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Proposition 4. For the cross-entropy loss, Eq. (6) induces noise z = −∇θ f̃j

f̃j

on ∇θ`(f , y), s.t.,

z ∈ Rp, j ∼ Uk, where ·
f̃j

denotes the element-wise division. Note that the expected value of noise

on the i-th parameter θi is − 1
k

∑k
j=1

∇θi f̃j

f̃j

.

Proof. For Eq. (6), the noisy gradient is

∇̃θ`total = ∇θ` (f , y) + η · ∇θ`
(
f̃ , ỹ

)
= ∇θ` (f , y) + η · ∇f̃ `

(
f̃ , ỹ

)
· ∇θf̃

For convenience, we omit the hyperparameter η. Note that cross-entropy loss is ` (f , y) = −ey log f ,
then the noise on∇θ` (f , y) is

z = ∇f̃ `
(
f̃ , ỹ

)
· ∇θf̃ = −

(
eỹ

f̃

)T
· ∇θf̃ = −

k∑
j=1

(
eỹj ·
∇θi f̃ j
f̃ j

)
, s.t. ỹ ∼ Uk.

Since eỹ = (0, · · · , 1, · · · , 0) is the one-hot vector and only the y-th entry is 1, the expression of the
noise z can be simplified as:

z = −
∇θf̃ j
f̃ j

, s.t. j ∼ Uk.

Let zi be the i-th entry of z, we have

zi = −
∇θi

f̃ j

f̃ j
, s.t. j ∼ Uk.

Hence,

E (zi) = −
1

k

k∑
j=1

∇θi f̃ j

f̃ j

Proposition 3. For the cross-entropy loss, each open-set sample in OE induces bias z =

− 1
k

∑k
j=1

∇θ f̃j

f̃j

on∇θ`(x, y), s.t., z ∈ Rp, where ·
f̃j

denotes the element-wise division.

Proof. The regularization item of OE is `OE = − 1
k ·
∑k
i=1 log f̃ i.

Then the gradient of `OE w.r.t θ is

∇θ`OE = ∇f̃ `OE · ∇θf̃ = ∇f̃

−1

k
·
k∑
j=1

log f̃ j

 · ∇θf̃ = −1

k
·
k∑
j=1

∇θf̃ j
f̃ j
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B More details on experiment setup

B.1 Datasets

Auxiliary datasets. 300K Random Images [20] is a cleaned and debiased dataset with 300K natural
images. In this dataset, Images that belong to CIFAR classes from it, images that belong to Places or
LSUN classes, and images with divisive metadata are removed so that Dtrain and Dout are disjoint.
We use the dataset as the open-set auxiliary dataset for experiments with CIFAR-10 and CIFAR-100.
In particular, For experiments with Clothing1M, ImageNet 2012 dataset [53] is used as the open-set
auxiliary dataset and we remove all classes related to clothes. CIFAR-5m [21, 43] is a dataset of
6 million synthetic CIFAR-10-like images. For experiments in Fig. 1 and Fig. 3a, we build the
closed-set dataset by sampling class-balanced subsets from CIFAR-5m.

OOD test datasets. Following OE [20], we comprehensively evaluate OOD detectors on artificial
and real anomalous distributions, including: Gaussian, Rademacher, Blobs, Textures [9], SVHN [44],
Places365 [82], LSUN-Crop [75], LSUN-Resize [75], iSUN [72]. For experiments on CIFAR-10, we
also use CIFAR-100 as OOD test dataset. Gaussian noises have each dimension i.i.d. sampled from
an isotropic Gaussian distribution. Rademacher noises are images where each dimension is −1 or
1 with equal probability, so each dimension is sampled from a symmetric Rademacher distribution.
Blobs noises consist in algorithmically generated amorphous shapes with definite edges. Textures [9]
is a dataset of describable textural images. SVHN dataset [44] contains 32 × 32 color images of house
numbers. There are ten classes comprised of the digits 0-9. Places365 [82] consists in images for
scene recognition rather than object recognition. LSUN [75] is another scene understanding dataset
with fewer classes than Places365. Here we use LSUN-Crop and LSUN-Resize to denote the cropped
and resized version of the LSUN dataset respectively. iSUN [72] is a large-scale eye tracking dataset,
selected from natural scene images of the SUN database [69].

B.2 Setups

We conduct all the experiments on NVIDIA GeForce RTX 3090, and implement all methods with
default parameters by PyTorch [49]. Following GCE [80] and SLN [7], we use 5k noisy samples as
the validation set to tune the hyperparameters. We then train the model on the full training set and
report the average test accuracy over the last 5 epochs.

For experiments in Fig. 1, Fig. 2, Fig. 3a and Fig. 3c. We use WRN-40-2 [77] and the network
trains for 200 epochs with a dropout rate of 0.3, using SGD with a momentum of 0.9, a weight decay
of 0.0005. In each iteration, both the batch sizes of the original dataset and the open-set auxiliary
dataset are set as 128. Note that we compare the performance of training with different-sized auxiliary
datasets in Fig. 1, the batch size of the auxiliary dataset is fixed as 128 in all cases. We set the
initial learning rate as 0.1, and reduce it by a factor of 10 after 80 and 140 epochs. For drawing loss
landscapes in Fig. 2, we use the technique from the loss-landscapes library [32]. For experiments in
Fig. 3c, we use 40% noise rate in all types of inherent noisy labels.

For experiments in Fig. 3b. We use the same setting as that of SLN [7]. Specifically, we train
WRN-28-2 [77] for 300 epochs using SGD with learning rate 0.001, momentum 0.9, weight decay
0.0005 and a batch size of 128. For the hyperparameter σ of SLN, we use σ = 1 for symmetric noise
and σ = 0.5 otherwise. Here, we use 40% noise rate in all types of inherent noisy labels, following
the official implementation of SLN.

For experiments on Clothing1M. We use the same setting as that of DivideMix [33]. Specifically,
we use ResNet-50 with ImageNet pretrained weights for 80 epochs. The initial learning rate is set as
0.002 and reduced by a factor of 10 after 40 epochs. For each epoch, we sample 1000 mini-batches
from the training data while ensuring the labels are balanced.

Method-specific hyperparameters. The backbone and training settings of the compared methods
are not unified in previous paper and we reimplement all methods in the same backbone for a fair
comparison. For experiments on CIFAR-10/100, we set λ = 0.5 for JoCoR [63]. For experiments on
Clothing1M, we use the default hyperparameters for DivideMix: M = 2, T = 0.5, τ = 0.5, λu =
0, α = 0.5, and we set the standard deviation of SLN as σ = 0.2.

Guideline for tuning η. We tune the hyperparameter η following a guideline that has been widely
used in existing literature like SLN [7]. Given a new dataset with unknown noise, we suggest quickly

17



searching the best value of η (denoted as ηo) based on the binary search using the validation accuracy
throughout training. 1) If we observe a decrease of validation accuracy at the late stage of training, it
implies overfitting and η < ηo. 2) Otherwise, we have η ≥ ηo. Based on 1) and 2), we can conduct a
binary search to quickly find the best value of η even if one would like to search η in a very detailed
range. The best values of η for vanilla ODNL are reported in Table 5.

Table 5: The best test accuracy (%) and the value of η on CIFAR-10/100 using vanilla ODNL.

Dataset Method Sym-20% Sym-50% Asym Dependent Open

CIFAR-10 Ours 91.06 82.50 90.00 85.37 91.47
η 2.5 2.5 3.0 3.5 2.0

CIFAR-100 Ours 68.82 54.08 58.61 62.45 66.95
η 1.0 1.0 2.0 2.0 1.0

C More empirical results

C.1 Our method also works on other architectures.

Table 6: Test accuracy (%) on CIFAR-10 under symmetric-40% noise rate training with various
architectures. The bold indicates the improved results.

Method WRN-40-2 ResNet-18 VGG-11

Standard 77.55 58.60 58.94

ODNL (Ours) 86.29 80.88 74.27

Our regularization method improves robustness against label noise for more than just WRN architec-
tures. Table 6 shows that ODNL also improves performance under various types of noisy labels with
ResNet-18 [16] and VGG-11 [56]. In particular, we set weight decay as 0.001 for experiments with
ResNet-18 and VGG-11.

C.2 Different choices of open-set auxiliary datasets.

In the experiments in Subsection 2.2, we found that the sample size of auxiliary dataset is important
for the generalization performance when the labels of open-set samples are fixed. To relieve this
requirement, we introduce dynamic noisy labels to strengthen our method in Section 3. In particular,
our method can use only 50,000 examples from 300K Random Images to achieve comparable
performance with using all examples from this dataset. Moreover, we show that using simple
Gaussian noises as auxiliary dataset can also improve robustness against noisy labels, but do not work
as well as real data. For example, in the case of symmetric-40% noise on CIFAR-10, using ODNL
with simple Gaussian noises achieves 80.24% accuracy while using ODNL with 300K Random
Images achieve 82.03%. In addition to size and realism, we also find that diversity of auxiliary dataset
is not important for robustness against noisy labels, while OE [20] claims that it is an important factor
for OOD detection. We conduct experiments on CIFAR-10 with symmetric-40% noises and use the
subset of CIFAR-100 with different number of classes as auxiliary dataset. The sample size of these
subsets are fixed as 5,000. The results of using different subsets are very close, achieving 81.56% test
accuracy.

C.3 Detailed results for OOD detection.

Table 7 presents the detailed results of OOD detection performance on CIFAR-10 under symmetric-
40% noisy labels with various OOD test datasets. From the results, we show that our method can
outperform OE [20] in OOD detection tasks when the labels of training dataset are noisy. Table 8
presents the detailed results of OOD detection performance on CIFAR-10 under clean labels with
various OOD test datasets. We can observe that our method achieve comparable performance to OE
[20]. The results also support the analysis in Section 4.
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Table 7: OOD detection performance comparison on CIFAR-10 under symmetric-40% noisy labels
with different OOD test dataset. ↑ indicates larger values are better and ↓ indicates smaller values are
better.

OOD test dataset Method FPR95 ↓ AUROC ↑ AUPR ↑

Gaussian
MSP 66.14 72.29 27.08

MSP+OE 6.58 97.39 78.37
MSP+Ours 2.68 98.54 83.87

Rademacher
MSP 91.7 49.44 15.26

MSP+OE 5.72 97.43 76.51
MSP+Ours 1.19 99.34 91.30

Blob
MSP 99.4 28.05 10.92

MSP+OE 12.51 97.42 90.62
MSP+Ours 3.46 99.13 94.81

Textures
MSP 98.62 49.26 16.89

MSP+OE 25.43 94.66 79.70
MSP+Ours 11.64 97.43 88.67

SVHN
MSP 95.78 56.19 19.36

MSP+OE 44.26 90.67 69.91
MSP+Ours 18.53 95.38 79.63

CIFAR-100
MSP 94.92 56.2 19.86

MSP+OE 71.09 83.42 60.41
MSP+Ours 50.16 88.50 66.55

LSUN-C
MSP 92.03 60.38 22.38

MSP+OE 13.92 96.68 86.28
MSP+Ours 9.47 97.52 87.47

LSUN-R
MSP 93.36 60.42 22

MSP+OE 11.84 96.77 82.96
MSP+Ours 6.16 98.11 87.37

iSUN
MSP 92.31 59.75 21.6

MSP+OE 12.34 96.47 80.78
MSP+Ours 6.50 98.01 86.53

Places365
MSP 95.84 54.41 18.72

MSP+OE 45.43 91.54 75.38
MSP+Ours 24.49 94.75 80.81

D Discussion

Relations to OAT. OAT [31] aims to use out-of-distribution data to improve generalization in the
context of adversarial robustness. While OAT is relevant to our work, we note that there are key
differences in both technique and insight perspectives:

• Technique: OAT regularizes the softmax probabilities to be a uniform distribution for out-of-
distribution data, which is the same as Outlier Exposure [20]. As analyzed in Section 4, the
regularization in OE and OAT cannot improve the robustness against noisy labels, because
it does not induce dynamic noises and the optimization of parameters always follows the
direction of gradient descent.

• Insight: OAT shows that OOD data samples share the same undesirable features as those of
the in-distribution data so that these samples could also be used to remove the influence of
undesirable features in adversarial robustness. In our work, we show that open-set noisy
labels could be harmless and even benefit the robustness against inherent noisy labels. We
give an intuitive interpretation for the phenomena by “insufficient capacity” and understand
the effects of open-set noises from the perspective of SGD noises.
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Table 8: OOD detection performance comparison on CIFAR-10 with clean labels. ↑ indicates larger
values are better and ↓ indicates smaller values are better.

OOD test dataset Method FPR95 ↓ AUROC ↑ AUPR ↑

Gaussian
MSP 12.45 95.71 75.55

MSP+OE 0.83 99.36 90.36
MSP+Ours 0.74 99.59 94.87

Rademacher
MSP 23.68 87.46 40.80

MSP+OE 0.94 97.69 87.82
MSP+Ours 0.56 99.73 96.95

Blob
MSP 27.09 90.79 58.76

MSP+OE 0.96 99.43 93.08
MSP+Ours 0.73 99.66 96.83

Textures
MSP 48.10 87.98 59.17

MSP+OE 2.44 99.05 93.46
MSP+Ours 3.05 99.13 95.33

SVHN
MSP 20.96 92.73 65.29

MSP+OE 1.60 99.20 92.58
MSP+Ours 1.94 99.25 93.37

CIFAR-100
MSP 48.56 87.29 55.53

MSP+OE 21.65 94.89 81.57
MSP+Ours 23.53 94.56 81.26

LSUN-C
MSP 15.22 95.42 78.18

MSP+OE 3.51 99.15 95.15
MSP+Ours 2.84 99.25 95.92

LSUN-R
MSP 27.31 91.43 64.92

MSP+OE 2.74 99.20 94.35
MSP+Ours 3.78 98.84 92.59

iSUN
MSP 27.36 91.48 64.65

MSP+OE 2.71 99.17 94.30
MSP+Ours 4.29 98.71 92.27

Places365
MSP 50.82 87.40 57.33

MSP+OE 10.10 97.60 90.82
MSP+Ours 10.64 97.52 90.93

Mean
MSP 30.16 90.77 62.02

MSP+OE 4.75 98.63 91.35
MSP+Ours 5.21 98.62 93.03
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