A THEORETICAL ANALYSIS

Proposition A.1. Let 0* be optimal, i.e. 0* = argming Ly;sg. Then it satisfies
Dy« (%) = & + 0*V; logp(7), (1)
where & ~ N (z,0%I).
Proof. Assume data density p(z) be differentiable, then the optimal denoisier, i.e.
D" e arg min Eop(a) i~p(ela) [ D(F) — 3]
is given by

First note that the smooth density p,z(x) is given by

poa () = / p(z, 7)o 3)
_ / p(Ee)p(z)dz @)

where p(#|z) = N (z, 0>I). Then the gradient of smooth density is
Vior(d) = [ Vp(ala)pla)do )
_ / (x(j)p(m)p(z)dx ©)
= 5 [~ Dpalp)pe ()i ™
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which results in

D(#) =&+ p;;) Vpg2 (%) = & + 0°V1og py2 (7) (11)
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Before we prove theorem 3.2, we introduce several lemmas.

Definition A.1. (Strong convexity). A function f : R? - Ris p-strongly convex if, for all x1, X2,
the following inequality holds for some p > 0:

Fox2) > [oa) +V £ 0e)T (k2 =) + § 1 = (12)

Definition A.2. (Strong log-concavity). A distribution p : RY — [0, 1] is X-strongly log-concave
if, p of the form

p(x) = g(x)N(0, %) (13)

for some log-concave function g and a positive definite matrix . If ¥ = o021, p is o2-strongly
log-concave shortly.

Following lemma shows the relationship between strong log-concavity and strong convexity.



Lemma A.2. Assume p be o%-strongly log-concave, then p < exp(— f) for some %-strongly convex
I

The proof can be found in . Next lemma states the preservation of strong log-concavity under
convolution.

Lemma A.3. If p; is o2-strongly log-concave, and p is o3-strongly concave, then the distribution
p1 * pa is (02 + 03)-strongly log-concave.

The proof can be found in . Finally, we have following lemma for the bounds on Wasserstein
distance between p and its smoothed density p,2.

Lemma A.4. Let p be any distribution and p,2 be smoothed density obtained by p,2 = p *
N(0,021), then the 2-Wasserstein distance between p and p,> satisfies

Wa(p, po2) < ovd (14)

Now we’re ready to proof our theorem.

Proof. Let x be local optimum of pz2. By lemma A.4, as —logp is pu-strongly convex, p is %-

strongly log-concave and as Gaussian distribution A(0,5%) is &2-strongly log-concave, ps2 is
(% + &2)-strongly log-concave, and equivalently — log ps2 is ﬁ—strongly convex. Then as
X € argmin Lyap,s, We have

N N 1.
VLMAP,(}(X) =0 << —Vp52(X) + ;(X—y) =0 (15)
N - 1 .
= —Vps2(X) + Vps2(X) = ?(y - %) (16)
A - 1 N oA~
< (—Vps2(X) + Vps2(X),X — X) = §<y —X,X—X) (17)
Then we have
1 . 1 . W oA
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. SN |
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Then by Cauchy-Schwarz inequality, we have
L 1+ us? X 1+ pc?
% =%l € T2y g 1% = Ylle = oz gl 23)
Finally, by lemma A.5,
Efx —x"[l2 < E[x — x[]2 + E[x — x"[|2 (24)
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B EXPERIMENT DETAILS

B.1 TRAINING SCORE NETWORKS

We used NCSNv2 from [Song & Ermon| (2020). For CIFAR-10 we used original NCSNv2, and for
ImageNet we used the deepest version of NCSNv2. Note that the author first released NCSN (Song
& Ermonl |2019), then proposed improved version (Song & Ermon, 2020). NCSN and NCSN v2
are based on RefineNet, and some major changes in normalization, pooling layer, and convolution
layer lead to successful score-based modeling. The original NCSN was developed for generative
modeling, and choosing noise level is crucial for generative modeling. Even though we are doing
image denoising, choosing noise level also seems important. We experimented with two types of
noise sequences: uniform sequence and geometric sequence. We used uniform noise sequence for
one-step denoiser. We set o7 = 1.0 and o, = 0.05 with L = 20. We used geometric sequence for
multi-step denoiser. For geometric noise sequences, we set 03 = 1.0, and o, = 0.01 with L = 32.
Note that combining both sequences doesn’t change the overall results.

For all experiments, we trained with Adam optimizer with learning rate 1e-5, and ran 300,000 iter-
ations. We will soon release the code for details.

B.2 MULTI-STEP DENOISERS

For each Gaussian and uniform distribution, we ran annealed gradient descent with learning rate
o = 2e — 5, and for laplace distribution we ran with learning rate o = 3e — 5. For each noise levels,
we ran with 7" = 1 for fast denoising.

B.3 TRAINING CLASSIFIERS

For pretrained classifiers, we used CIFAR-10 classifiers publicly released from|Salman et al.[(2020),
and pytorch pretrained ResNet50 for ImageNet. Also, for white-box smoothing baseline, we used
Gaussian randomized smoothing baseline from [Cohen et al.| (2019) and ImageNet uniform and
laplace ResNet50 baseline from Yang et al.| (2020). Otherwise, we trained ResNetl 10 with laplace
and uniform noise data augmentation on CIFAR-10 to reproduce the results. For training, we tested
with o = {0.15,0.25,0.50, 1.00}, with the training hyperparameter same as Cohen et al.|(2019).

B.4 CERTIFICATION

We use the CERTIFY of randomized smoothing (Cohen et al., 2019) to do our experiments. We
conducted all experiments with n = 10,000, n0 = 100 and o = 0.001. Note that if we certify
with larger n all results can be improved, however we stick with n = 10, 000 due to computational
constraints.



C ADDITIONAL EXPERIMENTS

C.1 HOW MULTI-SCALE METHODS HELP

In this section, we show how training with multi-scale DSM differs from training with each noise
levels. To comparse, we trained score networks with one noise level each, and otherwise we trained
with multi-scale DSM. We trained with noise levels ¢ = 0.12,0.25,0.50, 1.00, and plot certified
accuracy for denoised smoothing with one-step denoiser from each score networks (Figure ). that

the multi-scale DSM achieves better performance, which is explained in section .

(a) All
1.0
—— multi-scale DSM
—— one-scale DSM
0.8
206
c
3
Q
o
<04
0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

15 radius
(¢)o =0.50

—— multi-scale DSM

08 —— one-scale DSM

Accuracy
°
>

o
~

0.2

0.0
0.0 0.2 0.4 0.6 0.8
1, radius

1.0 1.2 14

(b)o =0.25
1.0
—— multi-scale DSM
08 —— one-scale DSM
206
©
5
8
<04
0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

15 radius
(d) o = 1.00

—— multi-scale DSM

08 —— one-scale DSM

Accuracy
o o
s [=2]

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14

£, radius

Figure 1: ddl



C.2 CERTIFICATION WITH OTHER CLASSIFIERS

Here we show that using stronger classifier, i.e. the classifier with high test accuracy, achieves
better performance. We used 4 pretrained classifiers ResNetl110, ResNet18, WideResNet40-10,
WideResNet28-10 from [Salman et al.| (2020), where each classifier is trained with 300 epochs. We
found out that using stronger classifier achieves better certified accuracy, and it is because we aren’t

fitting the denoiser into specific classifier (See Figure ).
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D DENOISED SAMPLES

D.1 ONE-STEP DENOISER

D.1.1 CIFAR-10, GAUSSIAN NOISE

Raw Image Noisy image (o = 0.25) Denoised image
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D.1.2 IMAGENET, GAUSSIAN NOISE
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D.2 MULTI-STEP DENOISER

D.2.1 CIFAR-10, GAUSSIAN NOISE

Raw Image Noisy image (o = 0. 25) Denoised image
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D.2.2 IMAGENET, GAUSSIAN NOISE
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D.2.3 CIFAR-10, LAPLACE NOISE
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D.2.4 IMAGENET, LAPLACE NOISE
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D.2.5 CIFAR-10, UNIFORM NOISE
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D.2.6 IMAGENET, UNIFORM NOISE
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