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ABSTRACT

Despite recent advancements in latent diffusion models that generate high-
dimensional image data and perform various downstream tasks, there has been
little exploration into perceptual consistency within these models on the task of
No-Reference Image Quality Assessment (NR-IQA). In this paper, we hypothe-
size that latent diffusion models implicitly exhibit perceptually consistent local
regions within the data manifold. We leverage this insight to guide on-manifold
sampling using perceptual features and input measurements. Specifically, we
propose Perceptual Manifold Guidance (PMG), an algorithm that utilizes pre-
trained latent diffusion models and perceptual quality metrics to obtain percep-
tually consistent multi-scale and multi-timestep feature maps from the denois-
ing U-Net. We empirically demonstrate that these hyperfeatures exhibit high
correlation with human perception in IQA tasks. Our method can be applied
to any existing pretrained latent diffusion model and is straightforward to in-
tegrate. To the best of our knowledge, this paper is the first work to explore
Perceptual Consistency in Diffusion Models (PCDM) and apply it to the NR-
IQA problem in a zero-shot setting. Extensive experiments on IQA datasets
show that our method, PCDM, achieves state-of-the-art performance, underscor-
ing the superior zero-shot generalization capabilities of diffusion models for NR-
IQA tasks. The source code will be made publicly available upon publication at
https://perceptual-consistency—-in-dm.github.io
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Figure 1: An overview of our proposed approach: (a) shows the transition of latent samples across
latent manifolds, highlighting the steps of DDIM and PMG. (b) depicts the content bias (green) on
the manifold My ~ D(Z)), showing that the guidance term in red (PMG) pushes a data sample
(m6|t ~ D(z(’)lt)) towards the perceptually consistent region (orange) of the manifold.
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1 INTRODUCTION

Score-based diffusion models have advanced significantly in recent years and have achieved re-
markable success at synthesizing high-quality images across diverse scenes, views, and lighting
conditions (Ho et al.| (2020); Song & Ermon| (2019); Song et al.| (2020b); [Zhang et al.| (2023a)).
Latent Diffusion Models (LDMs), which embed data into a compressed latent space, enhance com-
putational efficiency (Rombach et al. (2022)). Diffusion models provide strong data priors that
effectively capture the intricacies of high-dimensional data distributions, making them powerful for
generative tasks. Conditional generation using posterior sampling has become crucial for solving
various real-world low-level vision problems (Kawar et al.[|(2022)); [Chung et al.| (2023); Rout et al.
(2024);Song et al.|(2023a)). Additionally, several methods leverage the rich internal representations
of diffusion models by extracting either hand-selected single or subsets of features from a denoising
U-Net for downstream tasks (Tumanyan et al.|(2023); Ye et al.| (2023); |Xu et al.| (2023a); |Baranchuk
et al.|(2021)). Despite these advancements in addressing tasks like inverse problems, segmentation,
and semantic keypoint correspondence, there has been little exploration into perceptual consistency
of diffusion models for No-Reference Image Quality Assessment (NR-IQA).

NR-IQA aims to evaluate image quality in line with human perception without a high-quality refer-
ence image (Wang & Bovik (2000)). It plays a crucial role in optimizing parameters for image pro-
cessing tasks, such as resizing, compression (Feng et al.|(2023); [L1u et al.[(2023)), and enhancement
(Hou et al.[(2024); [Fei et al.[(2023)); Zhang et al.|(2024)). Early NR-IQA methods used hand-crafted
natural scene statistics features (Zhang et al.|(2015);|Mittal et al.|(2012));|Saad et al.|(2012)), and have
evolved into learning-based quality metrics (Madhusudana et al.[ (2022)); [Tu et al.[ (2021)); |[Ke et al.
(2021);|Saini et al.| (2024)). While learning-based methods show promise, they often lack generaliz-
ability. With the advent of generative models, some authors have explored the use of pixel diffusion
models for NR-IQA tasks (L1 et al.|(2024b); Babnik et al.|(2024); Wang et al.| (2024))). While these
approaches show impressive progress, they are often ad hoc, focusing on tasks like quality feature
denoising and image restoration by converting NR-IQA problems into Full-Reference IQA (FR-
IQA) ones. Additionally, training on specific IQA datasets limits their generalizability. By contrast,
our goal is to utilize pretrained latent diffusion models without fine-tuning, leveraging perceptual
guidance to extract intermediate multi-scale and multi-time features, termed diffusion hyperfeatures
(Luo et al.| (2024)), for NR-IQA.

At the core of our method is the manifold hy-
pothesis: real data does not occupy the entire 1o
pixel space but instead lies on a smaller under-
lying manifold. Previous works (Chung et al.
(2022b); He et al. (2023); [Sun et al.| (2023)) *°
have used the manifold concept for guided sam-  ge-
ple generation and solving inverse problems. In £,
IQA, deep models aim to learn distortion man-
ifolds that correlate highly with human percep-
tual quality (Agnolucci et al.| (2024); |Su et al. 04
(2023)); \Guan et al. (2018)); |Gao et al.| (2024)). 03

These manifolds represent regions within the e Y atnentic ostorton Datasets
data manifold that contain perceptually con-

sistent samples, with content bias further nar- Figure 2: Median SRCC scores of NR-IQA
rowing these regions, Towards further ad- methods across authentic distortion IQA datasets,
vancing progress in this direction, we propose demonstrating the superior performance of our
Perceptual Manifold Guidance (PMG) to en- method.

sure perceptually consistent on-manifold sam-

pling, conditioned on perceptual metric features and the quality measurement process itself. Fig.[I]
provides an overview and conceptual visualization of our approach. Unlike previous state-of-the-art
CNN or transformer-based IQA models that only utilize the final feature layer, we extract inter-
mediate multi-scale and multi-time features, termed diffusion hyperfeatures (Luo et al.| (2024)),
from a denoising U-Net for NR-IQA. As shown by |Ghildyal et al.| (2024), intermediate features of
foundation models outperform state-of-the-art learned metrics based on final feature layers. Our
method, Perceptual Consistency in Diffusion Model (PCDM), is a framework for extracting percep-
tually consistent diffusion hyperfeatures from unconditionally pretrained latent diffusion models,
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featuring: (1) no additional fine-tuning or training, (2) generalizability across diverse distortions
and image types, and (3) the first use of latent diffusion models for NR-IQA in a zero-shot setting.
We theoretically prove that PMG guides sampling towards perceptually consistent regions on the
image manifold in latent diffusion models, and experimental results on NR-IQA datasets support
this. We evaluate PCDM against both supervised and unsupervised state-of-the-art methods on ten
IQA datasets, consistently achieving superior results (see Fig. [2). With its effectiveness and gen-
eralizability, PCDM can serve as a robust framework for NR-IQA. Below, we summarize our key
contributions:

We introduce a novel approach for leveraging unconditional latent diffusion models to tackle the
challenging task of No-Reference Image Quality Assessment without any fine-tuning or additional
training.

* We design a manifold guidance scheme that ensures the sampling process remains on the mani-
fold and close to perceptually consistent region. We theoretically demonstrate that our perceptual
guidance keeps gradient updates on the tangent spaces of the data manifold, maintaining prox-
imity to the local perceptually consistent manifold. We also utilize intermediate multi-scale and
multi-time features from the denoising U-Net, resulting in high correlation with human perceptual
judgments.

Extensive experiments on both authentic and synthetic IQA datasets demonstrate that our method
achieves state-of-the-art performance. To the best of our knowledge, this is the first approach to
introduce perceptual guidance in latent diffusion models for zero-shot NR-IQA.

2 BACKGROUND

2.1 NR-IQA

Early successful NR-IQA methods relied on handcrafted features based on deviations from expected
natural scene statistics (NSS) models (Ruderman & Bialek| (1994); Mittal et al.| (2012); [Saad et al.
(2012)) but these struggle to generalize across diverse and combined distortions. Deep learning
introduced CNN-based models (Ke et al.| (2021)); [Saha et al.| (2023); Zhang et al| (2023b))) and
transformer-based architectures such as MUSIQ (Ke et al.|(2021))), TReS (Golestaneh et al.|(2022b)),
and TRIQ (You & Korhonen|(2021)) deliver improved performance, but are limited by datasets that
lacked comprehensive distortion coverage and/or inadequately large or representative numbers of
human quality annotations. To better capture the complex relationship between image content and
perceived quality, manifold learning techniques have been explored (Agnolucci et al.| (2024); |Su
et al.|(2023);|Guan et al.| (2018)); |Gao et al.|(2024))). These approaches aim to uncover intrinsic low-
dimensional structures within high-dimensional data, thereby aligning more closely with human
visual perception. They generally rely on the following hypothesis:

Assumption 1: (Strong Manifold Hypothesis). For a given data distribution X € RP, the actual
data points are concentrated on a k-dimensional locally linear subspace manifold M C RP, such
that k < D .

Latent diffusion models have demonstrated strong representation learning capabilities when trained
on large-scale datasets containing a wide range of authentic and synthetic distortions (Rombach et al.
(2022);|Zhang et al.| (2023al)), but their application to NR-IQA problems remains underexplored (L1
et al.|(2024b); Babnik et al.|(2024); [Wang et al.| (2024)).

We demonstrate that latent diffusion models implicitly learn perceptually consistent manifolds due
to their extensive training data and ability to capture data priors through score matching. By lever-
aging the learned score function sg¢ with perceptual guidance from a perceptual metric v, and

extracting diffusion hyperfeatures H = UtT:O hy = U;T:O UzL:o so(xt,t)|;, where T represents the
total sampling steps and L is a subset of intermediate layers, we align features from the denoising
network s6 at different time steps with human perceptual judgments.

2.2 DIFFUSION MODELS

Score-Based Diffusion Models.
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We begin by reviewing the fundamentals of diffusion models, focusing on the Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al.|(2020)). Let 2o ~ p(X) represent samples from the data dis-
tribution. Diffusion models define the generative process as the reverse of a noising process, which
can be represented by the variance-preserving stochastic differential equation (VP-SDE) (Song et al.
(2020b)) z(t), t € [0,T7:

de = —%xdt +v/Brdw (1)

where 3; € (0,1) is the noise schedule of the process, a monotonically increasing function of ¢,
and w is a d-dimensional standard Wiener process. This SDE is defined such that z¢y ~ p(X) when
t =0, and as t — T, the distribution approaches a standard Gaussian, i.e., 7 ~ N (0,I). Our goal
is to learn the reverse-time SDE corresponding to equation (1):

dr = —%x — B¢Va, Ing(xt)} dt + \/Edw 2

where dw is a reverse-time Wiener process and dt runs backward, and V, log p(z;) is the score
function (Song et al., 2020b). We approximate the score function using a neural network sg (¢, t)
parameterized by 6, trained via denoising score matching (Vincent, 201 1):

0" = arg ngn ]EtE[O,T],thP(It\xo),woNP(X) |:H59('Ttv t) - th logp(l‘t|x0>H;i| . (3)

Once sy is learned, we approximate the reverse-time SDE and generate clean data by iteratively
solving Equation [2] from noisy samples (Song & Ermon| (2019)).

Denoising Diffusion Implicit Models (DDIM). To address the slow generation of DDPM, |Song
et al.| (2020a) proposed Denoising Diffusion Implicit Models (DDIMs), which define a non-
Markovian diffusion process for faster sampling. The DDIM sampling update is:

Ti—1 = \/@t—ljjo\t +4/1—ap_1 — U?Sg(xt,t) +oe t=1T,...,0, 4)

where oy = 1 — By, &y = [['_y @i 00 = /(1 — @—1)/(1 — az)\/1 — @&t /@;_1 corresponds to
DDPM sampling, and when o; = 0 sampling becomes deterministic, where € ~ A/(0,I). The term
£ is direct estimation of the clean data x¢ from noisy data x, calculated using Tweedie’s formula
(Efron/(2011)):

1
Ty = e (z¢ + V1 — &, so(a,t)) (5)

Conditional Diffusion Models.

For conditional generation using unconditional diffusion models (Song et al.[(2020b); |Chung et al.
(2022b); |Yu et al.[(2023)), a common approach is to replace the score function in equation [2| with
a conditional score function V, log p(z:|y), where y is the conditioning variable. Using Bayes’
rule, the conditional score function can be decomposed into the unconditional score function and
a likelihood term: V, log p(x¢|y) = Vi logp(zt) + Vay log p(y|x:), Incorporating this into the
reverse SDE yields:

dx = —%x — B4 (Va, logp(a) + Vs, logp(ylxt))} dt + /Brdw 6)

The above SDE can be treated as a two-step process, the first getting an unconditional denoised
sample z;_;, followed by the gradient update with respect to x;. Since, the likelihood term
V., log p(y|z,) is generally intractable, the second term approximates a gradient update to mini-
mizing the guidance loss around the denoised sample x;_.

{E;fl = \/dt,lfco(xt) + \/ 1-— Qi1 — U?Se((ﬂt,t) + o€ (7)

ry1 =z — (Va,G(zo), y) ®)

where ( is a tunable step size. Here, Tweedie’s estimate x|, is used since the guidance term is
defined on the clean data xg, i.e., Gi(x4,y) = Ep(zo|z:)[Ge(z0,y)] ~ G(20]t,y). The guidance
term is optimized over a neighborhood around z; € R".

Many methods use equation [§] for conditional generation and various vision tasks (Chung et al.
(2022b)); |[Kawar et al. (2022); |Yu et al.| (2023); |Song et al.| (2023b))). For example, |Chung et al.

(2022b) define an I loss term as ’y — A(zop) ;, where A represents a known differentiable forward
degradation model, effectively guiding the generated sample to match the condition y.
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3 PERCEPTUAL CONSISTENCY IN DIFFUSION MODEL

As discussed in Section[T} we address the limited applicability of pixel diffusion models by using the
more efficient Latent Diffusion Models (LDMs). The diffusion process in LDMs naturally generates
on-manifold perceptually consistent samples without requiring additional models to estimate tangent
spaces of the data manifold (Srinivas et al.|(2023)); Bordt et al.| (2023)); |[He et al.| (2023)), as we will
demonstrate in this section.

In LDMs, the diffusion process operates within the latent space, training a score function sg(z;,t).
Let € RP represent the original high-dimensional data, and let £ : RP — RF be an encoder
and D : R¥ — RP be a decoder, where k& < D. The embeddings in the latent space are given by
z=E&(z) € RF.

To guide the sampling process towards the perceptually consistent region on the manifold and ensure
perceptually consistent hyperfeature extraction from the denoising score function, we propose the
following framework. An overview of our proposed sampling process is depicted in Fig. [} which
illustrates the step-by-step guidance for extracting perceptually aligned features in the latent space.

3.1 PERCEPTUAL MANIFOLD GUIDANCE

We propose using perceptual features from an input measurement y derived via a perceptual metric
1p in the conditional score function, leading to V, log p(z¢|¢,(y), y). The choice of 1y, is detailed
in Section 4] and Appendix [D] Before redefining the sampling steps, let’s first consider the noisy
sample manifolds.

Given Assumption 1,|Chung et al.|(2022ajb) show that noisy data x, is probabilistically concentrated
on a (D — 1)-dimensional manifold M, which encapsulates the clean data manifold M. Formally
(see Appendix [B|for a detailed proof):

Proposition 1 (Noisy Data Manifold) Let the distance function be defined as d(z, M) :=
infyer ||z — y|l,, and define the neighborhood around the manifold M as B(M;r) :=
{z € RP | d(z,M) <r}. Consider the distribution of noisy data given by p(z;) =
J p(ze|zo)p(xo)dzo, p(xilxo) = N (V& xo, (1 — a;)I) represents the Gaussian perturbation
of the data at time ¢, and a; = Hi:l a is the cumulative product of the noise schedule .
Under the Assumption 1, the distribution p;(z;) is concentrated on a (D — 1)-dim manifold

M=y € RP 1 d(y, /TM) =1 := /(1 — ar)(D — k).

Most posterior sampling methods (Chung et al.| (2022a)) optimize the guidance term G(zqy,y)

over x; € RP, whereas the score function sy is trained only with samples on M, as indicated by
Proposition 1. This discrepancy implies that the solution =} (leading to xz‘)‘ , via Tweedie’s formula
E]) may not reside on My, resulting in a suboptimal solution (Yu et al.| (2023))). To overcome this
limitation, we propose a solution over M;. From Assumption 1, the manifold M, coincides with
its tangent space T x: My, i.e., Tx My =~ R* with k < D (Park et al. (2023)). Practically, we
optimize the guidance term G(x0|t, y) over z; € Tz M,. This new compact solution space ensures
consistent on-manifold sampling throughout the process.

The latent space of a well-trained autoencoder implicitly captures the lower-dimensional structure
of the data manifold, which can be leveraged for tangent space projection (Srinivas et al.| (2023);
Bordt et al| (2023))). The latent processing of LDMs aids this as the samples already lie in the
lower-dimensional space RE. Formally (proof follows |[He et al.| (2023)), see Appendix :

Proposition 2 (On-manifold sample with LDM) Given a perfect autoencoder, i.e. z = D(E(x)),
and a gradient V. G'(2q)1,y) € T2, 2 then D(V,G(201t,y)) € ToyM.

20|t

For LDMs, the minimization of the guidance term occurs within the tangent space of the clean
data manifold. This guarantees that the generated sample remains close to the real data, without
deviations. Although Rout et al|(2024) do not explicitly discuss on-manifold sampling in LDMs,
their results empirically suggest the inherent manifold consistency of LDM:s.

Having defined consistent on-manifold sampling, we present our Perceptual Manifold Guidance
(PMG). Using Bayes’ theorem on our new conditional score function V, log p(z:|1,(y),y) (see
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Appendix [B] for details):

V., logp(ze|vp(y), y) = Vs, log p(z) + V2, log p(¢,(y)|2) + V2, log p(y|z¢) )

From (Rout et al.| (2024)), LDM’s intractable terms can be approximated as:

V., logp(¥p(y)|2t) = Vo, log p(vp(y)|wo;s = D(201¢)) (10)
V.. logp(ylzi) = V., log p(ylzo;e = D(z01t))- (11)

Based on Assumption 1, Propositions 1 and 2, Equations O}{IT} and Lemma 2 in Appendix [B] we
derive the following theorem for Perceptual Manifold Guidance (proof in Appendix [B):

Theorem 1 (Perceptual Manifold Guidance) Given Assumption 1, given a perfect encoder &,
decoder D, and an efficient score function sy(z,t), let the gradient V., G1(D(20)),y) and

V201 G2(¥p(D(20t)), ¥p(y)) reside on the tangent space T, , Z of the latent manifold Z. Through-

20|t

out the diffusion process, all update terms z; remain on noisy latent manifolds Z;, with 26" , lying in
a perceptually consistent manifold locality.
Discretized steps based on Theorem 1 can be written as:
zé‘t — 2o — glvszl(D(zO“), Y) (posterior sampling step) (12)
2011 < 2ot — 62Vzo), G2(¥p(D(2011)): ¥p(y) (perceptual consistency step) (13)

%1 VA, — V1 — a1 — 07se(z,t) + oe (updated DDIM step) (14)

We use G; as [ functions. The perceptual consistency step in PMG (Equation[I3)), guides the sample
to be close to the perceptual quality of the measurement. Specifically, during sampling, the percep-
tual guidance term adjusts the earlier estimate of the clean latent sample Zél , toward a perceptually
consistent locality on the tangent space of the clean latent manifold, 7 2o, Z. From Theorem 1, all
update terms z¢, including zq);, are on the manifold Z. This ensures the sampling process remains
close to a perceptually consistent region on the manifold, with D(z{) ‘t) closely aligned with the per-
ceptual quality of the source measurement (see Fig. [I). We use internal representations from the
denoising U-Net sy to measure this perceptual consistency, detailed in Section [3.2] The effective-
ness of this approach is demonstrated empirically in Section ] where the absence of the perceptual
guidance term in PCDM results in suboptimal performance.

Algorithm 1 PCDM: Perceptual Consistency in Diffusion Models for NR-IQA

Require: Inputimage x, encoder £(-), decoder D(-), score function sg (-, t), perceptual metric 1, (-),
regression model gy, time steps 7', guidance weights (1, (2
Output: Predicted quality score g,

1 zp « E(x) //Encode input image to latent space
2 H<«+0 /MMnitialize hyperfeatures set H as empty
3:fort=T,T—1,...,1do

4: e~N(0,1)

50 e, he = sp(we,t) //Estimate noise and extract feature map at time ¢
6: H+—HUM //Append feature h; to hyperfeatures set H
T Zop < \/% (zt — V1 —ay - Gt) //Predict Zg|; using Tweedie’s formula
8 zp, = Zojt — 1Yz, G1(D(Z0pr), @) //Posterior sampling step
9 Zg\ < 2o — 2V20G2(¥p(D(Z01t)), Yp () /[Perceptual consistency step
10: zf ) < a1 - zé’lt —V1—au_1 — 02 €+ o€ //Update latent state
11: end for
12: g, < go(H) /[Predict quality score
13: return g,
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3.2 DIFFUSION HYPERFEATURES & NR-IQA

Our primary goal is to assess the perceptual quality of a given image without any reference and in
a zero-shot manner. To achieve this, we propose to use diffusion hyperfeatures—multi-scale and
multi-timestep feature maps extracted from the denoising U-Net (sg) of a pretrained latent diffusion
model.

Previous NR-IQA methods typically rely on features extracted from fine-tuned models (Ke et al.
(2021); Madhusudana et al.| (2022); [Liu et al.| (2022); Saini et al.| (2024)). However, these methods
often use features from the final layer or a single scale, limiting their ability to capture the com-
plete spectrum of image characteristics. In contrast, we harness the rich hierarchical representations
available in the intermediate layers of the denoising U-Net across multiple diffusion timesteps. This
enables us to capture both coarse and fine-grained image features crucial for assessing perceptual
quality (Ghildyal et al.|(2024)). Recent studies (Xu et al.[(2023a));[Wu et al.| (2023); Luo et al.| (2024))
have shown that intermediate representations within diffusion models exhibit reliable semantic cor-
respondences, although they have mostly been used for tasks such as data augmentation, generation,
and segmentation. We hypothesize that these intermediate features also correlate strongly with hu-
man perceptual judgments of image quality, motivated by the diffusion models’ ability to generate
perceptually appealing images and their robust representational capabilities for various downstream
tasks (Zhao et al.[(2023))).

To extract these diffusion hyperfeatures, we gather intermediate feature maps from all upsampling
layers of the denoising U-Net across multiple diffusion timesteps during the sampling process (see
Fig. {] in Appendix [C). These feature maps inherently contain shared representations that capture
different image characteristics, such as semantic content, at various scales and levels of abstraction.
Since these features are distributed over both the network layers and diffusion timesteps, we ag-
gregate sy layers and timesteps as diffusion hyperfeatures for NR-IQA. Specifically, the set of all
extracted features is denoted as:

T
H=J{s{(x) 1€}, (15)
t=1

where sg)(xt) represents the feature map from layer [ at timestep ¢, £ is the set of layers from

which we extract features, and 7' is the total number of timesteps considered. Our experiments show
that perceptual quality is built progressively during reverse diffusion (later timesteps), making an
appropriate range of sampling timestep to be [0-100].

With the aggregated diffusion hyperfeatures H, we employ a lightweight regression network g4
parameterized by ¢ to predict the perceptual quality score:

where g, is the predicted quality score. The regression network is trained following standard NR-
IQA practices (Madhusudana et al.| (2022); |Saha et al.| (2023)), using a small dataset of images
with known quality scores. Importantly, the diffusion model sy remains fixed and is not fine-tuned,
preserving its zero-shot generalization capabilities. By leveraging perceptually rich and diverse
representations, our method is better equipped to assess perceptual quality in a way that aligns
with human judgments. The use of multi-scale and multi-timestep features enables the model to
be sensitive to different types of distortions and image artifacts, which might not be captured when
using single-scale features.

Our experiments show that PCDM with PMG provides more perceptually aligned feature maps (see
Section [4). This alignment allows for a superior evaluation of image quality that reflects human
perceptual judgements of visual distortions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

To thoroughly evaluate the effectiveness of our proposed method, we conducted extensive experi-
ments on ten publicly available and well-recognized IQA datasets, covering synthetic distortions,
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Dataset Type Images Description

LIVE IQA (Sheikh et al.|(2006)) Synthetic 779 29 reference images; 5 distortions at 4 levels
CSIQ-IQA (|Larson & Chandler|(2010)) Synthetic 866 30 reference images; 6 distortions

TID2013 (|Ponomarenko et al.|(2013)) Synthetic 3,000 25 reference images; 24 distortions at 5 levels
KADID-10k (|Lin et al.[(2019)) Synthetic 10,125 81 reference images; 25 distortions at 5 levels
CLIVE (|Ghadiyaram & Bovik!(2015)) Authentic 1,162 Mobile images with real-world distortions
KonIQ-10k (JHosu et al.|(2020)) Authentic 10,073 Diverse images from YFCC100M dataset
FLIVE (]Ying et al.|(2020)) Authentic 39,810 Emulates social media content

SPAQ (|Fang et al.[(2020)) Authentic 11,000 Mobile images with annotations

AGIQA-3K (|Li et al.|(2023)) AIGC 3,000 Al-generated images for IQA

AGIQA-1K (|Li et al.|(2023)) AIGC 1,000 Al-generated images for IQA

Table 1: Summary of the IQA datasets used in our experiments.

Methods \ CLIVE KonIQ FLIVE SPAQ
| PLCCt SRCCt PLCC? SRCCt PLCCT SRCCT PLCCt SRCCt

ILNIQE (Zhang et aL|(2015)) 0508 0508 0537 0523 - - 0712 0713
BRISQUE (Mittal et al.|(2012)) | 0.629 0629  0.685 0681 0341 0303 0817  0.809
WaDIQaM (Bosse et aL|(2018)) | 0.671  0.682  0.807  0.804 0467 0455 - -
DBCNN (Zhang et al.|(2020}) 0869 0851 0884 0875 0551 0545 0915 0911
TIQA (Stepien & Oszust/(2023)) | 0.861  0.845 0903  0.892 0581  0.541 - -
MetalQA (Zhu et al.[(2020}) 0.802 0835 0856  0.887 0507  0.540 - -
P2P-BM (Ying et al. (2020}) 0842  0.844 0885 0872 0598  0.526 - -
HyperIQA (Su et al.|(2020)) 0882 0859 0917 0906 0602 0544 0915 0911
TReS (Golestanch et aL.[(2022a)) | 0.877  0.846 0928 0915  0.625  0.554 - -
MUSIQ (Ke et al.|(2021}) 0746 0702 0928 0916 0661 0566 0921 0918
RE-IQA (Saha et al.|(2023)) 0.854  0.840 0923 0914 0733  0.645 0925 0918
LoDA (Xu et al.|(20236)) 0.899 0876 0944 0932 0679 0578 0928 0925
PCDM-1)4 0853 0842 0929 0921 0751 0672 0912 0901
PCDM-)5RrsQuE 0852  0.840 0924 0919 0691 0598 0917  0.908
PCDM-¢nus10 0869 0858 0939 0928 0747 0672 0922  0.920
PCDM-(1= 0, s po1.5 0901  0.893 0952 0941 0799 0683 0931  0.929
PCDM-re—_104 0903 0891 0952 0944 0761  0.679 0929 0924
PCDM-YsDo1.5 0940 0908 0972 0967 0812 0705 0948  0.947

Table 2: Comparison of our proposed PCDM with SOTA NR-IQA methods on PLCC and SRCC
Scores for authentic IQA datasets. The best results are highlighted in bold, and the second-best
results are underlined.

authentic distortions, and the latest Al-generated content (AIGC). These datasets are summarized in
Table [T} Many previous methods focused only on synthetic distortions, because of the difficulty of
generalizing to real-world distortions. By contrast, our LDM is pretrained on a diverse dataset that
includes both synthetic and authentic distortions, allowing for a fair comparison across all types of
IQA datasets, including recent AIGC datasets.

For LDM, we use the widely adopted Stable Diffusion v1.5 (|Rombach et al.| (2022)), pretrained
on the LAION-5B dataset (|Schuhmann et al.| (2022))). We run 10 DDIM steps, with ¢ within the
range (0,100] and set the hyperparameters (; and (> to 1 and 0.2, respectively. We discuss the
implementation in detail in Appendix [C} The impact of the choice of 1, is discussed in detail in the
ablation study and Appendix [D] All experiments were conducted on an NVIDIA A100 GPU using
PyTorch.

4.2 EXPERIMENTAL RESULTS & COMPARISONS

We evaluated PCDM on ten datasets. Table [2| presents the performance of PCDM on four authen-
tic distortion ("In the Wild”) datasets, with PCDM-1¢sp,1.5 achieving the best results across all
datasets. Specifically, on the CLIVE (Ghadiyaram & Bovik (2015)) dataset, PCDM-¢spy; 5 at-
tained a PLCC of 0.940 and an SRCC of 0.908, significantly surpassing the previous best method,
LoDA (Xu et al.| (2023b)). On the FLIVE (Ying et al.|(2020)) dataset (Ying et al. (2020)), which
contains the largest collection of human-labeled authentically distorted images emulating social me-
dia content (UGC), our method achieves a state-of-the-art PLCC of 0.812 and an SRCC of 0.705,
demonstrating its robustness at handling diverse and complex real-world distortions. Results on
synthetic distortion datasets are provided in Appendix [D] We also evaluated our method on AIGC
datasets to assess its ability to handle Al-generated images, which often present unique challenges.
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Method ‘ AGIQA-1K AGIQA-3K

| PLCCT SRCCT PLCCT  SRCC 1

CONTRIQUE (|Madhusudana et al.|(2022)) 0.708 0.670 0.868 0.804
RE-IQA (|Saha et al.[(2023)) 0.670 0.614 0.845 0.785
GenZIQA (|De et al.|(2024)) 0.861 0.840 0.892 0.832
PCDM-4gpy1.5 | 0.903 0.891 0.929 0.863

Table 3: PLCC and SRCC comparison of PCDM on Al Generated Datasets for IQA. The best results
are highlighted in bold, and the second-best results are underlined.

As shown in Table [3} PCDM-spy; 5 outperformed previous methods on both AGIQA-1K (Li et al.
(2023))) and AGIQA-3K (Li et al.| (2024a)) datasets, achieving PLCC scores of 0.903 and 0.929,
respectively. As compared to GenZIQA (De et al.| (2024))), the previous best-performing method,
our approach demonstrates significant improvements, highlighting its strong prior for Al-generated
content, which is often lacking in previous methods.

4.3 ABLATION STUDY

We conducted cross-dataset evaluations to assess the generalization capability of our method. Ta-
ble presents the results of inter-dataset evaluations. Our PCDM-spy 5 consistently achieved the
highest SRCC scores across all cross-dataset combinations, demonstrating the robustness and strong
generalization capabilities of PCDM’s perceptual feature maps.

We evaluated different models for v, to analyze

their impact on perceptual guidance during the

. N Train Test | Methods
sampling process. The results, presented in Ta-

| REIQA DEIQT  LoDA  PCDM-yspyis

ble 2] indicate that diffusion models inherently

. . . FLIVE KonIQ 0.764 0.733 0.763 0.802
contain rich perceptual representations that pro-  pLive  cLIVE | 0.699 0781 0805 0.849
1 1 1 _ KonIQ CLIVE 0.791 0.794 0.811 0.853
vide the best guidance. IQA models like RE CINE  Kenlo | 0769 o o Pt

IQA (Saha et al.|(2023)) can still provide appro-
priate guidance, while models with worse hu- Table 4
man judgment correlation (e.g., ¥prisque) tend
to reduce performance by deviating samples
away from the perceptually consistent regions.
Similar experiments were also conducted on
synthetic datasets, with results available in Appendix

SRCC Scores for Cross Dataset Evalua-
tions. The best results are highlighted in bold, and
the second-best results are underlined.

Table [7] in Appendix [D] shows the impact of varying the number of timesteps during sampling
on FLIVE (Ying et al.| (2020)) using PCDM-tspy;s. We observe a convex trend in the SRCC
scores—performance improves with an increase in the number of timesteps up to 50, but further
increments result in diminishing returns, with increased computational cost. For practical use, a
trade-off between accuracy and computational efficiency is required.

We also evaluated different versions of Stable Diffusion, including versions 1-3, 1-4, 1-5, 2, and 2-1.
SDv1.5 achieved the best performance. Detailed results are provided in Appendix D}

We conducted experiments to evaluate the ef-

fect of different values for the hyperparameters SRCC vs ¢ for FLIVE

¢1 and (3. PCDM-) in Table [2] represents the
case where only the first term in PMG is used.
The first term provides a strong baseline due )
to content bias effects from data consistency. o i

We set ¢; = 1 following Rout et al| 2024). .. b

In Fig. 3] we show SRCC scores for different ./ T
values of (o on FLIVE. We observe that values

too small or large for ¢ lead to poor perceptual ~ * o 02 o7
features by pushing the samples away from the

perceptually consistent region on M. Figure 3: Effect of (5 on the hyperfeatures, re-
alised on SRCC.

It may be observed that different layers con-
tribute differently to the overall performance.
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In particular, Layer 4 contributes significantly
more to final quality prediction than other layers. Details can be found in Appendix [D]

5 CONCLUSION

In this work, we introduced the Perceptually Consistent Diffusion Model (PCDM) for No-Reference
Image Quality Assessment (NR-IQA). Leveraging the strong representation capabilities of pre-
trained latent diffusion models (LDMs), we proposed Perceptual Manifold Guidance (PMG) to
direct the sampling process toward perceptually consistent regions on the data manifold. We demon-
strated the value of extracting multi-scale and multi-timestep features—diffusion hyperfeatures from
the denoising U-Net, providing a rich representation for quality assessment. To our knowledge, this
is the first work to utilize pretrained LDMs for NR-IQA in a zero-shot manner.

6 REPRODUCIBILITY STATEMENT

Reproducibility is a key aspect of our contribution. Upon publication, we will provide a public
codebase to facilitate the replication of our experiments. All datasets used are publicly available, and
details on dataset splits for training, validation, and testing are provided. Supplementary materials
include theoretical proofs and ablation studies on different hyperparameters and configurations to
support reproducibility.
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Appendix

Here, we provide additional theoretical proof, implementation details, and experimental results to
complement those in the main paper. Specifically, Section [A] discusses more related work and
background on diffusion models and NR-IQA, Section |B| presents detailed theoretical proofs and
supporting discussionn, Section [C]describes the implementation details, Section [D]includes further
quantitative analyses to demonstrate the performance of PCDM, Finally in Section [E|we discuss the
main limitation of our proposed method and possible extensions.

A RELATED WORK

A.1 NR-IQA

No-Reference Image Quality Assessment (NR-IQA) has been a focal point of research over the past
two decades, aiming to evaluate image quality based on human perception without relying on ref-
erence images. Early approaches predominantly utilized handcrafted features derived from natural
scene statistics (NSS), with models such as BRISQUE (Mittal et al.| (2012), DITVINE Moorthy &
Bovik| (2011), BLIINDS |Saad et al.| (2012}, and NIQE [Mittal et al.| (2012)). While these methods
effectively leveraged statistical regularities in natural images, their performance often suffered when
dealing with complex or unseen distortions due to their reliance on specific statistical models.

The emergence of deep learning introduced convolutional neural networks (CNNs) into NR-IQA,
enabling models to learn hierarchical feature representations directly from data. Transformer-based
architectures further advanced the field by capturing long-range dependencies and contextual infor-
mation, with models such as MUSIQ (Ke et al.| (2021)), TReS |Golestaneh et al.| (2022b)), and TRIQ
You & Korhonen| (2021)) demonstrating significant improvements in performance. Despite these
advancements, a major limitation persists: the lack of large-scale, diverse datasets encompassing
the full spectrum of real-world distortions. This scarcity hampers the generalization capabilities of
NR-IQA models, as they are trained on datasets that do not adequately represent all possible image
degradation scenarios.

To tackle the complexity of image distortions, the concept of perceptual or distortion manifolds has
been explored in image quality assessment models. Manifold learning techniques aim to uncover the
intrinsic low-dimensional structures within high-dimensional data, which better align with human
visual perception. For instance, Jiang et al. [Jiang et al.| (2018) applied manifold learning to reduce
the dimensionality of RGB images, constructing low-dimensional representations for stereoscopic
image quality assessment. Similarly, Guan et al. |Guan et al.[(2017) employed manifold learning
on feature maps to capture the intrinsic geometric structures of high-dimensional data in a low-
dimensional space, thereby enhancing prediction accuracy for High-Dynamic-Range (HDR) images.
These approaches highlight the potential of manifold learning in modeling the complex relationships
between image content and perceived quality.

Although diffusion models (DMs) have demonstrated remarkable efficacy in generating high-
dimensional data and capturing rich feature representations within their intermediate layers (Ho
et al.| (2020); |Song et al.| (2020a)), their application to NR-IQA has been minimal. Existing works
incorporating DMs often use them for specific tasks, such as quality feature denoising or image
restoration, effectively converting NR-IQA into full-reference IQA (FR-IQA) problems (Li et al.
(2024b)); Babnik et al.| (2024))). Typically, these methods involve training on specific IQA datasets,
limiting their generalizability to diverse distortions.

In our work, we demonstrate that since diffusion models are trained on large-scale datasets con-
taining user-generated content (UGC) images—with a wide range of authentic and synthetic dis-
tortions—they inherently learn perceptually consistent manifolds. Although these models are not
specifically trained for IQA tasks, they are designed to capture data priors by learning score func-
tions, enabling them to model complex data distributions and capture both high-level and low-level
features. This capability allows them to generate a diverse set of images with fine details. We believe
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that, with appropriate perceptual guidance, it is possible to extract features from diffusion models
that correlate highly with human perception, in a zero-shot setting.

Diffusion models have also demonstrated the ability to learn meaningful representations within their
U-Net architectures, as evidenced by studies that leverage intermediate features for various vision
tasks (Zhao et al.|(2023)); 'Wu et al.|(2023)). This suggests an opportunity to harness these models for
NR-IQA, which has so far remained underexplored. Our work aims to address this gap by utilizing
pretrained diffusion models without any fine-tuning, thereby preserving their inherent generaliza-
tion capabilities. By extracting multi-scale and multi-time-step features—referred to as diffusion
hyperfeatures—and incorporating perceptual guidance, we propose a method that overcomes the
limitations of current NR-IQA approaches. This strategy leverages the rich representations within
diffusion models to improve generalization across diverse image distortions, aligning more closely
with human perceptual judgments.

A.2 DIFFUSION MODELS

Diffusion models consist of a forward noise process and a backward denoising process. In the
discrete formulation|Song et al.[(2020b); Ho et al.| (2020), the forward process manifests as a Markov
chain described by:

N
q(x1:n | %o) H a(xk | xk-1),  a(x [ xp—1) = N(Apxp-1,031). (A-1)

The coefficients {ay, }2_, and {b; }_, are manually set and may differ depending on various diffu-
sion formulations Song et al|(2020b). Given that each Markov step g(xj | X;—1) is a linear Gaus-
sian model, the resultant marginal distribution ¢(xj, | o) assumes a Gaussian form, N (cxxo, d31).
The parameters {cy }_, and {dy }1_, can be derived from {ay }1_, and {bj,}_,. For sample gen-
eration, we train a neural network, sg(xy, tx), to estimate the score function Vi, log¢(xx | Xo).
The backward process, which we assume to be a Markov chain, is typically represented as:

po(xk—1 | xi) = N (upXo(xx) + viso(Xk, tr), wil) (A-2)

where Xo(xx) := xx + dise(x;€7 tr)/ck is the predicted x( obtained from the Tweedie’s formula.
Here {ug}Y_,, {vi}2_,, and {w;}Y_, can be computed from the forward process coefficients

{ax}N_, and {bx}Y_,. The formulation in Equation encompasses many stochastic samplers
of diffusion models, including the ancestral sampler in DDPM (Ho et al.[ (2020)), and the DDIM
sampler in|Song et al.|(2020b). For variance-preserving diffusion models|Ho et al.|(2020), we have:

ar =+ag, bp=+Pr, c=vVar, dp=+V1-—oy, (A-3)

where oy, := 1 — S, g := H§:1 o, and ay, S, follow the notations in |Ho et al.[(2020). DDPM

sampling:
_ 1—ag—
up = \/ag—1, vk =—Vor(l—ak-1), wk=+PBr-f 1_72;, (A-4)

and for DDIM sampling Song et al.| (2020b)), we have:

up =/ag, vp=1/1—ar_1—0op-VI—ag wp=oy, (A-5)

where the conditional variance sequence {o }2_, can be arbitrary. And depedning on the value of

ak, it can become DDPM or DDIM sampling, i.e. With S - laik)l) it become DDPM.

B THEORETICAL PROOFS

B.1 LEMMA 1 (TWEEDIE’S FORMULA FOR EXPONENTIAL FAMILY)

Let p(z|n) belong to the exponential family distribution:
p(z [ 1) = po(z) exp (' T(z) — @(1)) (B-1)
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where 7 is the natural or canonical parameter of the family, ®(7) is the cumulant generating function
(cfg) (which makes p,)(z) integrate to 1), and py(z) is the density when 77 = 0. Then, the posterior

mean 7) := E[n | z] should satisfy:

(V:T(2)) ") = V. logp(2) — V- log po(2)
Proof. The marginal distribution p(z) can be expressed as:
o) = [ pa(mtn)an

which, using the form of p, (z), becomes:

p(z) = po(2) /Z exp (17T T(2) — @(n)) p(n)dn

Taking the derivative of p(z) with respect to z:

V.p() = Vapo(2) /Z exp (1T T(2) — (1)) p(n)dn+

/Z (V.T(2)) "npo(=) exp (0T T(2) — ®(n)) p(n)d

Rearranging, we get:

V.p(z) = V;fgj;)pw HOTET [ (eI
which simplifies to:
Vaple) = 2y (9.2 [ et
Thus: V.0(2) V.p0(2) .
P2 LB (9.7(2) Bl | 4
Finally:

(V.T(2))"Eln | 2] = V. logp(z) — V. log po(2).
This concludes the proof.

B.2 PROPOSITION 3 (TWEEDIE’S FORMULA FOR SDE)
For the case of VP-SDE, we can estimate p(zo|z:) as:
1 _
2ot i = Elzo | 2] = —== (2 + (1 — a(t)) V>, log pi(z1))

a(t)
Proof. For the case of VP-SDE, we have

! ex (_ |z \/a<t>zo||2>

Plal) = G —amye 21— a(t)
A Gaussian distribution. We can get the canonical decomposition as:

p(zt|20) = po(zt) exp (Z(—)FT(Zt) - (I’(Zo)) )
And,

- 1 o [zl
po(zt) = 2r(1—a@))vz P < 2(1 — a(t)))

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

(B-7)

(B-8)

(B-9)

(B-10)

(B-11)

(B-12)

(B-13)

(B-14)
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a(t)||zol?

D(zp) := 20— a(t)) (B-15)

Therefore, from Lemma 1:

(t 1
1 _O;E(i) 20 = V., log pe(2¢) + 1_707@)2)5 (B-16)
Giving us:
1

Zo|t = 0] (2t + (1 = a(t)) Vs, log pi(z)) (B-17)

This concludes the proof.

B.3 CONDITIONAL SCORE FUNCTIONS

As mentioned in the main paper, conditional score function can be written as (Equation[9)):
Vz, log p(2e|tp(y), y) = V-, log p(2t)
+V, log p(ylzo;: = D(zot)) (B-18)
+V2, log p(¥p(y)|wo;: = D(20)¢))

Proof. From Baye’s theorem we can write the conditional distribution as:

p(z|v(y),y) = p(¥(y)|z)p(yl2e, ¥ (y))p(21) (B-19)

Note, y is conditionally independent of ¢ (y) given z; for later timesteps in diffusion process as z;
gives more structural information for image. Therefore:

p(2[¥(y), y) = p(Y(y)|2e)p(yl2)p(2t) (B-20)

Our score function becomes:

V., log p(z:|vp(y), y) = Ve, logp(2:) + V., log p(¢p(y)]2t) + V2, log p(y|2:) (B-21)

We can write the posterior as:

plolz0) = [ pylzo)p(zole)dan (B-22)
Following (Chung et al.| (2022a)) and Proposition 3, we can have the posterior as:

p(yl2:) = p(ylzo)¢) (B-23)

Therefore:

V. logp(2eYp(y), y) = V2, log p(zt) + V., log p(¥p(y)|20¢) + V2, logp(ylzoe)  (B-24)

Following (Rout et al.| (2024)), we can approximately write the conditional probability for LDM
given decoder D:

p(ylzt) =~ p(ylro = D(zo01t)) (B-25)
Note that we ignore the gluing term proposed by (Rout et al.| (2024))) as it depends on the forward
degradation model only valid for inverse problems. Our final conditional score function becomes:

V. log p(ze|vp(y), y) = Ve, log p(2¢) + V2, log p(yl|zops = D(20)) + Vz, log p(¥p(y) 7o) = D(z0p))
(B-26)

B.4 PROPOSITION 1 (NOISY DATA MANIFOLD)

Let the distance function be defined as d(z, M) := inf,c o ||z — y/|,, and define the neighborhood
around the manifold M as B(M;r) := {& € RP | d(x, M) < r}. Consider the distribution of
noisy data given by p(z;) = [ p(@:|xo)p(z0)dzo, p(zi|zo) := N (V@ %0, (1 — a;)I) represents
the Gaussian perturbation of the data at time ¢, and &y = szl « 1s the cumulative product of the
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noise schedule ;. Under the Assumption 1, the distribution p;(x;) is concentrated on a (D —1)-dim
manifold M; :=y € RP : d(y, /TzM) =1 := /(1 — a) (D — k).

Proof. (Mainly follow |Chung et al.|(2022b)):

We begin by defining the manifold M as M := {x € R” : 4, 1.p = 0} which represents a sub-
space where the last D — k coordinates are zero. Essentially, this means that M lies within a

lower-dimensional subspace of R”. Let X be a x? random variable with n degrees of freedom. We
use the following concentration bounds:

P(X —n>2ynt+271)<e 7, (B-27)
P(X —n<—-2yn1)<e . (B-28)
£E2 ; . . . . .
Now, consider the quantity Zik 41 l%gt, which follows a x? distribution with D — k degrees of

freedom. Using the concentration bounds and setting 7 = (D — k)¢’, we can express the following
bound:

2
Lt

D

P (—Z(D —k)We < Y T —(D—k) 2D~ k)(Ve + d)) >1-6. (B-29)
=kl

The above inequality gives us a range for the summation of the squared components of x; beyond

the first k dimensions. We can now rewrite this in terms of the Euclidean norm of these components:

D
Z 7 € <7“t \/max{& 12V}, r 1+ 2Ve + 2a) >1-9, (B-30)

i=k+1

where we have defined:

Ty 1= (1—at)(D_k) (B_3])
To ensure that the probability holds for a given confidence level 1 — J, we define:
1 0
GQ,D—k: = —m log 5 (B—32)
We then use 627 p_, to define:
. / 1+21/6;?Dik+262"D_k—1
€. p—r =min < 1,4/max{0,1 —2 et7D_k} + NS , (B-33)

which ensures 0 < ; p_j < 1. This value €; p_p, helps in determining the size of the neighborhood
around the manifold M., such that:

P (w0 € BMizepk- /(T —a)(D— k) = 1-6. (B-34)

Thus, we have shown that the noisy data distribution p(x;) is concentrated within a certain neigh-
borhood around the manifold M, with high probability. The parameter €; p_j, is decreasing with
respect to 6 and D — k, because €, ,_, is also decreasing in these parameters, and €; p_g, is an

increasing function of €, ;.
This concludes the proof.

In pixel space, as discussed by |Chung et al.|(2022a)), the optimization of the guidance term occurs in
the entire space RP. However, from Proposition 1, we know that x; actually lies in a much smaller
subspace of RP, specifically in R*. To prevent sampling from deviating from the content-bias
region on the manifold, one obvious way to improve the sampling process is to restrict the opti-
mization space to My, specifically to the tangent space T xtMt. Previous literature has suggested
using autoencoders to approximate this tangent space 7z M, (Shao et al.| (2018))). However, since
autoencoders are not trained on intermediate noisy samples, their practical effectiveness is limited.
We instead use Latent Diffusion Models (LDM), where the entire sampling process occurs in the
latent space M. This approach ensures overall data consistency, but it may still not fully achieve
perceptual consistency within the content-bias region on the manifold M (see Fig. [I]for an intuitive
illustration).
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B.5 PROPOSITION 2 (ON-MANIFOLD SAMPLE WITH LDM)

Given a perfect autoencoder, i.e. © = D(£(z)), and a gradient V., G (zq)1,y) € T, 2 then
D(Vz, G (2011, Y)) € Too M.

Proof. We begin by considering a perfect autoencoder, consisting of an encoder £ and a decoder D,
which satisfies the property x = D(E(x)). for any data point x € X C M. Let zo = £(x¢) be the
latent representation of z. Since the autoencoder is perfect, we have xg = D(zy).

To understand how the encoder and decoder interact in terms of their mappings, we consider their
Jacobians. The Jacobian of the encoder % maps changes in the data space R” to changes in the

latent space R*. The Jacobian of the decoder 37730 maps changes in the latent space R* back to

the data space R”. Since the autoencoder is perfect, encoding and then decoding must recover the
original input exactly. This implies that the composition of the encoder and decoder Jacobians must
yield the identity mapping:
o8 o _
81'0 820 o

where [ is the identity matrix. This property ensures that the encoder and decoder are exact inverses
of each other in terms of their linear mappings at zy and 2.

(B-35)

Consider a gradient V., G(zo,y) € T, Z, where 7., Z is the tangent space of the latent space Z
at zo. We want to determine the behavior of this gradient when mapped back to the data space using
the decoder. The decoder Jacobian g% maps vectors from the latent space to the data space. Since

V0. G(20t, ) is in the tangent space T, Z, applying the decoder Jacobian gives:

20|t

oD

D(v G(zo|t7y)) = 872'0

20|t

V0. G (2015 Y)- (B-36)

Since the Jacobian 22 maps changes in the latent space to corresponding changes in the data space,
Ozo

and the latent space Z is designed to represent the underlying data manifold M, it follows that:

oD
— T Z = TpoM. (B-37)
62’0

Thus, the vector D(V ., G (zo)¢, y)) lies in the tangent space T, M of the data manifold at z¢. This

implies that the gradient update, when mapped back to the data space, remains on the data manifold,
ensuring consistency in the sampling process.

This concludes the proof.

B.6 LEMMA 2 (DISTRIBUTION CONCENTRATION)

Consider the optimality of the diffusion model, i.e., € (./atz + V1 — ey, t) = ¢ for z € Z.

For some ¢ ~ A(0, I), the sum of noise components \/1 — a;_1 — oZ€g(2¢,t) + o€, in DDIM
sampling can be expressed as:

\/1—6&t_1 —Utzéa(zt,t)—FO'tQ: \/1_0715—1%7 (B-38)

where € ~ N(0,1). Since \/1 — a;_1 — 07€g(2t,t) and o€, are independent, their sum is also a
Gaussian random variable with a mean of 0 and a variance of (1 — a;_1 — 07) + 02 = (1 — as_1).

Furthermore, let the latent data distribution p(z) be a probability distribution with support on the
linear manifold M that satisfies Assumption 1. For any z ~ p(z), consider

Zt—1 =012+ /1 — Q1 — Ufeg(zt,t) + o€t (B-39)

Then, the marginal distribution p;_1 (2;—1 ), which is defined as:
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Pr—1(zt—1) = /N <zt_1; Vai_1z+4/1—ay_1 — crfeg(zt,t),crf]> p(z¢|2)p(2) dz dzy,

(B-40)
is probabilistically concentrated on Z;_1 for ¢; ~ N(0,I).

Proof. Since €y(2,t) is independent of ¢, their sum is the sum of independent Gaussian random
variables, resulting in a Gaussian distribution with a variance (1 — a;_1). By this result, the multi-
variate normal distribution has a mean /&;_1 z and a covariance matrix (1 — a&;_1)I. Consequently,
the marginal distribution of the target can be represented as:

Pr-1(zt-1) = /N(Zt—l; Vai—1z, (1 — a-1)1) p(2) dz, (B-41)

which matches the marginal distribution defined in Proposition 1. Therefore, in accordance with
Proposition 1, the probability distribution p;_1(z;—1) probabilistically concentrates on M;_;. [

B.7 THEOREM 1 (PERCEPTUAL MANIFOLD GUIDANCE)

Given Assumption 1, for perfect encoder £, decoder D, and an efficient score function sg(z¢,t), let
gradient V.| Gy (D(z0¢),y) and Vo1 G2 (¥p(D(20)¢)), ¥p(y)) reside on the tangent space T, , Z
of latent manifold Z. Throughout the diffusion process, all update terms z; remain on noisy latent

manifolds Z;, with zé’l . in perceptually consistent manifold locality.

Proof. We begin by establishing that both the gradients for data and perceptual consistency are
constrained to the tangent space of the latent manifold, ensuring that updates remain on the manifold

during the diffusion process. Att = T, we consider the noisy sample zr generated from a Gaussian
distribution. Noisy sample is expressed as:

zp =+arzyg+ V1 —arep, ep~ N(O, [) (B-42)

where zp = £(z¢) represents the latent variable corresponding to the clean sample x. The support
of the distribution p(zg) lies on the manifold Z, ensuring that zy € Z. Assume that for all ¢ > T},
there exists a zg € Z such that:

2t = Vagzog + V1 —age, e~ N(0,1) (B-43)

We aim to prove that this also holds for ¢ = T} — 1. At timestep ¢ = T7, the two gradients V., G
(for data consistency) and V., , G2 (for perceptual consistency) lie in the tangent space 7, Z. These
gradients contribute to the update of the latent representation. The overall gradient update becomes:

2y = 2o/ — (G V20,0, G1 + 2V 2,7, G2) (B-44)

Where ( are scalars. Since both gradients reside in the tangent space szTl Z, and Assumption 1,
the updated term z6|T1 remains on the latent manifold Z. Using the update rule for 27, _1, similar to
the diffusion update step, we have:

2 -1 = \/@T1_126‘T1 + /1 — @Tl_lél, € ~ N(O,I) (B-45)

Thus, the updated latent variable remains on the manifold, as the noise component ¢’ is Gaussian,
and the mean update is based on z(’)m € Z. Applying Lemma 2, give us p(z7, —1), that is proba-

bilistically concentrated on Z7_.

The perceptual manifold, a subspace of the content-bias manifold defined by the data-consistency
gradient V., ,G1. In other words, data consistency keeps the sample within a region where the
structural content is retained, and perceptual consistency term ensures that the sample moves to-
ward regions of the manifold Z that are perceptually meaningful. The second gradient term
V0. G2(¥p(D(201¢)), ¥p(y)) represents a movement within this subspace to align with human per-
ception. Since V., G2 resides in the tangent space 7, Z and is also influenced by the perceptual
features 1), the update ensures that the latent variable moves towards a more perceptually consistent
locality within the overall content-bias region.
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oy

I

Hyperfeatures

Figure 4: Illustrates PMG sampling and multi-scale and multi-timestep feature maps from denoising
U-Net (sg)

for NR-IQA. In the image, z; is intermediate noisy latent, D and 1) are decoder and perceptual
quality metric, respectively. PMG is our proposed algorithm for estimating the noisy sample z;_;.

Formally, let M onent be the subspace of manifold corresponding to content consistency based on
G1, and let Mpereepual C Mecontent be the sub-manifold that represents regions of perceptual consis-

tency. The update using V. , G effectively ensures:

26I|t € Mperceptuala (B-46)

where M percepwal 1S @ more constrained subspace within the content-consistent manifold, ensuring
perceptual quality. By induction, we have shown that for all ¢, there exists a zp € Z such that z;
remains on the latent manifold throughout the diffusion process. Furthermore, the inclusion of the
perceptual consistency gradient ensures that zglt is updated towards a perceptually consistent region
on the manifold. Thus, the final updated latent variable 26I|t is not only data-consistent but also

perceptually consistent within the manifold Z, as required.

This concludes the proof.

C IMPLEMENTATION DETAILS

C.1 DATASETS AND EVALUATION PROTOCOL

The datasets used in our study (Table[T) contain images labeled with Mean Opinion Scores (MOS)
following ITU-T P.910 guidelines ITU-T RECOMMENDATION| (1999). We train the regressor g4
using /5 loss on MOS ground truth values. Evaluation metrics include Pearson Linear Correlation
Coefficient (PLCC) and Spearman’s Rank Order Correlation Coefficient (SRCC), ranging from 0 to
1, with higher values indicating better correlation.

Following |Saha et al.| (2023); Madhusudana et al.| (2022), we split each dataset into training, vali-
dation, and test sets (70%, 10%, and 20%, respectively), using source image-based splits to prevent
content overlap. The process is repeated 10 times, and median performance is reported to ensure
robustness.
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C.2 IMPLEMENTATION DETAILS

Model Configuration For text conditioning, we use an empty string. We adopt the SDv1.5 and
VQ-VAE from the official Stable Diffusion v1.5, with default settings from GitHutﬂ and Hugging
Faceﬂ VQ-VAE is used with 8x downsampling for 512 x 512 resolution, which matches the typical
resolution of IQA datasets like LIVE (Sheikh et al.|(2006)) and CSIQ (Larson & Chandler| (2010)).

Sampling and Perceptual Features We use 10 DDIM steps for sampling, balancing efficiency
and quality. The choice of perceptual metric 1, is crucial—using well-correlated metrics such as
RE-IQA or MUSIQ improves model performance. Poor metrics can degrade results, as shown in
our ablation studies.

Guidance Weights The weights for perceptual guidance, (; and (s, are set to 1 and 0.2 based on
empirical evaluations. This setup provides sufficient guidance, which enhances prediction quality.

C.3 AUTOENCODER

Though a perfect autoencoder is ideal for maintaining samples on the manifold M, the Stable Diffu-
sion v1.5 VAE yields effective results despite minor imperfections. As shown in Table[6] it provides
the best performance across configurations.

D ADDITIONAL RESULTS AND ABLATION STUDY

In this section, we provide further empirical evaluations of our proposed Perceptual Consistency
in Diffusion Models (PCDM) by presenting additional experimental results, ablation studies, and
analyses to supplement the findings in the main paper. We also evaluate the impact of model hyper-
parameters and different configurations, including the version of Stable Diffusion (SD), the number
of time steps, and the weighting of perceptual guidance terms. Lastly, we discuss the impact of
various layers of UNet towards NR-IQA performance.

D.1 SYNTHETIC IQA DATASETS

Table [5|reports the Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Cor-
relation Coefficient (SRCC) scores of PCDM and existing NR-IQA methods on four synthetic
datasets: LIVE (Sheikh et al.| (2006)), CSIQ (Larson & Chandler (2010)), TID2013 (Ponomarenko!
et al|(2013)), and KADID (Lin et al.[|(2019)). The results demonstrate that our proposed approach
outperforms other methods across almost all datasets. Similar to the performance on authentic distor-
tion dataset in Table PCDM-9spy1.5 achieves the best performance across all synthetic datasets,
indicating a strong alignment with human perceptual judgments. The results also suggest that per-
ceptual guidance using ¥ re—71QA4 and ¥ gp,1.5 consistently enhances the model’s generalization
capabilities. The superior performance of PCDM-gp,1.5 on the TID2013 (Ponomarenko et al.
(2013))and KADID (Lin et al.| (2019)) datasets, with PLCC and SRCC scores of 0.921/0.883 and
0.961/0.958, respectively, underscores the value of utilizing diffusion hyperfeatures.

D.2 IMPACT OF TIME STEP RANGE ON SAMPLING PROCESS

Figure [5| shows the effect of varying the range of time steps used during the sampling process. We
observe a general decline in SRCC as we increase the time range, specifically when more noisy
samples are involved. For larger time step ranges, the model relies on noisier intermediate represen-
tations, which reduces its ability to accurately predict image quality. This is an expected behaviour
since, details in the images are generated towards the later time steps in diffusion process,i.e. less
noise. This suggests that optimizing the range of time steps used for feature extraction is critical to
maintaining high-quality predictions.

"https://github.com/CompVis/stable-diffusion
2https ://huggingface.co/CompVis,
https://huggingface.co/stable-diffusion-vl-5/stable-diffusion-v1-5
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Methods \ LIVE CSIQ TID2013 KADID

| PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC
ILNIQE 0906 0902 0.865 0.822 0.648 0521 0.558 0.534
BRISQUE 0944 0929 0.748 0812 0571 0.626 0.567 0.528
WaDIQaM 0955 0960 0.844 0852 0.855 0.835 0.752  0.739
DBCNN 0971 0968 0959 0946 0.865 0.816 0.856 0.851
TIQA 0965 0949 0.838 0.825 0.858 0.846 0.855 0.850
MetalQA 0959 0960 0908 0.899 0.868 0.856 0.775 0.762
P2P-BM 0958 0959 0902 0.899 0.856 0.862 0.849 0.840
HyperIQA 0966 0962 0942 0923 0.858 0.840 0.845 0.852
TReS 0968 0969 0942 0922 0.883 0.863 0.859 0.859
MUSIQ 0911 0940 0.893 0871 0815 0.773 0.872 0.875
RE-IQA 0971 0970 0960 0947 0.861 0.804 0.885 0.872
LoDA 0979 0975 - - 0901 0869 0936 0931
PCDM-1) 0980 0978 0971 0952 0871 0814 0.892 0.885
PCDM-YgRrI1sqQuE 0980 0977 0970 0951 0814 0.771 0.841  0.838
PCDM-¢prs10 0981 0979 0969 0950 0.869 0.811 0.898 0.887
PCDM-¢rc—10A 0983 0981 0972 0952 0904 0882 0932 0.930
PCDM-just ¥sp,1.5 | 0981 0978 0971 0958 0908 0.876 0935 0.931
PCDM-¢spy1.5 0988 098 0981 0964 0921 0.883 0.961 0.958

Table 5: Comparison of our proposed PCDM with SOTA NR-IQA methods on PLCC and SRCC
Scores for Synthetic IQA datasets. The best results are highlighted in bold.
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Figure 5: We report the behaviour of PCDM as we change the range of timesteps in the sampling
process. As we move towards larger timestep range buckets, where there are more noisy samples,
SRCC on FLIVE (Ying et al.|(2020)) decreases.

D.3 STABLE DIFFUSION MODEL VERSIONS

Table [f] evaluates the effect of different versions of Stable Diffusion (SD) on the CLIVE (Ghadi-
yaram & Bovik| (2015)) and FLIVE (Ying et al.| (2020)) datasets. The results indicate that SD v1.5
consistently outperforms other versions, achieving the highest PLCC and SRCC scores for both
datasets. Specifically, SD v1.5 reaches an SRCC of 0.908 on CLIVE and 0.705 on FLIVE, outper-
forming newer versions like v2.0 and v2.1, which exhibit lower correlation values. The decline in
performance in newer versions may be attributed to architectural changes or training modifications
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SD Version | CLIVE FLIVE

| PLCCt SRCC? PLCCt SRCCt
1.3 0.932 0.901 0.804 0.695
1.4 0.938 0.903 0.807 0.698
1.5 0.940 0.908 0.812 0.705
2 0910 0.882 0.781 0.674
2.1 0917 0.886 0.788 0.681

Table 6: PLCC and SRCC Scores for Different Versions of SD on CLIVE (Ghadiyaram & Bovik
(2015))) and FLIVE (Ying et al.[(2020)). The best results are highlighted in bold, and the second-best
results are underlined.

that diverge from the characteristics required for effective NR-IQA, i.e. focus on the generation of
high quality aesthetic image, rather than a broader coverage of image quality.

Time Steps SRCC?T  Time Taken (s) |

1 0.624 3.27
0.673 9.89

10 0.705 21.30

50 0.711 110.45

Table 7: SRCC scores and time taken for different timesteps on FLIVE (Ying et al.| (2020)) by
PCDM-¢5py1.5-

D.4 EFFECT OF TIME STEPS ON QUALITY AND COMPUTATION TIME

Table[/| provides an analysis of the SRCC scores and the computation time for different numbers of
time steps on the FLIVE (Ying et al.[(2020)) dataset using PCDM-1sp,1.5. As expected, increasing
the number of time steps improves the SRCC score, with the highest value of 0.711 obtained at
50 time steps. However, this comes at the cost of increased computational time, with a significant
jump from 21.30 seconds for 10 time steps to 110.45 seconds for 50 time steps. This trade-off
suggests that while more time steps can yield better performance, it is essential to balance quality
with computational efficiency, especially for real-time applications.

—— LoDA (y=0.578)
0.65
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SRCC
I
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| |l

1 2 3 4 5 6 7 8 9 10 11 12 All
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Figure 6: Contribution of individual layer of SDv1.5 towards SRCC for FLIVE (Ying et al.| (2020)).
For the sake of computational cost, we run single step sampling and extract individual layers and
calculate SROCC.
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D.5 CONTRIBUTION OF INDIVIDUAL LAYERS

Figure [0 illustrates the contribution of individual layers of SD v1.5 towards SRCC on the FLIVE
dataset. Using a single-step sampling, we analyze how different layers contribute to image quality
predictions. The results indicate that intermediate layers, such as Layer 4, contribute significantly
more to the final quality prediction than other layers. This layer-wise analysis is crucial in under-
standing which layers are more relevant for NR-IQA, providing insights for potential optimization
by focusing on the most informative layers.

¢ | CLIVE FLIVE
| PLCCt SRCCt PLCCt SRCCt

0 0.853 0.842 0.751 0.672
0.2 0.940 0.908 0.812 0.705
0.5 0.931 0.901 0.802 0.691
0.7 0.918 0.882 0.780 0.675
1 0.904 0.868 0.772 0.664

Table 8: PLCC and SRCC Scores for varying the weights of second term in PMG (equation
on CLIVE (Ghadiyaram & Bovik| (2015)) and FLIVE (Ying et al| (2020)). The best results are
highlighted in bold, and the second-best results are underlined.

D.6 EFFECT OF PERCEPTUAL GUIDANCE WEIGHTING

Table [8| presents the PLCC and SRCC scores for varying the perceptual guidance weight, (o, in
the Perceptual Manifold Guidance (PMG) term for the CLIVE (Ghadiyaram & Bovik|(2015)) and
FLIVE (Ying et al.|(2020)) datasets. The results indicate that an optimal value of (s = 0.2 yields the
best PLCC and SRCC scores all ten datasets. Specifically, an SRCC of 0.908 is achieved on CLIVE
(Ghadiyaram & Bovik| (2015)) and 0.705 on FLIVE (Ying et al.| (2020)) at this weight. When (>
is set too high (e.g., (; = 1), the model’s performance deteriorates, suggesting that samples move
away from the perceptually consistent region on manifold. Conversely, setting (2 too low results
in underutilization of the perceptual guidance, which leads to suboptimal quality predictions. With
moderate weighting, superior performanc can be achieved across all benchmarks.

D.7 SUMMARY AND INSIGHTS

Our extended experiments validate the effectiveness of PCDM across various IQA datasets, demon-
strating its robustness against both synthetic and real-world distortions. The ablation studies provide
valuable insights into the factors that impact model performance:

* Model Version Selection: SD v1.5 emerged as the best-performing version for NR-IQA,
emphasizing the importance of selecting the appropriate diffusion model.

* Time Step Range: If sampling time steps from higher ranges are taken, it diminishes the
performance significantly.

» Total Time steps: While increasing time steps improves prediction quality, it also signif-
icantly increases computation time, highlighting a trade-off between accuracy and effi-
ciency.

* Layer Importance: Intermediate layers of the diffusion model were found to contribute the
most towards perceptual quality, suggesting the possibility of optimizing feature extraction
by focusing on specific layers.

* Perceptual Guidance Weighting: The optimal perceptual guidance weight strikes a bal-
ance between content and perceptual terms, which is crucial for maintaining high-quality
predictions.

Overall, these results underscore the capability of pretrained diffusion models to serve as effec-

tive feature extractors for NR-IQA tasks, provided that the appropriates guidance is provided. Our
method, which exploits the inherent generalization capabilities of diffusion models, successfully
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advances the state-of-the-art in NR-IQA, offering a promising approach for future developments in
perceptually consistent no-reference image quality assessment.

E LIMITATIONS & EXTENSION

Our proposed PCDM framework shows strong performance in NR-IQA; however, there are a few
limitations and potential extensions worth noting.

Limitations: The computational cost of our approach, particularly due to the iterative diffusion
model sampling, can be high, which might limit real-time or resource-constrained applications.
Also, the scope of our work is limited to NR-IQA. We did not extend our evaluation to other low-
level vision tasks or explore the use of perceptual control in image generation due to time constraints
and the focus on a single task in this paper.

Extensions: The general framework of PCDM, particularly its ability to extract perceptual features,
has potential applications beyond NR-IQA. It can be extended to other low-level vision tasks that
are sensitive to perceptual features, such as image denoising, super-resolution, and enhancement,
where quality assessment is crucial. Moreover, since posterior sampling is known to be limiting due
to its clean sample estimation from intermediate time step ¢, one can explore using more advanced
techniques such as Bayesian filtering to directly approximate posterior sampling in intermediate
time step ¢, that is computationally more efficient as it avoids taking derivatives on the estimated
score function. Our method can also be adapted for perceptually controllable image generation.
Exploring these directions can help expand the impact of our approach and leverage its strengths
across a broader range of vision tasks.

In future work, we plan to explore these extensions, allowing PCDM to contribute more broadly to
the field of low-level computer vision.
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