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A APPENDIX

The supplementary materials presented in this paper offer a comprehensive quantitative and qualitative
analysis of the proposed method. In Appendix [B] we provide additional empirical observations and
justifications for our motivation, including specifically designed quantitative analysis, qualitative
analysis of the distribution, and justification for distribution divergence. Additionally, we present
extra continual adaptation experiments for Foundation Models in Appendices [C.1]and[C.2] which are
conducted on ImageNet-to-ImageNet-C and Cityscape-to-ACDC scenarios. To assess the domain
generalization ability of our method, we conducted additional experiments directly testing a varying
number of unseen domains in Appendix [C.3] The ablation study on middle-layer dimension is
described in Appendix [C.4] Furthermore, Appendix [C.5] presents additional CTTA classification
experiments utilizing the convolutional backbone, while Appendix [C.6|outlines 10 rounds of semantic
segmentation CTTA experiments. We provide an additional qualitative analysis in Appendix
Moreover, we extend the classification results of our submission to include fine-grained performance
in Appendix |E} showcasing the error rates across fifteen corruption types.

B SUPPLEMENTARY JUSTIFICATIONS FOR MOTIVATION

The study of Continual Test-Time Adaptation (CTTA) poses significant challenges, particularly
in addressing error accumulation and catastrophic forgetting (Wang et al., [2022; |Gan et al.,2023]).
Notably, the use of adapters with low-rank and high-rank features have demonstrated promising results
in mitigating these challenges in our submission. In this section, we aim to provide comprehensive
implementation details regarding the evidence supporting our motivation. Furthermore, we have
introduced two new specially designed quantitative experiments in Section B.1. The first one is a
10-round CTTA experiment aimed at investigating the different domain representations of low-rank
and high-rank ViDA during the long-term adaptation process. The second experiment explores the
performance when all adapters adopt the same structures, such as using two high-rank adapters or
two low-rank adapters. This experiment is conducted to validate that low-rank ViDA and high-rank
ViDA complement each other in adapting to continually changing environments.

B.1 SPECIALLY DESIGNED QUANTITATIVE ANALYSIS

To provide stronger evidence for our assumption, we have developed two evaluation approaches for
both low-rank and high-rank adapters, which directly reflect their ability to extract domain-shared
and domain-specific knowledge on ImageNet-to-ImageNet-C.

First, as shown in Figure[T](b), we execute a 10 rounds CTTA experiment on ImageNet-to-ImageNet-
C. In this comprehensive experiment, we simulate a long-term adaptation scenario by repeating 10
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Table 1: Classification error rate(%) for ImageNet-to-ImageNet-C online CTTA task. Gain(%)
represents the percentage of improvement in model accuracy compared with the source method. 2x
means using two same structures of adapters.
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Ex1| Source[58] |53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2| 55.8
Ex2|2xLow-rank | 51.2 48.3 47.8 56.9 66.5 49.3 54.4 42.1 47.0 45.2 23.2 65.6 52.0 33.4 33.5| 47.7
Ex3|2xHigh-rank|50.1 47.9 45.3 54.8 66.7 51.4 56.1 44.0 49.2 48.3 25.7 69.7 56.3 34.6 33.7| 48.9
Ex4 Ours 50.3 45.9 45.5 55.1 62.3 46.6 51.7 39.7 44.0 42.2 23.0 62.4 50.1 33.4 32.5| 45.6

rounds of 15 corruption sequences in the ImageNet-C. Remarkably, the high-rank ViDA achieves
competitive results over other methods during the initial 1 to 3 rounds. This result demonstrates
the high-rank feature’s capacity to efficiently learn target domain-specific knowledge. However, an
increment in error rates becomes obvious during the later rounds (rounds 5 to 10). The results validate
the potential for encountering catastrophic forgetting when focusing exclusively on domain-specific
knowledge. In contrast, the performance of the low-rank ViDA remains consistently robust throughout
the continual adaptation process, verifying it concentrates more on extracting task-relevant knowledge
and effectively prevents the catastrophic forgetting problem. And our proposed method consistently
improves over time, demonstrating its robustness in the long-term adaptation process.

Second, we execute an ImageNet-to-ImageNet-C CTTA experiment using a combination of two high-
rank adapters or two low-rank adapters, as shown in Table E} To ensure fairness, we conducted these
experiments without implementing the homeostatic knowledge allotment (HKA) strategy. Notably,
the two low-rank adapters (Ex2) demonstrated consistently lower long-term error rates compared
to the source model and two high-rank adapters. The above results can be attributed to the fact that
the two low-rank ViDAs tend to learn general information and domain-shared knowledge during
continual adaptation. However, our method outperforms the two low-rank adapters across 14 out of 15
corruption types. This indicates that solely relying on low-rank adapters without the involvement of
high-rank adapters is insufficient to fit target domains and match their data distribution. On the other
hand, the performance of the two high-rank adapters initially surpasses our approach (Ex4) in the early
stages, covering the first few target domains. Nevertheless, a noticeable performance degradation
becomes apparent in later target domains. This observation underscores a crucial finding: while
increasing the number of high-rank ViDAs might enhance domain-specific knowledge acquisition
during the initial phases of CTTA, it simultaneously exacerbates catastrophic forgetting throughout
the entire adaptation process. In contrast, the fusion of both low-rank and high-rank ViDAs (Ex4)
yields the most substantial improvement when compared to other configurations. Our collaborative
approach leverages the distinct domain representations of these adapters to compensate for each
other’s advantages and achieve a more robust and effective continual adaptation.

B.2 ADDITIONAL DISTRIBUTION QUALITATIVE ANALYSIS

We employed t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten & Hinton| [2008))
to visualize the distribution of adapters across four continual target domains. This visualization
was specifically conducted in the context of the Cityscapes-to-ACDC experiment, representing
a scenario with continually changing real-world environments.In our submission, we perform t-
SNE analysis on the outputs of the third transformer block in the Segformer-B5 model (Xie et al.,
2021). The objective was to qualitatively compare the feature distributions of ViDAs with different
dimension features. Furthermore, our findings revealed that the qualitative results obtained from
different layers (i.e., transformer block 1, 2, and 4) of the Segformer-B5 model exhibited similar
distribution representations. As illustrated in Figure [I] (a), there is a noticeable distribution gap
due to the significant domain shift between the night domain and other domains. Interestingly, the
low-rank ViDA effectively reduces the distribution distance across different target domains, indicating
its focus on extracting task-relevant knowledge. On the other hand, the high-rank ViDA exhibits
notable distribution discrepancies among the various target domains, indicating its focus on extracting
domain-specific knowledge.
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Figure 1: (a) We conduct more t-SNE results for the low-rank adapter and high-rank adapter on the
ACDC dataset. The first to third columns illustrate the feature distributions of transformer blocks 1,
2, and 4, respectively. (b) The 10 rounds CTTA experiment on ImageNet-to-ImageNet-C, repeating
10 rounds of 15 corruption sequences.

B.3 DISTRIBUTION DISTANCE

To provide clearer evidence for our assumption, we directly calculate the distribution distance to
represent different domain representation of adapters. We adopt the domain distance definition
proposed by Ben-David (Ben-David et al., 2006} 2010) and build upon previous domain transfer
research (Ganin et al., 2016) by employing the H-divergence metric to further evaluate the domain
representations of adapters across different target domains. H-divergence between Dg and Dy, can
be calculated as

dy(Dg,Dr,)=2sup | Pr [D(z)=1]— Pr [D(z)=1] )
D~H T~Ds z~Dr,

, where H denotes hypothetical space and D denotes discriminator. Similar to (Ruder & Plank| [2017;
Allaway et al., 2021), we adopt the Jensen-Shannon (JS) divergence between two adjacent
domains as an approximation of #-divergence because it has been shown to successfully distinguish
domains. If the inter-domain divergence is relatively small, it can be demonstrated that the feature
representation is consistent and less influenced by cross-domain shifts (Ganin et al., 2016).

ISPl Poy,) = SKL(Pp, || -2 200 Lcrpy, 2220
Where Kullback-Leibler (K L) divergence between two domain is
= Py ()

KL(Py||Py) = ;Pl(xi)log(Pz(xi)) 3)

Where P denotes probability distribution of model output features. We split the output feature space
into mutually disjoint intervals z;. n range from 0 to 1000. To investigate the effectiveness of
adapters in adapting to continual target domains, we compare the JS values obtained by using the
source model alone, injecting low-rank adapter, injecting high-rank adapter, and combining low-high
adapters, as illustrated in Figure 3(a) of our submission. The low-rank adapter exhibits notably lower
divergence values compared to the others, demonstrating robust task-relevant feature representation
in various cross-domain phases. For high-rank adapter, we use normalized intra-class divergence to
further verify the domain representations of high-rank adapters in CIFAR10C, which is inspired by
intra-cluster dissimilarity proposed by k-means (MacQueen, |1967). We first calculate the Euclidean
distance clustering center for each category:

1
n=E 2 @
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, where e; stands for output feature in class C'. Then following (MacQueen, [1967)), we introduce
normalized intra-class divergence E' by

1
E=¢(= Y llei—pll3) ®)
Ol =

¢(+) denotes for normlization function. In a given domain, if the intra-class divergence for each
category is smaller, it demonstrates that the model has a better understanding of the current distribution
(L1 et al., [2020). As illustrated in Figure 3(b) of the submission, the high-rank adapter is found to
drive down divergence within almost all domains and can better extract domain-specific knowledge

in target domains.

C ADDITIONAL EXPERIMENT
C.1 ADDITIONAL CLASSIFICATION CTTA EXPERIMENTS FOR FOUNDATION MODELS

Table 2: Average error rate (%) for the ImageNet-to-ImageNet-C CTTA task. All results are evaluated
on the ViT-Base, which uses the pre-trained encoder parameter of DINOv2 and SAM.
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Source 52.3 50.5 51.2 57.3 83.8 60.1 62.6 47.1 56.9 58.1 22.5 88.4 60.3 32.4 35.0| 546 0.0

DINOV2 Tent (Wang et al.[[2021) | ICLR2021 |51.7 43.6 50.4 56.2 74.1 51.7 67.2 46.9 53.2 50.1 25.2 69.6 58.0 29.5 39.4| 51.1 +3.5
CoTTA (Wang et al.[[2022) | CVPR2022|51.4 62.1 50.4 78.3 75.2 62.8 60.3 48.4 59.0 58.8 31.6 90.7 49.2 39.1 36.5| 569 -2.3

Ours Proposed |49.0 49.8 50.7 61.4 60.2 49.7 42.6 47.1 51.9 453 27.1 49.7 474 32.0 294 462 +84

Source 67.9 62.1 51.6 69.7 92.6 65.4 59.8 53.9 61.2 64.1 39.0 91.6 60.1 473 67.0| 63.6 0.0

SAM Tent (Wang et al.[[2021) | ICLR2021 |67.2 59.1 48.8 56.2 72.5 59.4 61.0 49.1 57.9 63.7 33.8 77.0 51.4 39.5 552| 555 +8.1
CoTTA (Wang et al.[[2022) | CVPR2022|68.1 64.5 50.4 67.1 80.1 68.9 67.0 63.1 69.5 61.4 40.6 88.2 58.3 435 68.4| 63.9 -0.3

Ours Proposed |59.9 55.7 40.2 84.3 49.6 59.7 59.0 47.8 48.3 57.4 26.6 71.8 42.9 41.7 50.3 53.0 +10.6

To demonstrate the effectiveness of our proposed method in enhancing the continual adaptation
ability of foundation models such as DINOv2 (Oquab et al.,[2023) and SAM (Kirillov et al.,[2023),
we conduct additional experiments on a more extensive dataset, namely ImagNet-to-ImageNet-C.
Our approach involve loading the weight parameters of the foundation model and fine-tuning it
on ImagNet, thus constructing our source model. It is important to note that we solely utilize
the pre-trained encoder of SAM and incorporated a classification head, which is fine-tuned on the
source domain. Subsequently, we adapt the source model to continual target domains (ImageNet-C)
comprising fifteen corruption types. The results, as depicted in Table[2] demonstrate that our approach
achieved a significant performance improvement of 8.4% on the representative image-level foundation
model DINOv2 and 10.6% on the pixel-level foundation model SAM. These outcomes underscore the
effectiveness of our method for large-scale models, consistently and reliably improving performance
across target domains. Combining Table 1-3 from the submission, we were surprised to discover a
significant decrease in model performance for the classification CTTA task when using the pre-trained
encoder parameters of SAM. As SAM is a pixel-level foundation model, we then attempted to
investigate the effectiveness of SAM’s pretrained parameters in the segmentation CTTA task.

C.2 ADDITIONAL SEGMENTATION CTTA EXPERIMENTS FOR FOUNDATION MODELS

As shown in Table [3] we conducted segmentation CTTA using SAM’s pre-trained parameters on the
Cityscapes-to-ACDC scenario. However, it’s worth noting that the Segformer model (Xie et al., 2021)),
which we employed in our main experiments, does not incorporate positional encoding. Therefore,
we adopted the SETR model (Zheng et al.,2021) as our new baseline for loading SAM’s pre-trained
parameters. As shown in the table, our approach with SAM’s pre-trained parameters outperforms
others on the ACDC target domains. This aligns with the assumption that SAM, being a pixel-level
foundational model, excels in capturing fine-grained feature representations in dense CTTA tasks.

C.3 DOMAIN GENERALIZATION ON A DIFFERENT NUMBER OF UNSEEN TARGET DOMAINS

Similar to our previous submission, we follow the leave-one-domain-out principle (Zhou et al., 2021}
Liet al.,|2017), where we utilize a subset of ImageNet-C domains as new source domains for model
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Table 3: Performance comparison for Cityscape-to-ACDC CTTA. All results are evaluated on the
SETR, which uses the pre-trained parameter of source model or SAM.

Method | Pre-trained | Fog Night Rain  Snow | Mean mloU

Source | Source model | 72.6 43.1 63.0 64.3 60.8
Source SAM 748  44.1 66.7 66.6 63.0
CoTTA SAM 754 459 67.3 68.7 64.3

Ours SAM 76.5 472 68.1 70.7 65.6

Table 4: The domain generalization experiments on ImageNet-C, where the source model was
continually adapted on the first 5 domains and directly tested on 10 unseen domains. The evaluation
of the results was conducted using ViT-base.

Directly test on 10 unseen domains Unseen
% g
IS4 &G & I &
S § § & o S5 § J T &

Method SO 30 § S S .?Z § § _ :%) ) § Mean]

& s 9
Source 585 63.3 499 542 577 264 914 57.5 380 362| 53.3
Tent (Wang et al.| 2021) 56.0 61.3 457 496 56.6 248 940 55.6 37.1 35.1| 51.6
CoTTA (Wang et al.;[2022) | 57.3 62.1 49.1 52.0 57.1 264 919 57.1 37.6 353| 52.6
Ours 46.4 52.7 39.8 43.7 42.2 235 715 49.6 339 33.3| 43.7

training, while leaving the remaining domains as target domains without any adaptation. However, in
contrast to previous domain generalization experiments, we adopt an unsupervised continual test-time
adaptation (CTTA) approach for training the model on these unlabeled source domains. We solely
utilize the ImageNet pre-trained parameters as the initial weights of the model. In the supplementary
material, we utilize 5 out of 15 and 7 out of 15 domains from ImageNet-C as the source domains,
leaving the remaining 10 out of 15 and 8 out of 15 domains as unseen target domains. Surprisingly,
the results presented in Table 4] and [5|demonstrate that our method achieves a reduction of 9.6% and
9.1% in the average error on these unseen domains, respectively. These promising outcomes validate
the DG ability of our method, as it effectively extracts domain-shared knowledge and provides a new
perspective for enhancing DG performance within an unsupervised paradigm.

C.4 ADDITIONAL ABLATION STUDY

How does the middle-layer dimension influence the performance?

According to Figure[2] we observe that as the dimension decreases, the error rate concurrently drops.
This trend suggests that lower-dimension middle layer more effectively extract the domain-shared
knowledge, leading to an improved model performance. However, an opposite trend emerges when
dimension surpasses 16, with performance enhancements accompanying increased dimension. This

Table 5: The domain generalization experiments on ImageNet-C, where the source model was
continually adapted on the first 7 domains and directly tested on 8 unseen domains. The evaluation of
the results was conducted using ViT-base.

Directly test on 8 unseen domains Unseen
2
) S
& >4 & o
2 5 g 5 5 5
Method S S & RS g o o) & | Mean|
g & 5 & s g ¥ 5
sl S <] a
5 -

2

4 914 575 380 362 514
9

Source 499 542 577 26.

Tent (Wang et al., 2021) 443 488 51.8 24 83.7 552 354 347 474
CoTTA (Wang et al.;[2022) | 48.8 522 56.7 26. 91.1 57.0 373 353 50.6
Ours 39.6 43.7 417 23.7 637 51.7 333 336 42.3
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Figure 2: The middle-layer dimension influence of the performance

correlation implies that middle layers with a higher dimension excel in extracting domain-specific
knowledge. And we find that when the dimension is larger than 128, the performance improvement
is limited but brings a larger number of parameters. Therefore, we set the dimension of the high-
dimension middle layer to 128 in our study.

How do different adapter initialization methods impact ViDA performance?

Pre-training the low-rank and high-rank ViDAs using source data is an unnecessary step and does
not compromise the effectiveness of our approach. ViDAs can demonstrate comparable CTTA
performance when they have a relatively stable initial parameter. As illustrated in the Table[6] we
conduct an additional experiment on the Cityscape-to-ACDC scenario. ViDAs with random initial
parameters and ViDAs with parameters pre-trained on ImageNet achieved 60.5 and 61.4 mloU in
target domains, respectively, exhibiting notable improvements compared to previous methods.

Table 6: The ablation study examines adapter initialization methods on the Cityscape-to-ACDC
CTTA scenario.

| Adapter pre-train | Fog Night Rain Snow | Mean (IoU)

Source - 69.1 403 597 578 56.7
CoTTA - 709 412 624  59.7 58.6
Ours Source 71.6 432 660 634 61.1
Ours Random initial 71.6 436 649 619 60.5
Ours ImageNet 71.6 443 660 635 614

C.5 EXPERIMENTS ON CLASSIFICATION CTTA WITH CONVOLUTIONAL BACKBONES

CIFAR10-to-CIFAR10C standard task. In contrast to the experiments conducted in our submission,
we introduce a change in the backbone of the classification model to WideResNet-28, which is
consistent with previous works (Wang et al., |2022). Specifically, we modify the up-projection layer
and down-projection layer to utilize 1 x 1 convolutions, while the adapters are placed alongside the
original 3 x 3 convolutions. For ViDA, we maintain a low-rank dimension of 1 and a high-rank
dimension of 128. As depicted in Table|/| our method achieves a 27.7% improvement over the source
model. These findings demonstrate that our method successfully address error accumulation and
catastrophic forgetting problem, regardless of the network backbone employed.

C.6 ADDITIONAL EXPERIMENTS ON SEGMENTATION CTTA

We further present the segmentation CTTA experiment with 10 rounds on Table [§] Notably, it
demonstrates a consistent enhancement in mean mloU during the initial rounds (rounds 1-3) while
maintaining stable performance in subsequent rounds (rounds 4-10). After averaging over 10 rounds ,
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Table 7: Classification error rate(%) for standard CIFAR10-to-CIAFAR10C online CTTA task.
Results are evaluated on WideResNet-28. Mean is the average value of the error rate. Gain(%)
represents the percentage of improvement in model accuracy compared with the source method.

Method | REF | Conference |Mean] Gain
Source (Zagoruyko & Komodakis,|2016) | BMVC2016 | 43.5 0.0
BN Stats Adapt (Schneider et al., [2020) NeurIPS2020| 20.4 +23.1
TENT (Wang et al.[[2021) ICLR2021 | 20.7 +22.8
CoTTA (Wang et al.| [2022) CVPR2022 | 16.2 +27.3
RoTTA (Yuan et al., 2023) CVPR2023 | 17.5 +26.0
NOTE (Gong et al., 2022) NeurIPS2022| 20.2 +23.3
EcoTTA (Song et al.,2023) ICCV2023 | 16.8 +26.7
SATA (Chakrabarty et al.| [2023) 2023.4.20 | 16.1 +274
Ours Proposed 2023.5.18 15.8 +27.7

Table 8: 10 rounds segmentation CTTA on Cityscape-to-ACDC. We sequentially repeat the same
sequence of target domains 10 times. Mean is the average score of mloU.

5
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69.1 40.3 59.7 57.8 56.7
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Fog NightRain Snow Mean|
56.7 40.3 59.7 57.8 56.7
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Fog NightRain Snow Mean
69.1 40.3 59.7 57.8 56.7
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Fog NightRain Snow Mean|
69.1 40.3 59.7 57.8 56.7
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Method
Source

cont.

CoTTA
CoTTA*
Ours

70.9 41.2 62.4 59.7 58.6
71.9 45.0 67.1 63.1 61.8
71.6 43.2 66.0 63.4 61.1

70.9 41.1 62.6 59.7 58.6
71.9 43.6 65.6 61.8 60.7
73.2 44.5 67.0 63.9 62.2

70.9 41.0 62.7 59.7 58.6
69.6 39.7 63.5 60.4 58.3
73.2 44.6 67.2 64.2 62.3

70.9 41.0 62.7 59.7 58.6
68.3 39.6 61.8 59.4 57.3
70.9 44.0 66.0 63.2 61.0

70.9 41.0 62.8 59.7 58.6
67.8 38.9 62.1 59.7 57.1
72.0 43.7 66.3 63.1 61.3

cont.
cont.
cont.

Round

8
Fog NightRain Snow Mean|

9
Fog NightRain Snow Mean|

10
Fog NightRain Snow Mean|

Mean

Method

6
Fog NightRain Snow Mean|

=
Fog NightRain Snow Mean|

Source
CoTTA
CoTTA*
Ours

69.1 40.3 59.7 57.8 56.7
70.9 41.0 62.8 59.7 58.6
67.7 39.8 62.7 59.7 57.5
72.2 44.0 66.6 62.9 61.4

69.1 40.3 59.7 57.8 56.7
70.9 41.1 62.6 59.7 58.6
67.3 39.7 63.2 59.6 57.7
72.3 44.8 66.5 62.9 61.6

69.1 40.3 59.7 57.8 56.7
70.9 41.1 62.6 59.7 58.6
67.6 40.1 63.2 58.0 57.2
72.1 45.1 66.2 62.9 61.5

56.7 40.3 59.7 57.8 56.7
70.8 41.1 62.6 59.7 58.6
65.0 38.8 60.7 58.5 55.8
71.9 45.3 66.3 62.9 61.5

56.7 40.3 59.7 57.8 56.7
70.8 41.1 62.6 59.7 58.6
66.9 38.9 62.7 58.7 56.8
72.2 452 66.5 62.9 61.6

56.7
58.6
58.0
61.6

our method achieved a 3.0% mloU improvement compared to the previous SOTA method. As shown
in Table 8| (CoTTA*), we adjust the hyperparameters of the COTTA method by raising the learning
rate to 3e-4, which aligns with our implementation details. The impact of this adjustment is evident
in the initial three rounds of segmentation, where performance notably improves. However, as we
progress to subsequent CTTA rounds, we observe a noticeable decline in segmentation accuracy and
encounter the problem of catastrophic forgetting.

D ADDITIONAL QUALITATIVE ANALYSIS

To further validate the effectiveness of our proposed method, we present additional qualitative
comparisons on the Cityscapes-to-ACDC CTTA scenario. Initially, we pre-train the Segformer-B5
model (Xie et al.,2021) on the source domain and subsequently adapt it to four target domains in
ACDC. In order to assess the performance of our approach, we conduct a qualitative comparison
with two leading methods, namely CoTTA (Wang et al., 2022)) and VDP (Gan et al., 2023)). The
visualizations of the segmentation outputs, obtained through the CTTA process, are depicted in
Figure [3] Our method exhibits better segmentation map compared to CoTTA and VDP across all
four target domains, as it effectively distinguishes the sidewalk from the road (shown in white box).
This demonstrates the capability of our method to achieve more accurate segmentation results while
mitigating the impact of dynamic domain shifts. Moreover, in the other categories, our method’s
segmentation maps closely resemble the Ground Truth, leading to a visual enhancements. Lastly, we
have included a video visualization in the supplementary material that showcases a comprehensive
comparison of segmentation performance. This video provides a dynamic and visual representation
of the results obtained from our experiments.

E FINE-GRAINED PERFORMANCE

In this section, we expand upon the classification results presented in our submission by providing a
details of fine-grained performance. We assess the error rates across fifteen corruption types to gain
deeper insights. To be specific, we augment the information provided in Table 2 of our submission
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Figure 3: Qualitative comparison of our method with previous SOTA methods on the ACDC dataset.
Our method could better segment different pixel-wise classes such as shown in the white box.

Table 9: A fine-grained Classification error rate(%) for standard CIFAR10-to-CIAFAR10C online
CTTA task. Results are evaluated on ViT-base.

-
N Y 5 5 g

Method S § 3 & 5§ 5 § § £ &5 EF I T £ |Mean) Gain
§”§§E§$5¢“Q§§~§$

Source 60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1| 282 0.0

Pseudo-label 59.8 52.5 37.2 19.8 35.2 21.8 17.6 11.6 12.3 20.7 5.0 41.7 21.5 252 22.1| 269 +1.3

TENT-continual (W m 57.7 56.3 29.4 16.2 353 16.2 12.4 11.0 11.6 14.9 4.7 22.5 15.9 29.1 19.5| 23.5 +4.7

CoTTA {m 58.7 51.3 33.0 20.1 34.8 20 152 11.1 11.3 18.5 4.0 34.7 18.8 19.0 17.9| 24.6 +3.6

VDP 57.5 49.5 31.7 21.3 35.1 19.6 15.1 10.8 10.3 18.1 4 27.5 18.4 225 19.9| 24.1 +4.1

Ours (proposed 529 479 194 11.4 31.3 133 7.6 7.6 9.9 12.5 3.8 26.3 144 339 18.2| 20.7 +7.5

with the additional details presented in Table[9]and[I0} These tables offer a comprehensive view of
the performance of our approach in addressing the CIFAR-10-to-CIFAR-10C and CIFAR-100-to-
CIFAR-100C CTTA scenarios, respectively.

Table 10: A fine-grained Classification error rate(%) for standard CIFAR100-to-CIAFAR100C online
CTTA task. Results are evaluated on ViT-base.

-
S s £ 5 s 55 2 5 5 £ g

Method 5 § 3 S 5§ 5 § 5§ S5 &5 59 T £ |Meanl Gain
£w§§%§$§¢*°§§§»$

Source 55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9| 354 0.0

Pseudo-label @ 53.8 48.9 254 23.0 58.7 27.3 19.6 20.6 23.4 31.3 11.8 28.4 39.6 52.3 33.9| 332 +2.2

TENT-continual ( m 53.0 47.0 24.6 22.3 58.5 26.5 19.0 21.0 23.0 30.1 11.8 25.2 39.0 47.1 33.3| 32.1 +3.3

CoTTA 1M’|m 55.0 51.3 25.8 24.1 59.2 28.9 21.4 21.0 24.7 349 11.7 31.7 40.4 55.7 35.6| 34.8 +0.6

VDP 54.8 51.2 25.6 24.2 59.1 28.8 21.2 20.5 23.3 33.8 7.5 11.7 32.0 51.7 35.2| 32.0 +34

Ours (proposed 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1| 27.3 +8.1
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