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A Training Algorithm1

Algorithm 1 Proposed training process
Input: Graph G with link set EO. Hyper-parameters: α, β, and T , learning rate γO, γA.
Output: Node embeddings Z

1: Randomly initialize twins GNN models with θO, θA, embedding fusion module with θF .
2: Split G into |C| communities and categorize links into internal-links and cross-links.
3: Select augmented supervision signals EA with the highest Jaccard coefficient or co-occurrence

frequency.
4: while not converged do
5: Compute LO and LA by Eq.(4)
6: Update twins GNN models: θO ← θO + γO · ∇θOLO, θA ← θA + γA · ∇θALA

7: Compute learning rate γF
t and step size St by Eq.(8)

8: for step = 1 to St do
9: Compute LF by Eq.(7)

10: Update embedding fusion module: θF ← θF + γF
t · ∇θFLF

11: Update GNN models: θO ← θO + γF
t · ∇θOLF , θA ← θA + γF

t · ∇θALF

12: end for
13: end while
14: return Z

Here we provide the pseudo codes of our training process, which are the core components helping2

GNNs to address the bias between internal-links and cross-links without compromising utility. The3

algorithm is also literally described in Section 3.6 for a better understanding.4

B Further Analysis on the Role of Cross-links5

B.1 The relationship between cross-links and information cocoons6

To fully understand the relationship between cross-links and information cocoons, we conduct the7

following experiments for analysis.8

• Experimental settings. Based on the communities detected by Louvain algorithm [1] in advance,9

we get the internal-links and cross-links of a network, and here we take Epinions and DBLP, two10

real-world social networks as examples. The detailed dataset information is described in Section 4.1.11

Next, we borrow the concept of message propagation from the Friedkin-Johnsen dynamics model12
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[5] and revise its formula to simulate the information propagation with randomly initialized node13

embeddings:14

Zt
i =

Zt−1
i +

∑
j∈Ni

wijZ
t−1
j

|Ni|+ 1
(1)

where Zt
i denotes the embedding of node i at iteration t, and Ni represent the neighbors of node i.15

wij is a manually controllable reweight scaler determined by the type of link ⟨i, j⟩. At each iteration,16

each node will update its embedding with the weighted average embeddings from its neighbors17

and itself. For simulating the lack of cross-links, we weaken the role of cross-links in information18

propagation by tuning the w for cross-links from 1 to 0, and setting w for internal-links to 1.19

(a) Epinions (b) DBLP

Figure C1: The distribution of CH index score
wrt. the weight of cross-links during propaga-
tion. A higher value indicates more severe infor-
mation cocoons. The dashed lines indicate the
CH index score under a normal setting.

We further use Calinski-Harabasz(CH) index [4, 6]20

to measure the extent of the information cocoons21

phenomenon in a network, which can be calculated22

as follows:23

CHC =
SSBC(Z

t)

SSWC(Zt)
· N − C

C − 1
(2)

where SSWC and SSBC are functions to measure24

the within-cluster dispersion and between-cluster25

dispersion, respectively [6]. N denotes the number26

of nodes, and C denotes the number of communi-27

ties. A higher CH index score indicates that node28

embeddings are more polarized among communi-29

ties, which further illustrates the extent of the in-30

formation cocoon problem in the current network.31

• Experimental results and analysis. In Figure C1 we show the CH index scores with node embed-32

dings at different propagation iteration t, and we can observe that, as the information propagation33

weight w for cross-links decreases, the CH index score increases consistently and far exceeds that34

in normal settings (w = 1), which indicates that the final node embeddings present more serious35

polarization problems among communities. Since the information in a single community is relatively36

limited as shown in Figure 2, the information cocoon problem actually becomes more severe with the37

lack of cross-links.38

B.2 The relationship between cross-links and graph conectivity39

With borrowing the concept of network diffusion, we try to explore the role of cross-links in graph40

conectivity in this part. Specifically, we apply a classic model in network diffusion: the SI model [11],41

to simulate the process of information propagation. In this model, each node is randomly initialized42

with a status called susceptible or infected at the beginning. During the diffusion iteration process, SI43

assumes that each infected node could infect its susceptible neighbors with probability p, and once a44

node becomes infected, it stays infected until the end of network diffusion, i.e. there are no more new45

infected nodes in a new iteration.46

In order to provide a clear and vivid illustration, we take one of the most representative social47

networks – Zachary’s karate club1 as an example. All nodes are divided into four non-overlapping48

communities by Louvain algorithm [1] in advance, and node #0, which stands for the instructor in49

this club, is initialized as the only infected node at iteration 0. We further randomly remove 80%50

cross-links in the graph before starting the simulation. For getting a more convincing conclusion,51

the network diffusion process on a graph with the same number of random edges removed is also52

simulated for comparison.53

The final visualization results are shown in Figure C2. It can be seen that although we remove some54

edges randomly from the whole graph, the infected node #0 still propagates its information to almost55

all nodes in the club (red nodes in the figure) successfully. In contrast, after removing the same56

number of cross-links, there appears to be an obvious information isolation phenomenon, and nearly57

half of the nodes remain susceptible. In other words, cross-links play a role in bridging two different58

communities during network diffusion, and it would be hard for a node to send or receive messages59

1https://en.wikipedia.org/wiki/Zachary%27s_karate_club
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(a) Original graph (b) Drop links randomly (c) Drop cross-links

Figure C2: The visualization of diffusion simulation with SI model. Red nodes denote infected nodes,
and green nodes represent susceptible nodes. (a) The original graph of the karate club. Nodes with the
same color denote a community. (b) Infected graph after dropping some random edges. (c) Infected
graphs after dropping some cross-links.

from other communities without enough cross-links. In this way, the existence of cross-links plays a60

key role in preserving graph connectivity.61

C Additional Experimetal Settings62

C.1 Baselines63

Here we introduce additional details for the base models and baselines used in our experiments.64

(1) Base models.65

• GraphSAGE [7]: GraphSAGE is an inductive learning framework for generating node embeddings,66

which samples a fixed number of neighbors during aggregation to alleviate the "neighborhood67

explosion" issues.68

• GIN [20]: GIN is a graph neural network that is theoretically as powerful as the Weisfeiler-Lehman69

test with injective aggregation, combination, and readout functions.70

• GAT [18]: GAT deploys the attention mechanism during aggregation to capture the neighborhood71

information with different weights.72

• PPRGo[2]: By utilizing a Personalized Page Rank matrix to approximate the propagation and73

aggregation steps with multi-layer graph convolution, PPRGo greatly improves the efficiency and74

effectiveness on large graphs.75

• LightGCN [8]: LightGCN empirically finds the redundancy of feature transformation and non-76

linear activation functions, and greatly simplifies the model architecture with even higher perfor-77

mance on the recommendation tasks.78

• UltraGCN [14]: Based on LightGCN, UltraGCN further theoretically simplifies the model archi-79

tecture with approximating the infinite-layer information propagation and aggregation.80

(2) Baselines.81

• FairWalk [16]: Instead of random walk in node2vec, FairWalk chooses its next hop by considering82

the sensitive attributes in the neighborhood, which successfully mitigates the unfairness related to83

the sensitive attribute.84

• CFC [3]: To ensure that the learned embeddings are not correlated with sensitive attributes, such85

as age or gender, CFC introduces an adversarial framework to enforce fairness constraints.86

• FairAdj [12]: With learning to assign each edge with different weights, FairAdj generates a fair87

adjacency matrix and greatly improves the dyadic fairness with comparable utility in link prediction88

tasks.89

• FLIP [15]: Concentrating on bursting the filter bubbles in social networks from a dyadic fairness90

perspective, FLIP also utilizes an adversarial learning framework to generate non-sensitive node91

embeddings for further link prediction.92
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• UGE [19]: UGE aims at learning unbiased graph embeddings from an unobserved graph, which93

involves no sensitive information, and further derives three kinds of variants namely UGE-w, UGE-r94

and UGE-c.95

C.2 Evaluation metirc.96

In this work, we apply Hits@50, which is widely adopted in other researches [21, 22] and OGB97

leaderboard [9], as our main evaluation metric to measure the link prediction performance of different98

GNN models. The Hits@50 can be computed by:99

Hits@50 =
1

Ntest

Ntest∑
i=1

I(ranki < 50) (3)

where Ntest represents the sample size of test set, and I represents an indicator function. ranki100

denotes the similarity ranking of the ith sample.101

C.3 Reproducibility102

Dataset. For each dataset, we randomly sample and remove 5% of links in the original graph to103

construct the validation set and test set, and the remaining links are treated as the training set. Each104

true sample will be ranked among a set of 100000 randomly sampled negative links for evaluation2.105

Note that, there is no side information, such as node features or link attributes, involved during our106

experiments, and we assign each node on the graph with a learnable embedding vector for training.107

Hyper-parameters. As a model-agnostic framework, we deploy six kinds of GNN models as108

backbones, including GraphSAGE [7], GIN [20], GAT [18], PPRGo [2], LightGCN [8] and UltraGCN109

[14]. For all these models, we set the output embedding dimension as 64. The layer of the embedding110

fusion module is set to 1. The learning rates for twin GNNs are both set as 0.001 after grid search. As111

for the hyper-parameters in Eq.(8), α is set to be 0.005, and T is selected from {10, 25, 50} depending112

on the datasets and base models, and β is set to be 20. Augmentation ratio k is searched from {0.75,113

1.0, 1.25} for each dataset. Both weight decay and dropout rate are set to 0.114

In particular, for GraphSAGE, we adopt a mean-pooling during aggregation; for GIN, we apply a115

linear layer to update node features and use max-pooling during aggregation; for GAT, we use 4116

attention heads in each layer; for PPRGo, we set α as 0.3, the walk length as 100; for LightGCN,117

we set the layer number as 2 and use the final layer’s output as embeddings; for UltraGCN, we set118

the number of negative samples as 64, λ as 0.8, γ as 3.5. Our implementation code and datasets are119

released anonymously in https://anonymous.4open.science/r/Neurips2023_9342/.120

For Fairwalk, we follow the settings in the original paper and set the walk number to 20, and the121

window length to 80; for CFC, we set the training steps of the discriminator as 5; for FairAdj, we122

set T2 to 15 and λ to 10; for FLIP, we take the suggestions in the original implementation, and the123

settings are α(0.1), β(0.2); for UGE, we deploy the weighting-based variant as our baseline given124

that there is no non-sensitive attribute in our settings.125

C.4 Details on LastFM dataset126

Table C1: The comparison between our implemen-
tations and normal implementations on LastFM.
The average results are reported after repeating
each method five times.

LastFM (Hits@50)

LightGCN
Original 29.82%± 0.25

Ours 29.30%± 0.21

UltraGCN
Original 28.50%± 0.28

Ours 27.32%± 0.19

Due to the heterogeneity of the recommendation127

datasets, it’s hard to directly deploy community128

detection algorithms on the original networks129

and define the corresponding internal-links and130

cross-links.To this end, inspired by ItemCF131

[13, 17], we first generate an item-item graph132

according to the co-occurrence relationship. For133

example, given a pair of items < v1, v2 >, if134

they both have interactions with user u at least135

O times, where O is a hyperparameter to con-136

trol the confidence of generated item-item graph,137

there will form a link between v1 and v2. Next,138

2Here we follow the evaluation protocol in OGB [9], which is widely used in research.
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we can deploy our framework on the generated item-item graph for learning debiased item em-139

beddings I ∈ R|V |×D, where |V | represents the number of items and D represents the embedding140

dimension. After that, item similarity matrix I2 ∈ R|V |×|V | is calculated, which is further used for141

the final recommendation:142

P = A× I2 (4)

where P ∈ R|U |×|V | denotes the predicted confidence matrix between users and items, and A ∈143

R|U |×|V | represents the adjacency matrix of the original user-item graph.144

In order to prove that our implementation will not affect the performance of the original GNN145

models, we compared our implementation (denoted as "Ours"), where O is set to be 1, with GNNs146

trained on the user-item graph normally (denoted as "Original") in Table C1. The results indicate147

that our implementation does not sacrifice the capability of base GNN models severely to adapt our148

framework.149

D Further Experiments and Analysis150

D.1 Hyper-parameter Analysis151
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Figure C3: The impact of augmentation size

As the core component in our frame-152

work, supervision augmentation plays a153

key role in mitigating the bias between154

internal-links and cross-links. To explore155

its impact in a finer granularity, we vary156

the augmentation ratio k and see how157

the performance of our method changes.158

Specifically, we take LightGCN as the159

base model and investigate the perfor-160

mance on internal-links (Internal.), cross-161

links (Cross.) and the whole link set162

(Overall) by varying k in {0, 0.25, 0.5,163

0.75, 1, 1.25}. Without losing generality,164

here we take Jaccard based supervision augmentation. As shown in Figure C3, the performance of165

the two kinds of links increasingly improves as k grows, accompanied by a steady decrease in the166

difference between them. This is expected because we introduce a large amount of augmented cross-167

links signals to mitigate the bias. And when k reaches 1, which means |Ein| ≈ |Ecr|, the framework168

gradually converges to a stable status. Empirically, a setting k = 1 would be a near-optimal option.169

D.2 Alternative Community Detection Algorithm170

Table C2: Ablation study with METIS community detection
algorithm on two real-world datasets. The results (Hits@50)
are reported in percentage (%). We bold the results when our
framework improves the base GNN model.

Epinions DBLP
Internal.↑ Cross.↑ Overall↑ Bias↓ Internal.↑ Cross.↑ Overall↑ Bias↓

SAGE
Orig. 36.97 19.48 30.75 17.49 69.80 19.00 54.28 50.80
Debias 39.06 28.93 35.89 10.13 78.67 34.65 65.22 44.02

GAT
Orig. 38.33 34.77 37.15 3.56 68.62 28.15 56.26 40.47
Debias 39.96 36.88 38.86 3.08 75.94 42.77 65.81 33.17

UlltraGCN
Orig. 27.27 11.62 20.77 15.65 97.34 70.57 89.16 26.77
Debias 46.92 38.18 44.04 8.74 97.47 73.67 90.20 23.80

In this part, we aim to conduct an171

ablation study on different commu-172

nity detection methods to prove the173

usefulness of our proposed frame-174

work. Since we emphasize the bias175

from a topological perspective, we176

prefer to use the community detec-177

tion algorithm based on graph struc-178

ture. Specifically, to illustrate the179

universality of our framework, we180

conduct experiments based on the181

METIS [10] algorithm as an ablation182

study, and the results on three GNNs183

are shown in Table C2. Specifically, the number of communities is set to be 50 in advance for METIS,184

and all other hyper-parameters are set to be the same as that in Louvain-based experiments, which185

can be found in Section B.3. All results are based on Jaccard based augmentation.186

The results indicate that, although we change the community detection algorithm, our framework187

still successfully mitigates the bias between internal-links and cross-links, and achieves competitive188

results compared with the Louvain-based results, which verifies our work’s compatibility.189
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D.3 Supervision Augmentation Analysis190

In Section 3.3, we design two kinds of data augmentation methods for generating pseudo cross-links191

supervision signals. Intuitively, if the pseudo supervision signals have a high confidence level, they192

can provide significant benefits to our framework. To this end, we aim to verify our hypothesis and193

analyze the impact of different supervision augmentation methods on our framework.194

Table C3: The average hop distance between node pairs gen-
erated by different supervision augmentation methods.

Epinions DBLP
Jaccard based 2.00 2.00

Random walk based 2.69 3.14

Table C4: Link prediction performance (Hits@50) of internal-
links, cross-links and the whole link set of our methods with
random walk based augmentation and corresponding base
models on two real-world datasets. The results are reported
in percentage (%). We bold the results when our framework
improves the base GNN model.

Epinions DBLP
Internal.↑ Cross.↑ Overall↑ Bias↓ Internal.↑ Cross.↑ Overall↑ Bias↓

SAGE
Orig. 31.68 28.91 30.69 2.77 69.27 14.62 56.41 54.65
Fair. 31.72 29.17 31.28 2.55 80.28 28.63 68.12 51.65

GIN
Orig. 33.49 30.97 32.59 2.52 56.66 16.86 47.29 39.80
Fair. 38.35 36.89 37.12 1.46 68.12 32.07 59.64 36.05

GAT
Orig. 39.30 34.90 37.73 4.40 66.25 22.47 55.94 43.78
Fair. 40.02 36.29 37.98 3.73 75.03 32.18 64.94 42.85

PPRGo
Orig. 42.86 28.75 37.83 14.11 85.71 41.14 75.28 44.58
Fair. 45.36 40.12 43.49 5.24 90.48 49.51 80.47 42.08

LightGCN
Orig. 46.43 37.11 43.11 9.32 85.95 47.41 76.88 38.54
Fair. 48.15 40.45 45.41 7.65 92.16 57.55 84.01 34.61

UlltraGCN
Orig. 30.62 5.81 21.78 24.81 95.74 63.82 88.22 31.92
Fair. 52.16 51.99 52.10 0.17 96.47 66.25 89.35 30.22

We first statistic the average hop dis-195

tance between the node pairs gener-196

ated with different supervision aug-197

mentation methods. As shown in Ta-198

ble C3, since we only choose node199

pairs with the most common neigh-200

bors in Jaccard based augmentation,201

the hop distance is fixed to 2. When202

we use random walk based augmen-203

tation, the average distance increases204

consistently on two datasets, which205

verifies its effectiveness in covering206

nodes that are not located in the207

boundary of communities.208

Table C4 further presents the per-209

formance of our framework with210

random walk based augmentation,211

which is literally described in Sec-212

tion 3.3. Specifically, for providing213

fair comparison, all hyper-parameters214

in random walk based experiments,215

including augmentation ratio k and216

others are set to be the same as that217

in Jaccard based experiments. Com-218

pared to Table 2, it can be shown that219

the random walk based framework220

shows less improvement on cross-links, which results in worse debias results. This observation can be221

explained by the hop distance in Table C3, which implies that the random walk based augmentation222

may have lower confidence due to the longer topological distance between node pairs. However,223

compared with the base GNNs, the random walk based framework can still consistently reduce the224

bias between internal-links and cross-links with improved overall performance.225
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