, which encapsulates the clean data manifoldM. Formally
(see Appendix B for a detailed proof):

Proposition 1 (Noisy Data Manifold) Let the distance function be defined as d(x,M) :=
infy∈M ∥x− y∥2, and define the neighborhood around the manifold M as B(M; r) :={
x ∈ RD

∣∣ d(x,M) < r
}

. Consider the distribution of noisy data given by p(xt) =∫
p(xt|x0)p(x0)dx0, p(xt|x0) := N (

√
ᾱt x0, (1− ᾱt)I) represents the Gaussian perturbation

of the data at time t, and ᾱt =
∏t

s=1 αs is the cumulative product of the noise schedule αt.
Under the Assumption 1, the distribution pt(xt) is concentrated on a (D − 1)-dim manifold
Mt := y ∈ RD : d(y,

√
x̄tM) = rt :=

√
(1− ᾱt)(D − k).

Most posterior sampling methods (Chung et al. (2022a)) optimize the guidance term G(x0|t, y)

over xt ∈ RD, whereas the score function sθ is trained only with samples onMt, as indicated by
Proposition 1. This discrepancy implies that the solution x∗t (leading to x∗0|t via Tweedie’s formula
5) may not reside on Mt, resulting in a suboptimal solution (Yu et al. (2023)). To overcome this
limitation, we propose a solution overMt. From Assumption 1, the manifoldMt coincides with
its tangent space T xtMt, i.e., T xtMt ≃ Rk with k ≪ D (Park et al. (2023)). Practically, we
optimize the guidance termG(x0|t, y) over xt ∈ T xtMt. This new compact solution space ensures
consistent on-manifold sampling throughout the process.

The latent space of a well-trained autoencoder implicitly captures the lower-dimensional structure
of the data manifold, which can be leveraged for tangent space projection (Srinivas et al. (2023);
Bordt et al. (2023)). The latent processing of LDMs aids this as the samples already lie in the
lower-dimensional space Rk. Formally (proof follows He et al. (2023), see Appendix B):

Proposition 2 (On-manifold sample with LDM) Given a perfect autoencoder, i.e. x = D(E(x)),
and a gradient ∇z0|tG(z0|t, y) ∈ Tz0Z then D(∇z0|tG(z0|t, y)) ∈ Tx0

M.

For LDMs, the minimization of the guidance term occurs within the tangent space of the clean
data manifold. This guarantees that the generated sample remains close to the real data, without
deviations. Although Rout et al. (2024) do not explicitly discuss on-manifold sampling in LDMs,
their results empirically suggest the inherent manifold consistency of LDMs.

Having defined consistent on-manifold sampling, we present our Perceptual Manifold Guidance
(PMG). Using Bayes’ theorem on our new conditional score function ∇zt log p(zt|ψp(y), y) (see

5
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Appendix B for details):

∇zt log p(zt|ψp(y), y) ≈ ∇zt log p(zt) +∇zt log p(ψp(y)|zt) +∇zt log p(y|zt) (9)

From (Rout et al. (2024)), LDM’s intractable terms can be approximated as:

∇zt log p(ψp(y)|zt) = ∇zt log p(ψp(y)|x0|t = D(z0|t)) (10)

∇zt log p(y|zt) = ∇zt log p(y|x0|t = D(z0|t)). (11)

Based on Assumption 1, Propositions 1 and 2, Equations 9-11, and Lemma 2 in Appendix B, we
derive the following theorem for Perceptual Manifold Guidance (proof in Appendix B):

Theorem 1 (Perceptual Manifold Guidance) Given Assumption 1, given a perfect encoder E ,
decoder D, and an efficient score function sθ(zt, t), let the gradient ∇z0|tG1(D(z0|t), y) and
∇z0|tG2(ψp(D(z0|t)), ψp(y)) reside on the tangent space Tz0|tZ of the latent manifoldZ . Through-
out the diffusion process, all update terms zt remain on noisy latent manifolds Zt, with z′′0|t lying in
a perceptually consistent manifold locality.

Discretized steps based on Theorem 1 can be written as:

z′0|t ← z0|t − ζ1∇z0|tG1(D(z0|t), y) (posterior sampling step) (12)

z′′0|t ← z′0|t − ζ2∇z0|tG2(ψp(D(z0|t)), ψp(y)) (perceptual consistency step) (13)

z∗t−1 ←
√
ᾱt−1z

′′
0|t −

√
1− ᾱt−1 − σ2

t sθ(zt, t) + σtϵ (updated DDIM step) (14)

We useGi as l2 functions. The perceptual consistency step in PMG (Equation 13), guides the sample
to be close to the perceptual quality of the measurement. Specifically, during sampling, the percep-
tual guidance term adjusts the earlier estimate of the clean latent sample z′0|t toward a perceptually
consistent locality on the tangent space of the clean latent manifold, T z0|tZ . From Theorem 1, all
update terms zt, including z0|t, are on the manifold Z . This ensures the sampling process remains
close to a perceptually consistent region on the manifold, with D(z′′0|t) closely aligned with the per-
ceptual quality of the source measurement (see Fig. 1). We use internal representations from the
denoising U-Net sθ to measure this perceptual consistency, detailed in Section 3.2. The effective-
ness of this approach is demonstrated empirically in Section 4, where the absence of the perceptual
guidance term in PCDM results in suboptimal performance.

Algorithm 1 PCDM: Perceptual Consistency in Diffusion Models for NR-IQA
Require: Input image x, encoder E(·), decoderD(·), score function sθ(·, t), perceptual metricψp(·),
regression model gϕ, time steps T , guidance weights ζ1, ζ2
Output: Predicted quality score qp

1: z0 ← E(x) //Encode input image to latent space
2: H← ∅ //Initialize hyperfeatures set H as empty
3: for t = T, T − 1, . . . , 1 do
4: ϵ ∼ N (0, I)
5: ϵt, ht = sθ(xt, t) //Estimate noise and extract feature map at time t
6: H← H ∪ ht //Append feature ht to hyperfeatures set H
7: ẑ0|t ← 1√

ᾱt

(
zt −

√
1− ᾱt · ϵt

)
//Predict ẑ0|t using Tweedie’s formula

8: z′0|t ← ẑ0|t − ζ1∇z0|tG1(D(ẑ0|t), x) //Posterior sampling step
9: z′′0|t ← z′0|t − ζ2∇z0|tG2(ψp(D(ẑ0|t)), ψp(x)) //Perceptual consistency step

10: z∗t−1 ←
√
ᾱt−1 · z′′0|t −

√
1− ᾱt−1 − σ2

t · ϵt + σtϵ //Update latent state
11: end for
12: qp ← gϕ(H) //Predict quality score
13: return qp

6
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3.2 DIFFUSION HYPERFEATURES & NR-IQA

Our primary goal is to assess the perceptual quality of a given image without any reference and in
a zero-shot manner. To achieve this, we propose to use diffusion hyperfeatures—multi-scale and
multi-timestep feature maps extracted from the denoising U-Net (sθ) of a pretrained latent diffusion
model.

Previous NR-IQA methods typically rely on features extracted from fine-tuned models (Ke et al.
(2021); Madhusudana et al. (2022); Liu et al. (2022); Saini et al. (2024)). However, these methods
often use features from the final layer or a single scale, limiting their ability to capture the com-
plete spectrum of image characteristics. In contrast, we harness the rich hierarchical representations
available in the intermediate layers of the denoising U-Net across multiple diffusion timesteps. This
enables us to capture both coarse and fine-grained image features crucial for assessing perceptual
quality (Ghildyal et al. (2024)). Recent studies (Xu et al. (2023a); Wu et al. (2023); Luo et al. (2024))
have shown that intermediate representations within diffusion models exhibit reliable semantic cor-
respondences, although they have mostly been used for tasks such as data augmentation, generation,
and segmentation. We hypothesize that these intermediate features also correlate strongly with hu-
man perceptual judgments of image quality, motivated by the diffusion models’ ability to generate
perceptually appealing images and their robust representational capabilities for various downstream
tasks (Zhao et al. (2023)).

To extract these diffusion hyperfeatures, we gather intermediate feature maps from all upsampling
layers of the denoising U-Net across multiple diffusion timesteps during the sampling process (see
Fig. 4 in Appendix C). These feature maps inherently contain shared representations that capture
different image characteristics, such as semantic content, at various scales and levels of abstraction.
Since these features are distributed over both the network layers and diffusion timesteps, we ag-
gregate sθ layers and timesteps as diffusion hyperfeatures for NR-IQA. Specifically, the set of all
extracted features is denoted as:

H =

T⋃
t=1

{
s
(l)
θ (xt) | l ∈ L

}
, (15)

where s(l)θ (xt) represents the feature map from layer l at timestep t, L is the set of layers from
which we extract features, and T is the total number of timesteps considered. Our experiments show
that perceptual quality is built progressively during reverse diffusion (later timesteps), making an
appropriate range of sampling timestep to be [0-100].

With the aggregated diffusion hyperfeatures H, we employ a lightweight regression network gϕ
parameterized by ϕ to predict the perceptual quality score:

qp = gϕ(H), (16)
where qp is the predicted quality score. The regression network is trained following standard NR-
IQA practices (Madhusudana et al. (2022); Saha et al. (2023)), using a small dataset of images
with known quality scores. Importantly, the diffusion model sθ remains fixed and is not fine-tuned,
preserving its zero-shot generalization capabilities. By leveraging perceptually rich and diverse
representations, our method is better equipped to assess perceptual quality in a way that aligns
with human judgments. The use of multi-scale and multi-timestep features enables the model to
be sensitive to different types of distortions and image artifacts, which might not be captured when
using single-scale features.

Our experiments show that PCDM with PMG provides more perceptually aligned feature maps (see
Section 4). This alignment allows for a superior evaluation of image quality that reflects human
perceptual judgements of visual distortions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

To thoroughly evaluate the effectiveness of our proposed method, we conducted extensive experi-
ments on ten publicly available and well-recognized IQA datasets, covering synthetic distortions,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Dataset Type Images Description

LIVE IQA (Sheikh et al. (2006)) Synthetic 779 29 reference images; 5 distortions at 4 levels
CSIQ-IQA ( Larson & Chandler (2010)) Synthetic 866 30 reference images; 6 distortions
TID2013 ( Ponomarenko et al. (2013)) Synthetic 3,000 25 reference images; 24 distortions at 5 levels
KADID-10k ( Lin et al. (2019)) Synthetic 10,125 81 reference images; 25 distortions at 5 levels
CLIVE ( Ghadiyaram & Bovik (2015)) Authentic 1,162 Mobile images with real-world distortions
KonIQ-10k ( Hosu et al. (2020)) Authentic 10,073 Diverse images from YFCC100M dataset
FLIVE ( Ying et al. (2020)) Authentic 39,810 Emulates social media content
SPAQ ( Fang et al. (2020)) Authentic 11,000 Mobile images with annotations
AGIQA-3K ( Li et al. (2023)) AIGC 3,000 AI-generated images for IQA
AGIQA-1K ( Li et al. (2023)) AIGC 1,000 AI-generated images for IQA

Table 1: Summary of the IQA datasets used in our experiments.

Methods CLIVE KonIQ FLIVE SPAQ

PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑
ILNIQE (Zhang et al. (2015)) 0.508 0.508 0.537 0.523 - - 0.712 0.713
BRISQUE (Mittal et al. (2012)) 0.629 0.629 0.685 0.681 0.341 0.303 0.817 0.809
WaDIQaM (Bosse et al. (2018)) 0.671 0.682 0.807 0.804 0.467 0.455 - -
DBCNN (Zhang et al. (2020)) 0.869 0.851 0.884 0.875 0.551 0.545 0.915 0.911
TIQA (Stepien & Oszust (2023)) 0.861 0.845 0.903 0.892 0.581 0.541 - -
MetaIQA (Zhu et al. (2020)) 0.802 0.835 0.856 0.887 0.507 0.540 - -
P2P-BM (Ying et al. (2020)) 0.842 0.844 0.885 0.872 0.598 0.526 - -
HyperIQA (Su et al. (2020)) 0.882 0.859 0.917 0.906 0.602 0.544 0.915 0.911
TReS (Golestaneh et al. (2022a)) 0.877 0.846 0.928 0.915 0.625 0.554 - -
MUSIQ (Ke et al. (2021)) 0.746 0.702 0.928 0.916 0.661 0.566 0.921 0.918
RE-IQA (Saha et al. (2023)) 0.854 0.840 0.923 0.914 0.733 0.645 0.925 0.918
LoDA (Xu et al. (2023b)) 0.899 0.876 0.944 0.932 0.679 0.578 0.928 0.925

PCDM-ψϕ 0.853 0.842 0.929 0.921 0.751 0.672 0.912 0.901
PCDM-ψBRISQUE 0.852 0.840 0.924 0.919 0.691 0.598 0.917 0.908
PCDM-ψMUSIQ 0.869 0.858 0.939 0.928 0.747 0.672 0.922 0.920
PCDM-ζ1= 0, ψSDv1.5 0.901 0.893 0.952 0.941 0.799 0.683 0.931 0.929
PCDM-ψRE−IQA 0.903 0.891 0.952 0.944 0.761 0.679 0.929 0.924
PCDM-ψSDv1.5 0.940 0.908 0.972 0.967 0.812 0.705 0.948 0.947

Table 2: Comparison of our proposed PCDM with SOTA NR-IQA methods on PLCC and SRCC
Scores for authentic IQA datasets. The best results are highlighted in bold, and the second-best
results are underlined.

authentic distortions, and the latest AI-generated content (AIGC). These datasets are summarized in
Table 1. Many previous methods focused only on synthetic distortions, because of the difficulty of
generalizing to real-world distortions. By contrast, our LDM is pretrained on a diverse dataset that
includes both synthetic and authentic distortions, allowing for a fair comparison across all types of
IQA datasets, including recent AIGC datasets.

For LDM, we use the widely adopted Stable Diffusion v1.5 ( Rombach et al. (2022)), pretrained
on the LAION-5B dataset ( Schuhmann et al. (2022)). We run 10 DDIM steps, with t within the
range (0, 100] and set the hyperparameters ζ1 and ζ2 to 1 and 0.2, respectively. We discuss the
implementation in detail in Appendix C. The impact of the choice of ψp is discussed in detail in the
ablation study and Appendix D. All experiments were conducted on an NVIDIA A100 GPU using
PyTorch.

4.2 EXPERIMENTAL RESULTS & COMPARISONS

We evaluated PCDM on ten datasets. Table 2 presents the performance of PCDM on four authen-
tic distortion (”In the Wild”) datasets, with PCDM-ψSDv1.5 achieving the best results across all
datasets. Specifically, on the CLIVE (Ghadiyaram & Bovik (2015)) dataset, PCDM-ψSDv1.5 at-
tained a PLCC of 0.940 and an SRCC of 0.908, significantly surpassing the previous best method,
LoDA (Xu et al. (2023b)). On the FLIVE (Ying et al. (2020)) dataset (Ying et al. (2020)), which
contains the largest collection of human-labeled authentically distorted images emulating social me-
dia content (UGC), our method achieves a state-of-the-art PLCC of 0.812 and an SRCC of 0.705,
demonstrating its robustness at handling diverse and complex real-world distortions. Results on
synthetic distortion datasets are provided in Appendix D. We also evaluated our method on AIGC
datasets to assess its ability to handle AI-generated images, which often present unique challenges.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method AGIQA-1K AGIQA-3K

PLCC↑ SRCC↑ PLCC↑ SRCC ↑

CONTRIQUE ( Madhusudana et al. (2022)) 0.708 0.670 0.868 0.804
RE-IQA ( Saha et al. (2023)) 0.670 0.614 0.845 0.785
GenZIQA ( De et al. (2024)) 0.861 0.840 0.892 0.832

PCDM-ψSDv1.5 0.903 0.891 0.929 0.863

Table 3: PLCC and SRCC comparison of PCDM on AI Generated Datasets for IQA. The best results
are highlighted in bold, and the second-best results are underlined.

As shown in Table 3, PCDM-ψSDv1.5 outperformed previous methods on both AGIQA-1K (Li et al.
(2023)) and AGIQA-3K (Li et al. (2024a)) datasets, achieving PLCC scores of 0.903 and 0.929,
respectively. As compared to GenZIQA (De et al. (2024)), the previous best-performing method,
our approach demonstrates significant improvements, highlighting its strong prior for AI-generated
content, which is often lacking in previous methods.

4.3 ABLATION STUDY

We conducted cross-dataset evaluations to assess the generalization capability of our method. Ta-
ble 4 presents the results of inter-dataset evaluations. Our PCDM-ψSDv1.5 consistently achieved the
highest SRCC scores across all cross-dataset combinations, demonstrating the robustness and strong
generalization capabilities of PCDM’s perceptual feature maps.

Train Test Methods

REIQA DEIQT LoDA PCDM-ψSDv1.5

FLIVE KonIQ 0.764 0.733 0.763 0.802
FLIVE CLIVE 0.699 0.781 0.805 0.849
KonIQ CLIVE 0.791 0.794 0.811 0.853
CLIVE KonIQ 0.769 0.744 0.745 0.794

Table 4: SRCC Scores for Cross Dataset Evalua-
tions. The best results are highlighted in bold, and
the second-best results are underlined.

We evaluated different models for ψp to analyze
their impact on perceptual guidance during the
sampling process. The results, presented in Ta-
ble 2, indicate that diffusion models inherently
contain rich perceptual representations that pro-
vide the best guidance. IQA models like RE-
IQA (Saha et al. (2023)) can still provide appro-
priate guidance, while models with worse hu-
man judgment correlation (e.g., ψBRISQUE) tend
to reduce performance by deviating samples
away from the perceptually consistent regions.
Similar experiments were also conducted on
synthetic datasets, with results available in Appendix D.

Table 7 in Appendix D shows the impact of varying the number of timesteps during sampling
on FLIVE (Ying et al. (2020)) using PCDM-ψSDv1.5. We observe a convex trend in the SRCC
scores—performance improves with an increase in the number of timesteps up to 50, but further
increments result in diminishing returns, with increased computational cost. For practical use, a
trade-off between accuracy and computational efficiency is required.

We also evaluated different versions of Stable Diffusion, including versions 1-3, 1-4, 1-5, 2, and 2-1.
SDv1.5 achieved the best performance. Detailed results are provided in Appendix D.

Figure 3: Effect of ζ2 on the hyperfeatures, re-
alised on SRCC.

We conducted experiments to evaluate the ef-
fect of different values for the hyperparameters
ζ1 and ζ2. PCDM-ψϕ in Table 2 represents the
case where only the first term in PMG is used.
The first term provides a strong baseline due
to content bias effects from data consistency.
We set ζ1 = 1 following Rout et al. (2024).
In Fig. 3, we show SRCC scores for different
values of ζ2 on FLIVE. We observe that values
too small or large for ζ lead to poor perceptual
features by pushing the samples away from the
perceptually consistent region onM.

It may be observed that different layers con-
tribute differently to the overall performance.
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In particular, Layer 4 contributes significantly
more to final quality prediction than other layers. Details can be found in Appendix D.

5 CONCLUSION

In this work, we introduced the Perceptually Consistent Diffusion Model (PCDM) for No-Reference
Image Quality Assessment (NR-IQA). Leveraging the strong representation capabilities of pre-
trained latent diffusion models (LDMs), we proposed Perceptual Manifold Guidance (PMG) to
direct the sampling process toward perceptually consistent regions on the data manifold. We demon-
strated the value of extracting multi-scale and multi-timestep features—diffusion hyperfeatures from
the denoising U-Net, providing a rich representation for quality assessment. To our knowledge, this
is the first work to utilize pretrained LDMs for NR-IQA in a zero-shot manner.

6 REPRODUCIBILITY STATEMENT

Reproducibility is a key aspect of our contribution. Upon publication, we will provide a public
codebase to facilitate the replication of our experiments. All datasets used are publicly available, and
details on dataset splits for training, validation, and testing are provided. Supplementary materials
include theoretical proofs and ablation studies on different hyperparameters and configurations to
support reproducibility.
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Appendix

Here, we provide additional theoretical proof, implementation details, and experimental results to
complement those in the main paper. Specifically, Section A discusses more related work and
background on diffusion models and NR-IQA, Section B presents detailed theoretical proofs and
supporting discussionn, Section C describes the implementation details, Section D includes further
quantitative analyses to demonstrate the performance of PCDM, Finally in Section E we discuss the
main limitation of our proposed method and possible extensions.

A RELATED WORK

A.1 NR-IQA

No-Reference Image Quality Assessment (NR-IQA) has been a focal point of research over the past
two decades, aiming to evaluate image quality based on human perception without relying on ref-
erence images. Early approaches predominantly utilized handcrafted features derived from natural
scene statistics (NSS), with models such as BRISQUE (Mittal et al. (2012), DIIVINE Moorthy &
Bovik (2011), BLIINDS Saad et al. (2012), and NIQE Mittal et al. (2012)). While these methods
effectively leveraged statistical regularities in natural images, their performance often suffered when
dealing with complex or unseen distortions due to their reliance on specific statistical models.

The emergence of deep learning introduced convolutional neural networks (CNNs) into NR-IQA,
enabling models to learn hierarchical feature representations directly from data. Transformer-based
architectures further advanced the field by capturing long-range dependencies and contextual infor-
mation, with models such as MUSIQ (Ke et al. (2021), TReS Golestaneh et al. (2022b), and TRIQ
You & Korhonen (2021)) demonstrating significant improvements in performance. Despite these
advancements, a major limitation persists: the lack of large-scale, diverse datasets encompassing
the full spectrum of real-world distortions. This scarcity hampers the generalization capabilities of
NR-IQA models, as they are trained on datasets that do not adequately represent all possible image
degradation scenarios.

To tackle the complexity of image distortions, the concept of perceptual or distortion manifolds has
been explored in image quality assessment models. Manifold learning techniques aim to uncover the
intrinsic low-dimensional structures within high-dimensional data, which better align with human
visual perception. For instance, Jiang et al. Jiang et al. (2018) applied manifold learning to reduce
the dimensionality of RGB images, constructing low-dimensional representations for stereoscopic
image quality assessment. Similarly, Guan et al. Guan et al. (2017) employed manifold learning
on feature maps to capture the intrinsic geometric structures of high-dimensional data in a low-
dimensional space, thereby enhancing prediction accuracy for High-Dynamic-Range (HDR) images.
These approaches highlight the potential of manifold learning in modeling the complex relationships
between image content and perceived quality.

Although diffusion models (DMs) have demonstrated remarkable efficacy in generating high-
dimensional data and capturing rich feature representations within their intermediate layers (Ho
et al. (2020); Song et al. (2020a)), their application to NR-IQA has been minimal. Existing works
incorporating DMs often use them for specific tasks, such as quality feature denoising or image
restoration, effectively converting NR-IQA into full-reference IQA (FR-IQA) problems (Li et al.
(2024b); Babnik et al. (2024)). Typically, these methods involve training on specific IQA datasets,
limiting their generalizability to diverse distortions.

In our work, we demonstrate that since diffusion models are trained on large-scale datasets con-
taining user-generated content (UGC) images—with a wide range of authentic and synthetic dis-
tortions—they inherently learn perceptually consistent manifolds. Although these models are not
specifically trained for IQA tasks, they are designed to capture data priors by learning score func-
tions, enabling them to model complex data distributions and capture both high-level and low-level
features. This capability allows them to generate a diverse set of images with fine details. We believe
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that, with appropriate perceptual guidance, it is possible to extract features from diffusion models
that correlate highly with human perception, in a zero-shot setting.

Diffusion models have also demonstrated the ability to learn meaningful representations within their
U-Net architectures, as evidenced by studies that leverage intermediate features for various vision
tasks (Zhao et al. (2023); Wu et al. (2023)). This suggests an opportunity to harness these models for
NR-IQA, which has so far remained underexplored. Our work aims to address this gap by utilizing
pretrained diffusion models without any fine-tuning, thereby preserving their inherent generaliza-
tion capabilities. By extracting multi-scale and multi-time-step features—referred to as diffusion
hyperfeatures—and incorporating perceptual guidance, we propose a method that overcomes the
limitations of current NR-IQA approaches. This strategy leverages the rich representations within
diffusion models to improve generalization across diverse image distortions, aligning more closely
with human perceptual judgments.

A.2 DIFFUSION MODELS

Diffusion models consist of a forward noise process and a backward denoising process. In the
discrete formulation Song et al. (2020b); Ho et al. (2020), the forward process manifests as a Markov
chain described by:

q(x1:N | x0) =

N∏
k=1

q(xk | xk−1), q(xk | xk−1) = N (Akxk−1, b
2
kI). (A-1)

The coefficients {ak}Nk=1 and {bk}Nk=1 are manually set and may differ depending on various diffu-
sion formulations Song et al. (2020b). Given that each Markov step q(xk | xk−1) is a linear Gaus-
sian model, the resultant marginal distribution q(xk | x0) assumes a Gaussian form, N (ckx0, d

2
kI).

The parameters {ck}Nk=1 and {dk}Nk=1 can be derived from {ak}Nk=1 and {bk}Nk=1. For sample gen-
eration, we train a neural network, sθ(xk, tk), to estimate the score function ∇xk

log q(xk | x0).
The backward process, which we assume to be a Markov chain, is typically represented as:

pθ(xk−1 | xk) = N (ukx̂0(xk) + vksθ(xk, tk), w
2
kI) (A-2)

where x̂0(xk) := xk + d2ksθ(xk, tk)/ck is the predicted x0 obtained from the Tweedie’s formula.
Here {uk}Nk=1, {vk}Nk=1, and {wk}Nk=1 can be computed from the forward process coefficients
{ak}Nk=1 and {bk}Nk=1. The formulation in Equation A-2 encompasses many stochastic samplers
of diffusion models, including the ancestral sampler in DDPM (Ho et al. (2020)), and the DDIM
sampler in Song et al. (2020b). For variance-preserving diffusion models Ho et al. (2020), we have:

ak =
√
αk, bk =

√
βk, ck =

√
ᾱk, dk =

√
1− ᾱk, (A-3)

where αk := 1 − βk, ᾱk :=
∏k

j=1 αj , and αk, βk follow the notations in Ho et al. (2020). DDPM
sampling:

uk =
√
αk−1, vk = −

√
αk(1− ᾱk−1), wk =

√
βk ·

√
1− ᾱk−1

1− ᾱk
, (A-4)

and for DDIM sampling Song et al. (2020b), we have:

uk =
√
αk, vk =

√
1− ᾱk−1 − σ2

k ·
√
1− ᾱk, wk = σk, (A-5)

where the conditional variance sequence {σk}Nk=1 can be arbitrary. And depedning on the value of
σ2
k, it can become DDPM or DDIM sampling, i.e. With βk · (1−ᾱk−1)

(1−ᾱk)
it become DDPM.

B THEORETICAL PROOFS

B.1 LEMMA 1 (TWEEDIE’S FORMULA FOR EXPONENTIAL FAMILY)

Let p(z|η) belong to the exponential family distribution:

p(z | η) = p0(z) exp
(
η⊤T (z)− Φ(η)

)
(B-1)
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where η is the natural or canonical parameter of the family, Φ(η) is the cumulant generating function
(cfg) (which makes pη(z) integrate to 1), and p0(z) is the density when η = 0. Then, the posterior
mean η̂ := E[η | z] should satisfy:

(∇zT (z))
⊤η̂ = ∇z log p(z)−∇z log p0(z) (B-2)

Proof. The marginal distribution p(z) can be expressed as:

p(z) =

∫
Z
pη(z)p(η)dη (B-3)

which, using the form of pη(z), becomes:

p(z) = p0(z)

∫
Z
exp

(
η⊤T (z)− Φ(η)

)
p(η)dη (B-4)

Taking the derivative of p(z) with respect to z:

∇zp(z) = ∇zp0(z)

∫
Z
exp

(
η⊤T (z)− Φ(η)

)
p(η)dη+∫

Z
(∇zT (z))

⊤ηp0(z) exp
(
η⊤T (z)− Φ(η)

)
p(η)dη

(B-5)

Rearranging, we get:

∇zp(z) =
∇zp0(z)

p0(z)
p(z) + (∇zT (z))

⊤
∫
Z
ηpη(z)p(η)dη (B-6)

which simplifies to:

∇zp(z) =
∇zp0(z)

p0(z)
p(z) + (∇zT (z))

⊤
∫
Z
ηpz(η)dη. (B-7)

Thus:
∇zp(z)

p(z)
=
∇zp0(z)

p0(z)
+ (∇zT (z))

⊤E[η | z] (B-8)

Finally:
(∇zT (z))

⊤E[η | z] = ∇z log p(z)−∇z log p0(z). (B-9)

This concludes the proof.

B.2 PROPOSITION 3 (TWEEDIE’S FORMULA FOR SDE)

For the case of VP-SDE, we can estimate p(z0|zt) as:

z0|t := E[z0 | zt] =
1√
ᾱ(t)

(zt + (1− ᾱ(t))∇zt log pt(zt)) (B-10)

Proof. For the case of VP-SDE, we have

p(zt|z0) =
1

(2π(1− ᾱ(t)))d/2
exp

(
−
∥zt −

√
ᾱ(t)z0∥2

2(1− ᾱ(t))

)
(B-11)

A Gaussian distribution. We can get the canonical decomposition as:

p(zt|z0) = p0(zt) exp
(
z⊤0 T (zt)− Φ(z0)

)
, (B-12)

And,

p0(zt) :=
1

(2π(1− ᾱ(t)))d/2
exp

(
− ∥zt∥2

2(1− ᾱ(t))

)
(B-13)

T (zt) :=

√
ᾱ(t)

1− ᾱ(t)
zt (B-14)
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Φ(z0) :=
ᾱ(t)∥z0∥2

2(1− ᾱ(t))
(B-15)

Therefore, from Lemma 1: √
ᾱ(t)

1− ᾱ(t)
ẑ0 = ∇zt log pt(zt) +

1

1− ᾱ(t)
zt (B-16)

Giving us:

z0|t =
1√
ᾱ(t)

(zt + (1− ᾱ(t))∇zt log pt(zt)) (B-17)

This concludes the proof.

B.3 CONDITIONAL SCORE FUNCTIONS

As mentioned in the main paper, conditional score function can be written as (Equation 9 ):

∇zt log p(zt|ψp(y), y) ≈ ∇zt log p(zt)

+∇zt log p(y|x0|t = D(z0|t))
+∇zt log p(ψp(y)|x0|t = D(z0|t))

(B-18)

Proof. From Baye’s theorem we can write the conditional distribution as:

p(z|ψ(y), y) = p(ψ(y)|zt)p(y|zt, ψ(y))p(zt) (B-19)

Note, y is conditionally independent of ψ(y) given zt for later timesteps in diffusion process as zt
gives more structural information for image. Therefore:

p(z|ψ(y), y) = p(ψ(y)|zt)p(y|zt)p(zt) (B-20)

Our score function becomes:

∇zt log p(zt|ψp(y), y) ≈ ∇zt log p(zt) +∇zt log p(ψp(y)|zt) +∇zt log p(y|zt) (B-21)

We can write the posterior as:

p(y|zt) =
∫
p(y|z0)p(z0|zt)dz0 (B-22)

Following (Chung et al. (2022a)) and Proposition 3, we can have the posterior as:

p(y|zt) ≈ p(y|z0|t) (B-23)

Therefore:

∇zt log p(zt|ψp(y), y) ≈ ∇zt log p(zt) +∇zt log p(ψp(y)|z0|t) +∇zt log p(y|z0|t) (B-24)

Following (Rout et al. (2024)), we can approximately write the conditional probability for LDM
given decoder D:

p(y|zt) ≈ p(y|x0 = D(z0|t)) (B-25)

Note that we ignore the gluing term proposed by (Rout et al. (2024)) as it depends on the forward
degradation model only valid for inverse problems. Our final conditional score function becomes:

∇zt log p(zt|ψp(y), y) ≈ ∇zt log p(zt) +∇zt log p(y|x0|t = D(z0|t)) +∇zt log p(ψp(y)|x0|t = D(z0|t))
(B-26)

B.4 PROPOSITION 1 (NOISY DATA MANIFOLD)

Let the distance function be defined as d(x,M) := infy∈M ∥x− y∥2, and define the neighborhood
around the manifold M as B(M; r) :=

{
x ∈ RD

∣∣ d(x,M) < r
}

. Consider the distribution of
noisy data given by p(xt) =

∫
p(xt|x0)p(x0)dx0, p(xt|x0) := N (

√
ᾱt x0, (1− ᾱt)I) represents

the Gaussian perturbation of the data at time t, and ᾱt =
∏t

s=1 αs is the cumulative product of the
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noise schedule αt. Under the Assumption 1, the distribution pt(xt) is concentrated on a (D−1)-dim
manifoldMt := y ∈ RD : d(y,

√
x̄tM) = rt :=

√
(1− ᾱt)(D − k).

Proof. (Mainly follow Chung et al. (2022b)):

We begin by defining the manifoldM asM :=
{
x ∈ RD : xk+1:D = 0

}
which represents a sub-

space where the last D − k coordinates are zero. Essentially, this means that M lies within a
lower-dimensional subspace of RD. Let X be a χ2 random variable with n degrees of freedom. We
use the following concentration bounds:

P(X − n ≥ 2
√
nτ + 2τ) ≤ e−τ , (B-27)

P(X − n ≤ −2
√
nτ) ≤ e−τ . (B-28)

Now, consider the quantity
∑D

i=k+1

x2
t,i

1−ᾱt
, which follows a χ2 distribution with D − k degrees of

freedom. Using the concentration bounds and setting τ = (D − k)ϵ′, we can express the following
bound:

P

(
−2(D − k)

√
ϵ′ ≤

D∑
i=k+1

x2t,i
1− ᾱt

− (D − k) ≤ 2(D − k)(
√
ϵ′ + ϵ′)

)
≥ 1− δ. (B-29)

The above inequality gives us a range for the summation of the squared components of xt beyond
the first k dimensions. We can now rewrite this in terms of the Euclidean norm of these components:

P

√√√√ D∑
i=k+1

x2t,i ∈
(
rt

√
max{0, 1− 2

√
ϵ′}, rt

√
1 + 2

√
ϵ′ + 2ϵ′

) ≥ 1− δ, (B-30)

where we have defined:
rt :=

√
(1− ᾱt)(D − k). (B-31)

To ensure that the probability holds for a given confidence level 1− δ, we define:

ϵ′t,D−k = − 1

D − k
log

δ

2
. (B-32)

We then use ϵ′t,D−k to define:

ϵt,D−k = min

1,

√
max{0, 1− 2

√
ϵ′t,D−k}+

1 + 2
√
ϵ′t,D−k + 2ϵ′t,D−k − 1
√
1− ᾱt(D − k)

 , (B-33)

which ensures 0 < ϵt,D−k ≤ 1. This value ϵt,D−k helps in determining the size of the neighborhood
around the manifoldMt, such that:

P
(
xt ∈ B(Mt; ϵt,D−k ·

√
(1− ᾱt)(D − k))

)
≥ 1− δ. (B-34)

Thus, we have shown that the noisy data distribution p(xt) is concentrated within a certain neigh-
borhood around the manifoldMt, with high probability. The parameter ϵt,D−k is decreasing with
respect to δ and D − k, because ϵ′t,D−k is also decreasing in these parameters, and ϵt,D−k is an
increasing function of ϵ′t,D−k.

This concludes the proof.

In pixel space, as discussed by Chung et al. (2022a), the optimization of the guidance term occurs in
the entire space RD. However, from Proposition 1, we know that xt actually lies in a much smaller
subspace of RD, specifically in Rk. To prevent sampling from deviating from the content-bias
region on the manifold, one obvious way to improve the sampling process is to restrict the opti-
mization space to Mt, specifically to the tangent space T xtMt. Previous literature has suggested
using autoencoders to approximate this tangent space T xtMt (Shao et al. (2018)). However, since
autoencoders are not trained on intermediate noisy samples, their practical effectiveness is limited.
We instead use Latent Diffusion Models (LDM), where the entire sampling process occurs in the
latent space M. This approach ensures overall data consistency, but it may still not fully achieve
perceptual consistency within the content-bias region on the manifoldM (see Fig. 1 for an intuitive
illustration).
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B.5 PROPOSITION 2 (ON-MANIFOLD SAMPLE WITH LDM)

Given a perfect autoencoder, i.e. x = D(E(x)), and a gradient ∇z0|tG(z0|t, y) ∈ Tz0Z then
D(∇z0|tG(z0|t, y)) ∈ Tx0

M.

Proof. We begin by considering a perfect autoencoder, consisting of an encoder E and a decoder D,
which satisfies the property x = D(E(x)). for any data point x ∈ X ⊂ M. Let z0 = E(x0) be the
latent representation of x0. Since the autoencoder is perfect, we have x0 = D(z0).
To understand how the encoder and decoder interact in terms of their mappings, we consider their
Jacobians. The Jacobian of the encoder ∂E

∂x0
maps changes in the data space RD to changes in the

latent space Rk. The Jacobian of the decoder ∂D
∂z0

maps changes in the latent space Rk back to
the data space RD. Since the autoencoder is perfect, encoding and then decoding must recover the
original input exactly. This implies that the composition of the encoder and decoder Jacobians must
yield the identity mapping:

∂E
∂x0

∂D
∂z0

= I, (B-35)

where I is the identity matrix. This property ensures that the encoder and decoder are exact inverses
of each other in terms of their linear mappings at x0 and z0.

Consider a gradient ∇z0|tG(z0|t, y) ∈ Tz0Z , where Tz0Z is the tangent space of the latent space Z
at z0. We want to determine the behavior of this gradient when mapped back to the data space using
the decoder. The decoder Jacobian ∂D

∂z0
maps vectors from the latent space to the data space. Since

∇z0|tG(z0|t, y) is in the tangent space Tz0Z , applying the decoder Jacobian gives:

D(∇z0|tG(z0|t, y)) =
∂D
∂z0
∇z0|tG(z0|t, y). (B-36)

Since the Jacobian ∂D
∂z0

maps changes in the latent space to corresponding changes in the data space,
and the latent space Z is designed to represent the underlying data manifoldM, it follows that:

∂D
∂z0

: Tz0Z → Tx0
M. (B-37)

Thus, the vectorD(∇z0|tG(z0|t, y)) lies in the tangent space Tx0
M of the data manifold at x0. This

implies that the gradient update, when mapped back to the data space, remains on the data manifold,
ensuring consistency in the sampling process.

This concludes the proof.

B.6 LEMMA 2 (DISTRIBUTION CONCENTRATION)

Consider the optimality of the diffusion model, i.e., ϵθ
(√
αtz +

√
1− αtϵt, t

)
= ϵt for z ∈ Z .

For some ϵ ∼ N (0, I), the sum of noise components
√
1− ᾱt−1 − σ2

t ϵθ(zt, t) + σtϵt in DDIM
sampling can be expressed as:

√
1− ᾱt−1 − σ2

t ϵθ(zt, t) + σtϵt =
√

1− ᾱt−1ϵ̃, (B-38)

where ϵ̃ ∼ N (0, I). Since
√

1− ᾱt−1 − σ2
t ϵθ(zt, t) and σtϵt are independent, their sum is also a

Gaussian random variable with a mean of 0 and a variance of (1− ᾱt−1 − σ2
t ) + σ2

t = (1− ᾱt−1).

Furthermore, let the latent data distribution p(z) be a probability distribution with support on the
linear manifoldM that satisfies Assumption 1. For any z ∼ p(z), consider

zt−1 =
√
ᾱt−1z +

√
1− ᾱt−1 − σ2

t ϵθ(zt, t) + σtϵt. (B-39)

Then, the marginal distribution p̂t−1(zt−1), which is defined as:
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p̂t−1(zt−1) =

∫
N
(
zt−1;

√
ᾱt−1z +

√
1− ᾱt−1 − σ2

t ϵθ(zt, t), σ
2
t I

)
p(zt|z)p(z) dz dzt,

(B-40)

is probabilistically concentrated on Zt−1 for ϵt ∼ N (0, I).

Proof. Since ϵθ(zt, t) is independent of ϵt, their sum is the sum of independent Gaussian random
variables, resulting in a Gaussian distribution with a variance (1 − ᾱt−1). By this result, the multi-
variate normal distribution has a mean

√
ᾱt−1z and a covariance matrix (1− ᾱt−1)I . Consequently,

the marginal distribution of the target can be represented as:

p̂t−1(zt−1) =

∫
N (zt−1;

√
ᾱt−1z, (1− ᾱt−1)I) p(z) dz, (B-41)

which matches the marginal distribution defined in Proposition 1. Therefore, in accordance with
Proposition 1, the probability distribution p̂t−1(zt−1) probabilistically concentrates onMt−1. □

B.7 THEOREM 1 (PERCEPTUAL MANIFOLD GUIDANCE)

Given Assumption 1, for perfect encoder E , decoder D, and an efficient score function sθ(zt, t), let
gradient ∇z0|tG1(D(z0|t), y) and ∇z0|tG2(ψp(D(z0|t)), ψp(y)) reside on the tangent space Tz0|tZ
of latent manifold Z . Throughout the diffusion process, all update terms zt remain on noisy latent
manifolds Zt, with z′′0|t in perceptually consistent manifold locality.

Proof. We begin by establishing that both the gradients for data and perceptual consistency are
constrained to the tangent space of the latent manifold, ensuring that updates remain on the manifold
during the diffusion process. At t = T , we consider the noisy sample zT generated from a Gaussian
distribution. Noisy sample is expressed as:

zT =
√
ᾱT z0 +

√
1− ᾱT ϵT , ϵT ∼ N (0, I) (B-42)

where z0 = E(x0) represents the latent variable corresponding to the clean sample x0. The support
of the distribution p(z0) lies on the manifold Z , ensuring that z0 ∈ Z . Assume that for all t ≥ T1,
there exists a z0 ∈ Z such that:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (B-43)

We aim to prove that this also holds for t = T1 − 1. At timestep t = T1, the two gradients ∇z0|tG1

(for data consistency) and∇z0|tG2 (for perceptual consistency) lie in the tangent space Tz0Z . These
gradients contribute to the update of the latent representation. The overall gradient update becomes:

z′0|T1
= z0|T1

− (ζ1∇z0|T1
G1 + ζ2∇z0|T1

G2) (B-44)

Where ζ are scalars. Since both gradients reside in the tangent space Tz0|T1
Z , and Assumption 1,

the updated term z′0|T1
remains on the latent manifold Z . Using the update rule for zT1−1, similar to

the diffusion update step, we have:

zT1−1 =
√
ᾱT1−1z

′
0|T1

+
√

1− ᾱT1−1ϵ
′, ϵ′ ∼ N (0, I) (B-45)

Thus, the updated latent variable remains on the manifold, as the noise component ϵ′ is Gaussian,
and the mean update is based on z′0|T1

∈ Z . Applying Lemma 2, give us p(zT1−1), that is proba-
bilistically concentrated on ZT−1.

The perceptual manifold, a subspace of the content-bias manifold defined by the data-consistency
gradient ∇z0|tG1. In other words, data consistency keeps the sample within a region where the
structural content is retained, and perceptual consistency term ensures that the sample moves to-
ward regions of the manifold Z that are perceptually meaningful. The second gradient term
∇z0|tG2(ψp(D(z0|t)), ψp(y)) represents a movement within this subspace to align with human per-
ception. Since ∇z0|tG2 resides in the tangent space Tz0Z and is also influenced by the perceptual
features ψp, the update ensures that the latent variable moves towards a more perceptually consistent
locality within the overall content-bias region.
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Figure 4: Illustrates PMG sampling and multi-scale and multi-timestep feature maps from denoising
U-Net (sθ)

for NR-IQA. In the image, zt is intermediate noisy latent, D and ψ are decoder and perceptual
quality metric, respectively. PMG is our proposed algorithm for estimating the noisy sample z∗t−1.

Formally, letMcontent be the subspace of manifold corresponding to content consistency based on
G1, and letMperceptual ⊂ Mcontent be the sub-manifold that represents regions of perceptual consis-
tency. The update using ∇z0|tG2 effectively ensures:

z′′0|t ∈Mperceptual, (B-46)

whereMperceptual is a more constrained subspace within the content-consistent manifold, ensuring
perceptual quality. By induction, we have shown that for all t, there exists a z0 ∈ Z such that zt
remains on the latent manifold throughout the diffusion process. Furthermore, the inclusion of the
perceptual consistency gradient ensures that z′′0|t is updated towards a perceptually consistent region
on the manifold. Thus, the final updated latent variable z′′0|t is not only data-consistent but also
perceptually consistent within the manifold Z , as required.

This concludes the proof.

C IMPLEMENTATION DETAILS

C.1 DATASETS AND EVALUATION PROTOCOL

The datasets used in our study (Table 1) contain images labeled with Mean Opinion Scores (MOS)
following ITU-T P.910 guidelines ITU-T RECOMMENDATION (1999). We train the regressor gϕ
using l2 loss on MOS ground truth values. Evaluation metrics include Pearson Linear Correlation
Coefficient (PLCC) and Spearman’s Rank Order Correlation Coefficient (SRCC), ranging from 0 to
1, with higher values indicating better correlation.

Following Saha et al. (2023); Madhusudana et al. (2022), we split each dataset into training, vali-
dation, and test sets (70%, 10%, and 20%, respectively), using source image-based splits to prevent
content overlap. The process is repeated 10 times, and median performance is reported to ensure
robustness.
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C.2 IMPLEMENTATION DETAILS

Model Configuration For text conditioning, we use an empty string. We adopt the SDv1.5 and
VQ-VAE from the official Stable Diffusion v1.5, with default settings from GitHub1 and Hugging
Face2. VQ-VAE is used with 8x downsampling for 512× 512 resolution, which matches the typical
resolution of IQA datasets like LIVE (Sheikh et al. (2006)) and CSIQ (Larson & Chandler (2010)).

Sampling and Perceptual Features We use 10 DDIM steps for sampling, balancing efficiency
and quality. The choice of perceptual metric ψp is crucial—using well-correlated metrics such as
RE-IQA or MUSIQ improves model performance. Poor metrics can degrade results, as shown in
our ablation studies.

Guidance Weights The weights for perceptual guidance, ζ1 and ζ2, are set to 1 and 0.2 based on
empirical evaluations. This setup provides sufficient guidance, which enhances prediction quality.

C.3 AUTOENCODER

Though a perfect autoencoder is ideal for maintaining samples on the manifoldM, the Stable Diffu-
sion v1.5 VAE yields effective results despite minor imperfections. As shown in Table 6, it provides
the best performance across configurations.

D ADDITIONAL RESULTS AND ABLATION STUDY

In this section, we provide further empirical evaluations of our proposed Perceptual Consistency
in Diffusion Models (PCDM) by presenting additional experimental results, ablation studies, and
analyses to supplement the findings in the main paper. We also evaluate the impact of model hyper-
parameters and different configurations, including the version of Stable Diffusion (SD), the number
of time steps, and the weighting of perceptual guidance terms. Lastly, we discuss the impact of
various layers of UNet towards NR-IQA performance.

D.1 SYNTHETIC IQA DATASETS

Table 5 reports the Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Cor-
relation Coefficient (SRCC) scores of PCDM and existing NR-IQA methods on four synthetic
datasets: LIVE (Sheikh et al. (2006)), CSIQ (Larson & Chandler (2010)), TID2013 (Ponomarenko
et al. (2013)), and KADID (Lin et al. (2019)). The results demonstrate that our proposed approach
outperforms other methods across almost all datasets. Similar to the performance on authentic distor-
tion dataset in Table 2, PCDM-ψSDv1.5 achieves the best performance across all synthetic datasets,
indicating a strong alignment with human perceptual judgments. The results also suggest that per-
ceptual guidance using ψRe−IQA and ψSDv1.5 consistently enhances the model’s generalization
capabilities. The superior performance of PCDM-ψSDv1.5 on the TID2013 (Ponomarenko et al.
(2013))and KADID (Lin et al. (2019)) datasets, with PLCC and SRCC scores of 0.921/0.883 and
0.961/0.958, respectively, underscores the value of utilizing diffusion hyperfeatures.

D.2 IMPACT OF TIME STEP RANGE ON SAMPLING PROCESS

Figure 5 shows the effect of varying the range of time steps used during the sampling process. We
observe a general decline in SRCC as we increase the time range, specifically when more noisy
samples are involved. For larger time step ranges, the model relies on noisier intermediate represen-
tations, which reduces its ability to accurately predict image quality. This is an expected behaviour
since, details in the images are generated towards the later time steps in diffusion process,i.e. less
noise. This suggests that optimizing the range of time steps used for feature extraction is critical to
maintaining high-quality predictions.

1https://github.com/CompVis/stable-diffusion
2https://huggingface.co/CompVis,

https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
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Methods LIVE CSIQ TID2013 KADID
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

ILNIQE 0.906 0.902 0.865 0.822 0.648 0.521 0.558 0.534
BRISQUE 0.944 0.929 0.748 0.812 0.571 0.626 0.567 0.528
WaDIQaM 0.955 0.960 0.844 0.852 0.855 0.835 0.752 0.739
DBCNN 0.971 0.968 0.959 0.946 0.865 0.816 0.856 0.851
TIQA 0.965 0.949 0.838 0.825 0.858 0.846 0.855 0.850
MetaIQA 0.959 0.960 0.908 0.899 0.868 0.856 0.775 0.762
P2P-BM 0.958 0.959 0.902 0.899 0.856 0.862 0.849 0.840
HyperIQA 0.966 0.962 0.942 0.923 0.858 0.840 0.845 0.852
TReS 0.968 0.969 0.942 0.922 0.883 0.863 0.859 0.859
MUSIQ 0.911 0.940 0.893 0.871 0.815 0.773 0.872 0.875
RE-IQA 0.971 0.970 0.960 0.947 0.861 0.804 0.885 0.872
LoDA 0.979 0.975 - - 0.901 0.869 0.936 0.931

PCDM-ψϕ 0.980 0.978 0.971 0.952 0.871 0.814 0.892 0.885
PCDM-ψBRISQUE 0.980 0.977 0.970 0.951 0.814 0.771 0.841 0.838
PCDM-ψMUSIQ 0.981 0.979 0.969 0.950 0.869 0.811 0.898 0.887
PCDM-ψRe−IQA 0.983 0.981 0.972 0.952 0.904 0.882 0.932 0.930
PCDM-just ψSDv1.5 0.981 0.978 0.971 0.958 0.908 0.876 0.935 0.931
PCDM-ψSDv1.5 0.988 0.986 0.981 0.964 0.921 0.883 0.961 0.958

Table 5: Comparison of our proposed PCDM with SOTA NR-IQA methods on PLCC and SRCC
Scores for Synthetic IQA datasets. The best results are highlighted in bold.

Figure 5: We report the behaviour of PCDM as we change the range of timesteps in the sampling
process. As we move towards larger timestep range buckets, where there are more noisy samples,
SRCC on FLIVE (Ying et al. (2020)) decreases.

D.3 STABLE DIFFUSION MODEL VERSIONS

Table 6 evaluates the effect of different versions of Stable Diffusion (SD) on the CLIVE (Ghadi-
yaram & Bovik (2015)) and FLIVE (Ying et al. (2020)) datasets. The results indicate that SD v1.5
consistently outperforms other versions, achieving the highest PLCC and SRCC scores for both
datasets. Specifically, SD v1.5 reaches an SRCC of 0.908 on CLIVE and 0.705 on FLIVE, outper-
forming newer versions like v2.0 and v2.1, which exhibit lower correlation values. The decline in
performance in newer versions may be attributed to architectural changes or training modifications
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SD Version CLIVE FLIVE

PLCC↑ SRCC↑ PLCC↑ SRCC↑
1.3 0.932 0.901 0.804 0.695
1.4 0.938 0.903 0.807 0.698
1.5 0.940 0.908 0.812 0.705
2 0.910 0.882 0.781 0.674
2.1 0.917 0.886 0.788 0.681

Table 6: PLCC and SRCC Scores for Different Versions of SD on CLIVE (Ghadiyaram & Bovik
(2015)) and FLIVE (Ying et al. (2020)). The best results are highlighted in bold, and the second-best
results are underlined.

that diverge from the characteristics required for effective NR-IQA, i.e. focus on the generation of
high quality aesthetic image, rather than a broader coverage of image quality.

Time Steps SRCC↑ Time Taken (s) ↓
1 0.624 3.27
5 0.673 9.89
10 0.705 21.30
50 0.711 110.45

Table 7: SRCC scores and time taken for different timesteps on FLIVE (Ying et al. (2020)) by
PCDM-ψSDv1.5.

D.4 EFFECT OF TIME STEPS ON QUALITY AND COMPUTATION TIME

Table 7 provides an analysis of the SRCC scores and the computation time for different numbers of
time steps on the FLIVE (Ying et al. (2020)) dataset using PCDM-ψSDv1.5. As expected, increasing
the number of time steps improves the SRCC score, with the highest value of 0.711 obtained at
50 time steps. However, this comes at the cost of increased computational time, with a significant
jump from 21.30 seconds for 10 time steps to 110.45 seconds for 50 time steps. This trade-off
suggests that while more time steps can yield better performance, it is essential to balance quality
with computational efficiency, especially for real-time applications.

Figure 6: Contribution of individual layer of SDv1.5 towards SRCC for FLIVE (Ying et al. (2020)).
For the sake of computational cost, we run single step sampling and extract individual layers and
calculate SROCC.
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D.5 CONTRIBUTION OF INDIVIDUAL LAYERS

Figure 6 illustrates the contribution of individual layers of SD v1.5 towards SRCC on the FLIVE
dataset. Using a single-step sampling, we analyze how different layers contribute to image quality
predictions. The results indicate that intermediate layers, such as Layer 4, contribute significantly
more to the final quality prediction than other layers. This layer-wise analysis is crucial in under-
standing which layers are more relevant for NR-IQA, providing insights for potential optimization
by focusing on the most informative layers.

ζ2 CLIVE FLIVE

PLCC↑ SRCC↑ PLCC↑ SRCC↑
0 0.853 0.842 0.751 0.672
0.2 0.940 0.908 0.812 0.705
0.5 0.931 0.901 0.802 0.691
0.7 0.918 0.882 0.780 0.675
1 0.904 0.868 0.772 0.664

Table 8: PLCC and SRCC Scores for varying the weights of second term in PMG (equation 13)
on CLIVE (Ghadiyaram & Bovik (2015)) and FLIVE (Ying et al. (2020)). The best results are
highlighted in bold, and the second-best results are underlined.

D.6 EFFECT OF PERCEPTUAL GUIDANCE WEIGHTING

Table 8 presents the PLCC and SRCC scores for varying the perceptual guidance weight, ζ2, in
the Perceptual Manifold Guidance (PMG) term for the CLIVE (Ghadiyaram & Bovik (2015)) and
FLIVE (Ying et al. (2020)) datasets. The results indicate that an optimal value of ζ2 = 0.2 yields the
best PLCC and SRCC scores all ten datasets. Specifically, an SRCC of 0.908 is achieved on CLIVE
(Ghadiyaram & Bovik (2015)) and 0.705 on FLIVE (Ying et al. (2020)) at this weight. When ζ2
is set too high (e.g., ζ2 = 1), the model’s performance deteriorates, suggesting that samples move
away from the perceptually consistent region on manifold. Conversely, setting ζ2 too low results
in underutilization of the perceptual guidance, which leads to suboptimal quality predictions. With
moderate weighting, superior performanc can be achieved across all benchmarks.

D.7 SUMMARY AND INSIGHTS

Our extended experiments validate the effectiveness of PCDM across various IQA datasets, demon-
strating its robustness against both synthetic and real-world distortions. The ablation studies provide
valuable insights into the factors that impact model performance:

• Model Version Selection: SD v1.5 emerged as the best-performing version for NR-IQA,
emphasizing the importance of selecting the appropriate diffusion model.

• Time Step Range: If sampling time steps from higher ranges are taken, it diminishes the
performance significantly.

• Total Time steps: While increasing time steps improves prediction quality, it also signif-
icantly increases computation time, highlighting a trade-off between accuracy and effi-
ciency.

• Layer Importance: Intermediate layers of the diffusion model were found to contribute the
most towards perceptual quality, suggesting the possibility of optimizing feature extraction
by focusing on specific layers.

• Perceptual Guidance Weighting: The optimal perceptual guidance weight strikes a bal-
ance between content and perceptual terms, which is crucial for maintaining high-quality
predictions.

Overall, these results underscore the capability of pretrained diffusion models to serve as effec-
tive feature extractors for NR-IQA tasks, provided that the appropriates guidance is provided. Our
method, which exploits the inherent generalization capabilities of diffusion models, successfully
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advances the state-of-the-art in NR-IQA, offering a promising approach for future developments in
perceptually consistent no-reference image quality assessment.

E LIMITATIONS & EXTENSION

Our proposed PCDM framework shows strong performance in NR-IQA; however, there are a few
limitations and potential extensions worth noting.

Limitations: The computational cost of our approach, particularly due to the iterative diffusion
model sampling, can be high, which might limit real-time or resource-constrained applications.
Also, the scope of our work is limited to NR-IQA. We did not extend our evaluation to other low-
level vision tasks or explore the use of perceptual control in image generation due to time constraints
and the focus on a single task in this paper.

Extensions: The general framework of PCDM, particularly its ability to extract perceptual features,
has potential applications beyond NR-IQA. It can be extended to other low-level vision tasks that
are sensitive to perceptual features, such as image denoising, super-resolution, and enhancement,
where quality assessment is crucial. Moreover, since posterior sampling is known to be limiting due
to its clean sample estimation from intermediate time step t, one can explore using more advanced
techniques such as Bayesian filtering to directly approximate posterior sampling in intermediate
time step t, that is computationally more efficient as it avoids taking derivatives on the estimated
score function. Our method can also be adapted for perceptually controllable image generation.
Exploring these directions can help expand the impact of our approach and leverage its strengths
across a broader range of vision tasks.

In future work, we plan to explore these extensions, allowing PCDM to contribute more broadly to
the field of low-level computer vision.
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