Under review as a conference paper at ICLR 2023

Algorithm 1 Easy First Composition

Input: data X = |21, 29,2y]
while True do
if len(X) == 1 then
return X [0]
end if
if len(X) == 2 then
return cell(X[0], X[1])
end if
Childreny, Childreng < X[: len(X) — 1], X[1]
Parents < [cell(childy,, childg) for childy, childg in zip(Childreny,, Childreng]
Scores + [scorer(parent) for parent in Parents]
index < argmax(Scores)
X[index] < Parents[index]
Delete X [index + 1]
end while

A PSEUDOCODES

We present the pseudocode of the easy first composition in Algorithm [I]and the pseudocode of BT-
cell in Algorithm 2] Note that the algorithms are written as they are for the sake of illustration: in
practice, many of the nested loops are made parallel through batched operations in GPU.

A.1 BEAM TREE CELL ALGORITHM

Here, we briefly describe the algorithm of BT-cell (Algorithm [2)) in words. In BT-Cell, instead of
maintaining a single sequence per sample, we maintain some k (initially 1) number of sequences
and their corresponding scores (initialized to 0). k is a hyperparameter defining the beam size.
Each sequence (henceforth, interchangeably referred to as “beam”) is a hypothesis representing a
particular sequence of choices of parents. Thus, each beam represents a different path of composition
(for visualization see Figure [I). At any moment the score represents the log-probability for its
corresponding beam. Now, we describe the steps in each iteration in the recursion of BT-Cell. Step
1: similar to gumbel-tree models, we create all candidate parent compositions for each of the &
beams. Step 2: we score the candidates with the score function (defined in §2.2). Step 3: we
choose top-k highest scoring candidates. We treat the top-k choices as mutually exclusive. Thus,
each of the k& beams encounters k& branching choices, and are updated into & distinct beams (similar
to before, the children are replaced by the chosen parent). Thus, we get k x k beams. Step 4: we
update the beam scores. The sub-steps involved in the update are described next. Step 4.1: we
apply a log-softmax to the scores of the latest candidates to put the scores into the log-probability
space. Step 4.2: we add the log-softmaxed scores of the latest chosen candidate to the existing
beam score for the corresponding beam where the candidate is chosen. As a result, we will have
k x k beam scores. Step 5: we truncate the £ x k& beams and beam scores into k£ beams and their
corresponding k scores to prevent exponential increase of the number of beams. For that, we again
simply use a top-k operator to keep only the highest scored beams.

At the end of the recursion, instead of a single item representing the sequence-encoding, we will
have k beams of items with their k scores. At this point, to get a single item, we do a weighted
summation with the softmaxed scores as the weights as described in

B GATED RECURSIVE CELL (GRC)

The Gated Recursive Cell (GRC) was originally introduced by Shen et al.|(2019a)) drawing inspira-
tion from the Transformer’s feed-forward networks. In our implementation, we use the same variant
of GRC as was used in|Chowdhury & Caragea (2021) where a GELU |[Hendrycks & Gimpel (2016)

16

Under review as a conference paper at ICLR 2023

Algorithm 2 Beam Tree Cell

Input: data X = [21, 29,x,], k (beam size)
BeamX + [X]
BeamScores < [0]
while True do
if len(BeamX[0]) == 1 then
BeamX < [beam|0] for beamn in BeamX]
break
end if
if len(BeamX[0]) == 2 then
BeamX <« [cell(beam[0], beam[1]) for beam in Beam X
break
end if
NewBeamX < |]
NewBeamScores < ||

for Beam,BeamScore in zip(Beam X, BeamScores) do
Parents < [cell(beaml[i], beam]i + 1]) for i in range(0, len(beam) — 1)]
Scores + log o softmax([scorer(parent) for parent in Parents))
Indices + topk(Scores, k)

for i in range(K) do
newBeam < deepcopy(Beam)
newBeam[Indicesli]] < Parents[Indicesli]]
Delete newBeam|[Indices]i] + 1]
NewBeamX .append(newBeam)
newScore <— BeamScore + Scores[indices]i)]
newBeamScores.append(newScore)
end for
end for
Indices + topk(newBeamScores, k)
BeamScores < [newBeamScores|i] for i in Indices]
BeamX + [newBeamXi] for i in Indices]
end while
BeamScores < Softmax(BeamScores)
Return sum/([score * X for score, X in zip(BeanScores, BeamX)])

activation function was used. We present the equations of GRC here:

Zi
hi| _ cell | childieyq
o | = W2 GeLU (Wl [cm’ ot [) 40)
Us
0; = LN(0(z;) ® childiest + o(h;) © childyigns + o(ci) © u;) @)

o is sigmoid; o; is the parent composition € R4 <1, childiefe, childyigne € R >, weell ¢
ReerXZdn. p e Rbectxl. 1y, ¢ R *dectt; h € R X!, We use this same GRC function for
any recursive model (including our implementation of Ordered Memory) that constitutes GRC.

C BSRP-GRC DETAILS

For the decisions about whether to shift or reduce, we use a scorer function similar to that used in
Chowdhury & Carageal (2021). Where (Chowdhury & Caragea) (2021) use the decision function on
concatenation of local hidden states (n-gram window), we use the decision function on the concate-
nation of last two items in the stack and the next item in the queue. The output is a scalar sigmoid
activated logit score s. We then treat log(s) as the score for reducing in that step, and log(1 — s)

17

Under review as a conference paper at ICLR 2023

Model near-I1ID Length Gen. Argument Gen. LRA
(Lengths) < 1000 200-300 500-600 900-1000 | 100-1000 100-1000 | 2000
(Arguments) <5 <5 <5 <5 10 15 10

BT-GRC+SOFT | 69 44 37.1 29.4 39.5 38.6 31.6

Table 3: Accuracy of BT-GRC+SOFT on ListOps. We report the median of 3 runs. The model was
trained on lengths < 100, depth < 20, and arguments < 5.

as the score for shifting in that step. The scores are manipulated appropriately for edge cases (when
there are no next item to shift, or when there are no two items in the stack to reduce). Besides that,
we use the familiar beam search strategy over standard shift-reduce parsing. Finally the beams of
final states are merged through the weighted summation of the states based on the softmaxed scores
of each beam similar to BT-Cell models as described in

D ST-GUMBEL ToOP-K ISSUES

Let us use the notation argmaxy(.) to denote the function for selecting the index of the k** highest
value element in a vector or a list. Let us say, we have s as a vector such that s; represents the
element at the 7*" dimension of s. We can now, represent the standard straight-through gumbel
softmax (Chot et al.|(2018) as follows:

p = softmax(s + G) (8)

(one_hot(argmax;, (p)) — p).detach() + p)

Here G is the gumbel noise. This strategy allows the forward propagation to have discrete one hot
values (one_hot(argmax, (p))) while backpropagation to propagate through the soft p. However,
this creates a discrepancy between forward propagation and backpropagation that leads to biased
gradient estimation. This problem can be exacerbated in ST-Gumbel Top-k. In this method, instead
of top 1, top k items are selected from p. The straight-through estimation involved in the selection
of some " item among the top k selections (r < k) can be then expressed as:

(one_hot(argmax,.(p)) — p).detach() + p (10)

Note that pyrgmax () < Pargmax, (p)- Thus the discrepancy between p and one hot(argmax,.(p)) will
only increase with increasing r. Moreover while originally in ST-Gumbel, when selecting top-1, p;
can be interpreted (in our context) as the probability that s; is “top-1" item. But in ST-Gumbel Top-
k, when selecting the top ", item there is no corresponding interpretation - p; would still indicate
probability for s; being the “top-1” item not the probability of s; being the “top rt"” item. Overall,
we attempted ST-Gumbel Top-k more so because it’s a simple naive extension of plain top-k but
it’s not a particularly principled approach. As such, the poor performance is not that surprising.
A possible extension could be to transform p to some p” for every top r”* selection such that p!
do reflect probability for s; to be top r*" item but that would be non-trivial to do without adding
significant overhead (similar to that caused by differentiable sorting - see Appendix [E.6)).

E ADDITIONAL EXPERIMENTS AND ANALYSIS

E.1 DIFFERENTIABLE SORTING

Besides the three extensions considered for BT-Cell, another strategy can be to simply use differen-
tiable versions of top-k operators or sorting functions (Adams & Zemel, 2011} |Grover et al., 2019
Cuturi et al.l [2019; Xie et al., 2020; Blondel et al.| [2020; [Petersen et al., 2021} |2022). However, as
we discussed before these methods can lead to issues related to “washing out” of representations due
to using soft permutation matrices leading to higher error accumulation (although temperature can
be used to partially counteract that (Petersen et al.,2021)). Besides that, using these techniques in a
recursive loop can lead to significant overhead and added time complexity. Instead, in this paper, we
mainly aim to show that a simple method, namely, softpath can already bring marked improvement
compared to plain top-k especially in low beam size settings for listops. We keep a more exhaustive
investigation of application of differentiable sorters for beam search as a future work. Nevertheless,

18

Under review as a conference paper at ICLR 2023

Model DG Length Gen. Argument Gen. | LRA
(Lengths) < 100 | 200-300 500-600 900-1k | 100-1k 100-1k | 2K
(Arguments) <5 <5 <5 <5 10 15 <10
(Depths) 8-10 <20 <20 <20 <10 <10 <10
With gold trees

GoldTreeGRC 99.95 [99.95 99.9 99.8 [7695 771 | 74.55
Baselines without gold trees

CYK-GRC 99.45 | 99.0 — — 67.8 35.15 —
Ordered Memory 99.95 | 99.8 99.25 96.4 79.95 7755 | 77
CRVNN 99.9 99.4 99.45 98.9 65.7 43.4 65.1
Beam Tree Models with beam size 5 (also without gold trees)

BT-LSTM 98.9 98.5 98.1 97.7 74.75 40.75 65.05
BT-GRC 99.95 | 99.95 99.95 99.9 75.35 72.05 68.1
BT-GRC + Softpath 99.9 99.6 98.1 97.1 78.1 71.25 | 75.45
BT-GRC + Gumbelpath | 99.9 99.95 99.8 99.7 75.2 72.75 71.8
Beam Tree Models with beam size 2 (also without gold trees)

BT-GRC + Softpath [962 [9540 93.8 912 [6445 51.95 | 51.05

Table 4: Accuracy on ListOps-DG. We report the median of 3 runs except in the last block where
we report the mean/std of 10 runs as mentioned. Our models were trained on lengths < 100, depth
< 6, and arguments < 5. We bold the best results and underline the second-best among models that
do not use gold trees.

we present some preliminary results here. |Xie et al.[(2020) used an optimal transport-based differ-
entiable top k method in beam decoding for machine translation. Here, we use their method (SOFT
Top-k) and create a new variant of BT-GRC by replacing the softpath with SOFT Top-k. We call
this new variant as BT-GRC + SOFT. We run this model in ListOps with the same dataset settings
as used in Table [Il We report the results in Table [3] As we can see in Table [3] BT-GRC+SOFT
shows very poor performance. This supports our hypothesis that using soft permutation matrix in all
recursive iterations may not be ideal because of increase chances of error accumulation and “wash-
ing out” through interpolations of what would be distinct path representations. In Appendix [E.6] we
also demonstrate that using SOFT significantly slows down BT-GRC.

E.2 LisTOPS-DG EXPERIMENT

Dataset Settings: The length generalization experiments in ListOps do not give us an exact per-
spective in depth generalization% capacities. So there is a question of how models will perform in
unseen depths. To check for this, we create a new ListOps split which we call “ListOps-DG”. For
this split, we create 100, 000 training data with arguments < 5, lengths < 100, and depths < 6. We
create 2000 development data with arguments < 5, lengths < 100, and depths 7. We create 2000
test data with arguments < 5, lengths < 100, and depths 8-10. In addition, we also still tested on the
same length-generalization splits (which now simultaneously have much higher depths too: < 20),
argument generalization splits, and LRA. The results are presented in Table[d We only evaluate the
models that were promising (> 90% in near IID settings) in the original ListOps split. We report the
median of 3 runs for each model (except in the last block of the table).

Results: Interestingly, we find that base BT-GRC, CRvNN, and Ordered Memory now does much
better in length generalization compared to the original listops split. We think this is because of
the increased data (the training data in the original ListOps is ~ 75000 after filtering data of length
> 100 whereas here we generated 100, 000 training data). However, while the median of 3 runs in
Ordered Memory is decent, we found one run to have very poor length generalization performance.
To investigate more deeply if Ordered Memory has a particular stability issue, we ran Ordered
Memory for 10 times with diferent seeds, and we find that it frequently fails to learn to generalize
over length. As a baseline, we also ran BT-GRC similarly for 10 runs and found it to be much more
stable. We report the mean and standard deviation of 10 runs of Ordered Memory and BT-GRC

*By depth, we simply mean the maximum number of nested operators in a given sequence in case of ListOps

19

Under review as a conference paper at ICLR 2023

Model DG Length Gen. Argument Gen. LRA
(Lengths) <100 200-300 500-600 900-1k 100-1k 100-1k 2K

(Arguments) <5 <5 <5 <5 10 15 <10
(Depths) 8-10 <20 <20 <20 <10 <10 <10

Stability Test: Mean/Std with 10 runs. Beam size 5 for BI-GRC
Ordered MCII]Ol’y 99-940.6 97.5832 78.785197 61.85291 77.6630 69.03107 67.35125
BT-GRC 99.8415 | 99.585.8 98.821 97.8539 73.8257 66.21107 | 66.975102

Table 5: Accuracy on ListOps-DG (Stability test). We report the mean and standard deviation of of
10. Our models were trained on lengths < 100, depth < 6, and arguments < 5. Subscript represents
standard deviation. As an example, 90; = 90 + 0.1

Model DG1 Length Gen. Argument Gen. LRA
(Lengths) <50 200-300 500-600 900-1000 | 100-1000 100-1000 | 2000
(Arguments) <5 <5 <5 <5 10 15 <10
(Depths) 8-10 <20 <20 <20 <10 <10 <10
After Training on ListOps-DG1

NDR (layer 24) | 96.7 48.9 32.85 22.1 65.65 64.6 42.6
NDR (layer 48) | 91.75 | 34.60 24.05 19.7 54.65 52.45 39.95
Model DG2 Length Gen. Argument Gen. LRA
(Lengths) <100 | 200-300 500-600 900-1000 | 100-1000 100-1000 | 2000
(Arguments) <5 <5 <5 <5 10 15 <10
(Depths) 8-10 <20 <20 <20 <10 <10 <10
After Training on ListOps-DG?2

NDR (layer 24) | 95.6 44.15 30.7 20.3 67.85 58.05 46
NDR (layer 48) | 92.65 | 38.6 29.15 22.1 73.1 64.4 50.4

Table 6: Accuracy on ListOps-DG1 and ListOps-DG2. We report the max of 3 runs. In ListOps-
DG1, NDR was trained on lengths < 50, depth < 6, and arguments < 5. In ListOps-DG1, NDR
was trained on lengths < 100, depth < 6, and arguments < 5. Lyaers denote the layers used during
inference.

in Table[5] As can be seen, the mean of BT-GRC is much higher than that of Ordered Memory in
length generalization splits.

E.3 NDR EXPERIMENTS

Dataset Settings: Neural Data Routers (NDR) is a Transformer-based model that was shown to per-
form well in algorithmic tasks including Listops (Csordas et al., 2022). We tried some experiments
with it too. We found NDR to be struggling in the original ListOps splits or the ListOps-DG split.
We noticed that in the paper (Csordas et al., 2022), NDR was trained in a much larger sample size
(~ 10 times more data than in ListOps-DG) and also on lower sequence lengths (~ 50). To better
check for the capabilities of NDR, we created two new ListOps split - DG1 and DG2. In DG1, we
set the sequence length to 10-50 in training, development, and testing set. We created 1 million data
for training, and 2000 data for development and testing. Other parameters (number of arguments,
depths etc.) are same as in ListOps-DG split. Split DG2 is the same as ListOps-DG split in terms of
data-generation parameters (i.e it includes length sizes < 100) but with much larger sample size for
the training split (again, 1 million samples same as DG1). We present the results in Table[6]

Results: We find that even when we focus on the best of 3 runs in the table, although NDR general-
izes to slightly higher depths (8-10 from < 6) (as reported in (Csordas et al.,|2022)), it still struggles
with splits with orders of magnitude higher depths, lengths, and unseen arguments. Following the
suggestions of (Csordas et al.| (2022), we also increase the number of layers during inference (eg.
upto 48) to handle higher depth sequences but that did not help substantially. Thus, even after expe-
riencing more data, NDR generalizes worse than Ordered Memory, CRVNN, or BT-GRC. Moreover,
NDR requires some prior estimation of the true computation depth of the task for its hyperparameter
setup unlike the other latent-tree models.

20

Under review as a conference paper at ICLR 2023

Model Number of Operations

8 9 10 11 12 C
With gold trees
GoldTreeGRC 97.14, 96.52 95.292 5 94.219.9 93.677.7 974116
Baselines without gold trees
Transformer* 52 51 51 51 48 51
Universal Transformer* | 52 51 51 51 48 51
ON-LSTM* 87 85 81 78 75 60
Self-IRUY 95 93 92 90 88 —
RecurrentGRC 93.046 90.434,9 88.486 86.575,8 80.581,5 83.175,1
BalancedTreeGRC 77.813,6 72-566.6 67.546,4 63.666,6 57~447.6 74.4510
RandomTreeGRC 86.675.1 84.783.2 80.455 2 76.625 5 T1.714.7 78.069.7
GumbelTreeLSTM 77.0312 74.626.1 69.551.7 67.945.1 59.9510 78.2011
GumbelTreeGRC 93.4614 91.8919 90.3322 88.4315 85.7024 89.3449
CYK-GRC 96.622.3 96.074.6 94.6711 93.445 s 92.549 3 77.0827
BSRP-GRC 89.3718 85.923¢ 83.0635 80.6333 74.9142 81.8831
CRVNN 96.93.7 95.995 5 94.515.9 94.485 6 92.7315 89.7955
Ordered Memory 97516 96.7474 94.95, 93.95.9 93.366.2 94 .88~
Beam Tree Models with beam size 5 (also without gold trees)
BT-LSTM 93.2725 92.635.3 88.5510 87.855.2 84.5612 73.0212
BT-GRC 96.831 95.995 4 95.045. 3 94.293 93.362.4 94.1714
Gumbel-BT-GRC 95.568 94.1411 92-7716 91.7121 89.8418 86.5535
BT-GRC + Softpath 97.031.4 96.491 ¢ 95.434 5 94.216.6 93.391.5 78.0443
BT-GRC + Gumbelpath | 96.9312 95.821 5 94.670.6 93.482.9 92.589 83.6347
Beam Tree Models with beam size 2 (also without gold trees)
BT-GRC 96.632.2 95.953.7 95.4531 93.71s55 93.283.9 86.973s
BT-GRC + Softpath 96.961.1 96.491.2 95.381.8 94.6434 93.553.3 | 81.395
BT-GRC + Gumbelpath | 96.4815 96.024.7 94.717.2 93.947 92.461 1 90.8750

Table 7: Mean accuracy and standard deviaton on the Logical Inference for > 8 number of opera-
tions after training on samples with < 6 operations. We also report results of the systematicity split
C. We bold the best results and underline the second-best for all models without gold trees. * indi-
cates that the results were taken from [Shen et al.| (20194) and { indicates results from [Zhang et al.
(2021). Our models were run 3 times on different seeds. Subscript represents standard deviation.
As an example, 90; = 90 £ 0.1

E.4 SYNTHETIC LOGICAL INFERENCE RESULTS

Dataset Settings: We also consider the synthetic testbed for detecting logical relations between
sequence pairs as provided by Bowman et al.| (2015b). Following Tran et al.| (2018), we train the
models on sequences with < 6 operators and test on data with greater number of operators (here,
we check for cases with > 8 operators) to check for capacity to generalize to unseen number of
operators. Similar toShen et al.| (2019a); |(Chowdhury & Carageal (2021)), we also train the model on
the systematicity split C. In this split we remove any sequence matching the pattern x(and(notx))*
from the training set and put them in the test set to check for systematic generalization.

Results: In Table [/] in terms of operation generalization, our proposed BT-Cell models perform
similarly to prior SOTA models like Ordered Memory (OM) and CRvNN while approximating
GoldTreeGRC for both beam sizes. GRC-based models perform better than comparative LSTM-
based models. Unsurprisingly, following discussions in Appendix [D} Gumbel-BT-GRC does not
perform as well. In terms of systematicity (split C), OM and BT-GRC (with beam size 5) perform
similarly (both above 94%) and much better than the other models. Lower beam size extensions
hurts systematicity performance for BT-GRC which is not too surprising given we are limiting the
beam size. Surprisingly, however, softpath/gumbelpath extensions also hurt systematicity. CYK-
GRC shows promise in operator generalization but shows poor systematicity as well. Gumbel-GRC

21

Under review as a conference paper at ICLR 2023

Model M MM LenM LenMM NegM NegMM
RecurrentGRC 71.23 71.44 4995 49.594 49.3¢ 50.1¢
BalancedTreeGRC 71.15 71.44 595 60.75 50.24 50.4¢
RandomTreeGRC 72.23 72.35 61.423 62.323 51.73 52.77
GumbelTreeGRC 71.27 71.26 57.517 59.612 50.520 51.820
CRVNN 72.24 72.65 6244 63.347 52.86 53.84
Ordered Memory 72.53 732 56.533 57.131 50.97 51.713
Beam Tree Models with beam size 5

BT-GRC 71.62 72.31 64.76 66.45 53.737 54.843
BT-GRC + Softpath 71.7¢ 71.92 65.613 66.79 53.2 54.25
BT-GRC + Gumbelpath | 72.13 71.9; 66.37 66.914 51.619 52.201
Beam Tree Models with beam size 2

BT-GRC 72.61 72.62 66.65 68.16 53.321 54.424
BT-GRC + Softpath 71.13 71.91 63.717 65.612 51.819 5312
BT-GRC + Gumbelpath 6745 67‘845 55.167 56.267 47.842 48.343

Table 8: Mean accuracy and standard deviaton on MNLI. Our models were run 3 times on different
seeds. Subscript represents standard deviation. As an example, 90; = 90 + 0.1

performs better than fixed tree models (ReccurentGRC or BalancedTreeCell) or RandomTreeCell
but still far from SOTA which is not unexpected given its poor results in ListOps.

E.5 NATURAL LANGUAGE INFERENCE EXPERIMENTS

Dataset Settings: We ran our models on MNLI (Williams et al.,[2018) which is a natural language
inference task. We tested our models on the development set of MNLI and use a randomly sampled
subset of 10, 000 data points from the original training set as the development set. Our training setup
is different from |Chowdhury & Carageal (2021) and other prior latent tree models which combines
SNLI (Bowman et al.,[2015a) and MNLI training sets (we don’t add SNLI data.). We filter sequences
> 150 from the training set for efficiency. We also test our models in various stress tests (Naik et al.,
2018). We report the results in Table [§| M denotes matched development set (used as test set) of
MNLI. MM denotes mismatched development set (used as test set) of MNLI. LenM denotes length
matched stress set from (Naik et al., [2018)). LenMM denotes length mismatched stress set from
(Naik et al., 2018). NegM denotes negation matched stress set from (Naik et al., 2018). NegMM
denotes negation mismatched stress set from (Naik et al.,|2018). Length matched/mismatched stress
sets add to the length of the premise by adding tautologies. Negation matched/mismatched stress sets
add tautologies containing “not” terms which can bias the model to falsely predict contradictions.

Results: Results in Table [§] show BT-GRC variants are not particularly better than the other
models in the standard matched/mismatched sets. However, discounting Gumbelpath (which
tends to break down), even the weakest BT-GRC variants outperform all other models on length
matched/mismatched stress test. BT-GRC (with beam 2 or 5) or BT-GRC with Softpath and beam 5
also tend to do marginally better than other models in negation matched/mismatched test sets. Over-
all most BT-Cell variants show better robustness to stress tests. We ignore testing Gumbel-BT-GRC
because it generally is a bad performer.

Overall, given both the performance here and at IMDB, gumbel-based models (including gumbel-
path) may be better avoided in general (Also consider that GumbelTreeGRC, here, performs worse
than RandomTreeGRC).

E.6 EFFICIENCY ANALYSIS

Settings: In Table[9] we compare the empirical performance of various models in terms of time and
memory. We ran each models on ListOps splits of different sequence lengths (200-250, 500-600,
and 900-1000). Each split contains 100 samples. We ran each model with the batch size of 1. Other
hyperparameters are same as those used for ListOps. Note that we are showing time and memory
consumption during training (not inference). All models are ran in an Nvidia RTX A6000 GPU.

22

Under review as a conference paper at ICLR 2023

Sequence Lengths
Model 200 — 250 500 — 600 900 — 1000
Time Memory | Time Memory | Time Memory
RecurrentGRC 0.2min 0.02GB | 0.5 min 0.02GB | 1.3 min 0.03 GB

BalancedTreeGRC 0.3min 0.02GB | 1.2 min 0.03GB | 2.1 min 0.04 GB
RandomTreeGRC 0.4min 0.33GB | 1.4 min 1.86 GB | 3.0 min 5.18 GB
GumbelTreeGRC 0.5min 0.35GB | 2.1 min 1.95GB | 3.5 min 5.45 GB

CYK-GRC 9.3min 32.4GB | OOM OoOM OoOM OoOM
BSRP-GRC 2.3min 0.06 GB | 6.1 min 0.19GB | 10.5min 0.42 GB
Ordered Memory 80min 0.09GB | 20.6 min 0.21 GB | 38.2min 0.35GB
CRVNN 1.5min 1.57GB | 4.3 min 12.2GB | 8.0 min 42.79 GB
Beam Tree Models with beam size 5

BT-GRC 1.1min 1.71GB | 2.6 min 9.82 GB | 5.1 min 27.27 GB

BT-GRC + Softpath | 1.4 min 2.74 GB | 4.0 min 15.5GB | 7.1 min 42.95 GB
BT-GRC + SOFT 51min 2.67GB | 12.6 min 15.4GB | 23.1 min 42.78 GB
Beam Tree Models with beam size 2
BT-GRC 1.1min 0.68 GB | 2.6 min 3.92GB | 5.1 min 10.90 GB
BT-GRC + Softpath | 1.4 min 0.88 GB | 4.0 min 5.03GB | 7.1 min 14.01 GB

Table 9: Empirical time and memory consumption for various models. Ran on 100 ListOps data of
different sequence lengths wiht batch size 1

Discussions:

Assume n denotes the sequence length, d denotes the hidden state dimensions, & denotes the beam
size, and m denotes the number of memory slots (for Ordered Memory).

RecurrentGRC: Recurrent models performs reasonably well. While it need to go through n se-
quential steps but so do most other models. Moreover, computation in each iteration of the sequential
loop is relatively simple - it is just the application of the recursive cell function. The space com-
plexity is also very little because of lack of parallel processing accross the sequence length (it has
to only store the hidden state memory O(d)). Thus the memory consumption stays nearly constant
with increasing sequence length.

BalancedTreeGRC: BalancedTreeGRC is also moderately efficient. It can slightly increase mem-
ory consumption because of more parallelized processing. It composes multiple children in every
step. However, since it cuts off half of the sequence at every step, its outer sequential loop is only
in the order of O(logn). Thus, its memory consumption does not increases as much compared
to GumbelTreeGRC or RandomTreeGRC. While the total sequential steps is much less for Bal-
ancedTreeGRC, it seems that the added overhead from more parallelized processing per iteration
still makes it slightly slower than RecurrentGRC in practice (still it is faster than any other models).
However, there may be room for better code optimization for BalancedTreeCell.

RandomTreeCell and GumbelTreeCell: Both are similar in terms of complexity. Both chooses one
composition at a time requiring them to still go through n seuqntial steps in the outer loop unlike
BalancedTreeGRC. However, unlike RecurrentGRC, in each loop, it has to also parallely compute
all possible parent compositions - this leads to higher space complexity for each iteration O(nd?)
that also scales up with increasing sequence length n and also higher computational overhead per
iteration in the loop. Thus, they run slower than RecurrentGRC and takes much more memory as
well. Nevertheless, in comparison to other latent-tree models these are still relatively fast, simple,
and lightweight.

CYK-GRC: CYK-GRC is the worst offender of all in terms of computational efficiency. Note also
that GRC can itself be relatively expensive cell function because of high dimensional feedforward
networks — adding up overhead compared to classical CYK models. CYK-GRC takes a chart-filling
approach in a dynamic programming style. The number of cells in the filled chart is n?/2. Each
cell in the original CYK algorithm can again have multiple options, however, Maillard et al.|(2019)
simplifies this by keeping only one option per cell through attention-based pooling. Even after
that, each cell still has to contain a d dimensional hidden state. This leads to atleast o(n?d) space

23

Under review as a conference paper at ICLR 2023

complexity. Moreover, it still has to take n sequential steps in the outer loop to recursively fill up the
chart. At the same time each sequential step is also more expensive than any of the other models.
For filling up any cell it has to compute all valid possible ways to combine pre-computed cell and
then perform an attention pooling. It has to, thus, apply GRC multiple times to all possible ways of
composition from prior chart cells. This step can be, however, parallelized (and we do parallelize it).
Nevertheless, applying GRC in parellel to all possible left-right children pair (from prior computed
chart cells) can still add to memmory consuption and temporal overheads. This reflects in both
extremely high memory consumption and also the slowest speed among all else.

BSRP-GRC: BSRP-GRC is essentially a form of stack augmented RNN. Similar to Recurrent-
GRC, it’s memory consuption is low because of limited parallel processing (although its stack size
grow with each iteration which reflects in sharply rising memory with increasing sequence length
compared to Recurrent GRC). However, it has added expenses in each recurrent iteration due to
additional stack operations and shift/reduce decision computation. In effect this makes the model
quite slow although better than some others. BSRPC-GRC taking a shift-reduce parsing strategy
also need to increase the sequential steps from n to 2n. Although that doesn’t make an asymptotic
difference, it still can further contribute to the empirical slowdown. We use a beam size of 5 for
BSRP-GRC here for better comparison against BT-GRC.

Ordered Memory: Ordered Memory (OM) is also a form of stack augmented RNN and thus, have
similar memory advantages as RecurrentGRC (although overall memory consumption is relative
increased due to storing multiple slots of hidden states). However, the main bottleneck in OM is
time. Precisely, OM utilizes a nested loop. The outerloop is the same n times sequential operation
as RecurrentGRC, but in the in each step of that loop, OM has to again sequentially apply GRC
over the m memory slots. This leads to a O(nm) sequential steps. Thus, we get a heavy hit to time
consumption with OM.

CRvVNN: The framework of CRVNN is roughly similar to GumbelTreeGRC. However, instead of
choosing one parent at a time, it can choose multiple parents at a time, that too in a soft manner. But
this comes at a cost. While GumbelTreeGRC can reduce the sequence size with each sequential step,
CRvVNN has to still maintain the whole sequence in each step with associated “existential probabil-
ity” for each sequence item. Moreover, computing the composition of contiguous representations
also becomes harder. Since in CRvNNs sequence items exists with some probability, what counts
as the first existing contiguous item is also probabilistic. In effect, CRVNN needs to create a n?
attention matrix (similar to Transformers but based on existential probabilities instead of dot prod-
uct attention) to retrieve neighbor (contiguous) elements to create parent candidates. Furthermore,
in each sequential steps, this n? attention matrix needs to be applied multiple times - for example,
to get local composition scores for sigmoid modulation and also to retrieve some w local items for
its convolution-based decision function. That can also add significant overhead (although still quite
tame, in terms of temporal overhead, compared to the memory-slot-wise recursion in OM). Thus, in
effect, we get increased memory consumption and time compared to GumbelTreeGRC. At the same
time, however, efficiency analysis for CRvVNN is complicated by the fact that it can dynamically halt
early. That is, it does not need to take full n sequential steps unlike any of the other models (besides
BalancedTreeGRC). However, this doesn’t mean CRvNN is guaranteed to take O(logn) sequentials
steps. Ideally, it is intended to take as many sequential steps as is the induced binary tree depth.
Underlying binary tree depths are not necessarily always (or even in average) around O(logn). So
while it can give an increase performance boost, there is not a clear boost asymptotically. More-
over, we found it challenging to evaluate CRvNN fairly. In the 100 samples dataset, CRVNN with
early halting can just induce bad trees (given lack of enough data to be trained well) and halt very
fast (unreflective of realistic performance) but increasing number of samples makes the analysis
more cumbersome overall for all other models. So we instead show the “worst case” performance
of CRVNN. The “worst case” is the case when CRvNN does not halt early; thus, to simulate the
“worst case” we disable early halting. The “worst case” is also still practically relevant and needed
to be considered to set up the hyperparameters (like batch size) properly so that the model does
not run out of memory during training because of the “worst case” induction. With this setup, we
find CRvNN to be in-between in terms of performance. We discuss more about it in comparison to
BT-Cell models in the next section.

BT-GRC: The time complexity of BT-GRC is O(n(knd? + k3nd)). k (beam size) is technically
a relative small constant and can be ignored in asymptotic analysis (bringing BT-GRC at a similar
complexity level to Gumbel-Tree GRC), but we keep it here for better exposition of the effect of

24

Under review as a conference paper at ICLR 2023

beam size (k). Similar to most other models here, BT-GRC has to take an outer sequential steps
of n. In each sequential step, similar to GumbelTreeGRC it has to calculate all parent candidates
which can lead to a complexity of O(nd?), but since now we have to do the same for each of the
k beams we have a multiplicative effect: O(knd?). However, this n¢ computation can be done in
parallel (all parent candidates are computed in parallel in GumbelTreeGRC). Similarly each beams
are independent and can be computed in parallel as well. So in effect the computation cost here is
similar to increasing the batch size of GumbelTreeGRC by k. The term k3nd indicates the selection
costs of k vectors of size d from k2 vectors of size d for a sequence of size n. Again, in practice
this can be also parallelized by creating a k? permutation matrix and performing a single matrix
multiplication in CUDA. Overall, this doesn’t add as much cost over parent composition.

As we a priori suspected, empirically, we also verified the increased time/memory cost of BT-GRC
in different sequence length to match the effect of increasing the batch size of GumbelTreeGRC by
k. Even though, ultimately, k is a constant, in practice, this can still lead to a significant expense.
This is where small k (example beam 2) can be valuable. As we can see because most computation
through £ is parallelized the time is not changed as much in changing from beam size (k) 2 to 5. But
the memory consumption can be significantly decreased with lower beam (k = 2). Thus, BT-Cell
with beam size 2 can be an attractive choice here particularly when it can still perform relatively on
par with bigger beam models on synthetic logical inference and natural language tasks. Also with
softpath and beam size 2, listops performance is still decent.

Another interesting point to note is that BT-GRC does not rely on any n? matrix as CRVNN. Thus,
we can see that its memory consumption scales better with increasing length than CRvNN. For
example, in sequence length 200-250, CRVNN took slightly less memory than BT-GRC, but in
sequence length 900-1000, CRvNN takes nearly twice as much memory compared to BT-GRC.

However, we wouldn’t claim that CRvNN is strictly worse than BT-GRC in efficiency departments
because CRVNN can be made more efficient by bounding its outer sequential loop and dynamic
halting (but these factors are more tricky to fairly analyze).

BT-GRC + Softpath: Although the forward propagation complexity should be nearly the same for
Softpath, in practice we find that adding Softpath increases both the memory and time significantly
compared to base BT-GRC. We find that this is because of added backpropagation expenses because
of more complicated gradient propagation. We verified this by keep the forward network of Softpath
variant the same and using Pytorch’s detach() function to cut the gradient from Top-K Softpath
selection. This change leads to similar empirical efficiency to base BT-GRC. Nevertheless, despite
the added costs, Softpath is still comparable to CRvINN and much faster than OM, CYk-GRC, SOFT
top-k, and BSRP-GRC. Moreover, Softpath with beam size 2 still remains an attractive option with
further lowered memory consumption.

BT-GRC + SOFT: As we already claimed before using differentiable sorting algorithm (SOFT
Top-k) (Xie et al.,2020) in a recursive loop can bring significant overhead and slowdown. We show
it empirically in Table[9] Replacing Softpath with SOFT Top-k can increase the time taken by around
3x compared to BT-GRC+Softpath.

E.7 PARSE TREE ANALYSIS

In this section, we analyze the induced structures of BT-Cell models. Note, however, although in-
duced structures can provide some insights to the model, we can draw limited conclusions from
them. First, if we take a stance similar to |Choi et al| (2018) in considering it suitable to allow
different kinds of structures to be induced as appropriate for a specific task then it’s not clear how
structures should be evaluated by themselves (besides just the donwstream task evaluations). Sec-
ond, the extracted structures may not completely reflect what the models may implicitly induce
because the recursive cell can override some of the parser decisions (given how there is evidence
that even simple RNNs|Bowman et al.[(2015b) can implicitly model different tree structures within
its hidden states to an extent even when its explicit structure always conform to the left-to-right or-
der of composition). Third, even if the extracted structure perfectly reflects what the model induces,
another side of the story is the recursive cell itself and how it utilizes the structure for language un-
derstanding. This part of the story can still remain unclear because of the blackbox-nature of neural
nets. Nevertheless, extractive structures may still provide some rough idea of the inner workings of
BT-Cell variants.

25

Under review as a conference paper at ICLR 2023

Score ‘ Parsed Structures

BT-GRC (beam size 5)
0.42 ((i (did not)) (((like a) (single minute)) ((of this) film)))
0.40 ((@ (did not)) ((like a) (single minute))) ((of this) film))
0.20 ((i (did not)) (((like a) ((single minute) of)) (this film)))
0.40 ((i (shot an)) ((elephant in) (my pajamas)))
0.21 ((@ shot) (an elephant)) ((in my) pajamas))
0.19 (((i shot) (an elephant)) (in (my pajamas)))
0.19 ((i shot) ((an elephant) ((in my) pajamas)))
0.40 ((john saw) ((a man) (with binoculars)))
0.40 (((john saw) (a man)) (with binoculars))
0.20 ((john (saw a)) ((man with) binoculars))
0.61 (((roger (dodger is)) (one (of the))) (((most compelling) (variations of)) (this theme)))
0.40 (((roger (dodger is)) ((one (of the)) (most compelling))) ((variations of) (this theme)))
BT-GRC (beam size 2)
0.50 ((i ((did not) like)) (((a single) minute) ((of this) film)))
0.50 ((i (((did not) like) (a single))) ((minute of) (this film)))
0.50 ((i (shot an)) ((elephant in) (my pajamas)))
0.50 ((i ((shot an) elephant)) ((in my) pajamas))
0,51 ((john (saw a)) ((man with) binoculars))
0.49 (john (((saw a) man) (with binoculars)))
1.0 ((roger ((dodger is) one)) ((((of the) most) (compelling variations)) ((of this) theme)))

Table 10: Parsed Structures of BT-GRC trained on MNLI. Each block represents different beams.

In Table [T0] we show the parsed structures of some iconic sentences by BT-GRC after it is trained
on MNLI. We report all beams and their corresponding scores. Note, although beam search ensures
that the sequence of parsing actions for each beam is unique, different sequences of parsing action
can still lead to the same structure. Thus, some beams end up being duplicates. In such cases, for
the sake of more concise presentation, we collapse the duplicates into a single beam and add up their
corresponding scores. This is why we can note in Table [T0| that we sometimes have fewer induced
structures than the beam size.

At a rough glance, we can see that the different induced structures roughly correspond to human
intuitions. One interesting appeal for beam search is that it can more explicitly account for ambigu-
ous interpretations corresponding to ambiguous structures. For example, “i shot an elephant in my
pajamas” is ambiguous with respect to whether it is the elephant who is in the shooter’s pajamas,
or if it is the shooter who is in the pajamas. The induced structure (beam size 5 model in Table [I0)
(((i shot) (an elephant)) ((in my) pajamas)) corresponds better to the latter interpretation whereas
((i shot) ((an elephant) ((in my) pajamas))) corresponds better to the former interpretation (because
“an elephant” is first composed with “in my pajamas”).

Similar to above, “john saw a man with binoculars” is also ambiguous. Its interpretation is ambigu-
ous with respect to whether it is John who is seeing through binoculars, or whether it is the man
who just possesses the binoculars. Here, again, we can find (beam size 5 model in Table[I0) that the
induced structure (((john saw) (a man)) (with binoculars) corresponds better to the former interpre-
tation whereas ((john saw) ((a man) (with binoculars))) corresponds better to the latter. Generally,
we find the score distributions to have a high entropy. A future consideration would be whether we
should add an auxiliary objective to minimize entropy.

In Table [IT] we show the parsed structures of the same sentences by BT-GRC+Softpath after it is
trained on MNLI, and in Table[I2] we show the same for BT-GRC+Gumbelpath. Most of the points
above applies here for Softpath and Gumbelpath as well. Interestingly, Softpath and Gumbelpath
seemed to have a relatively lower entropy distribution - that is most evident in beam size 2. We
also note that Gumbelpath structures are of a similar quality despite having much lower empirical
performance in MNLI.

26

Under review as a conference paper at ICLR 2023

Score ‘ Parsed Structures
BT-GRC + Softpath (beam size 5)
0.42 (((did) (not like)) (((a single) minute) ((of this) film)))
0.20 ((((did) not) ((like a) single)) ((minute of) (this film)))
0.19 ((((did) (not like)) ((a single) minute)) ((of this) film))
0.19 ((((did not)) ((like a) single)) ((minute of) (this film)))
0.41 ((@ shot) an) ((elephant in) (my pajamas)))
0.21 (((i shot) (an elephant)) ((in my) pajamas))
0.19 ((i (shot an)) ((elephant in) (my pajamas)))
0.19 ((((i shot) an) (elephant in)) (my pajamas))
0.21 ((john (saw a)) ((man with) binoculars))
0.20 (((john saw) (a man)) (with binoculars))
0.20 ((john saw) ((a man) (with binoculars)))
0.19 ((john ((saw a) man)) (with binoculars))
0.40 (((roger dodger) (is one)) ((((of the) most) (compelling variations)) ((of this) theme)))
0.21 (((roger (dodger is)) ((one of) the)) (((most compelling) variations) ((of this) theme)))
0.20 ((((roger dodger) (is one)) ((of the) most)) ((compelling variations) ((of this) theme)))
0.19 ((roger (dodger is)) ((((one of) the) ((most compelling) variations)) ((of this) theme)))
BT-GRC + Softpath (beam size 2)
0.57 ((i ((did not) like)) (((a single) minute) ((of this) film)))
0.43 ((i ((did not) like)) (((a single) (minute of)) (this film)))
0.54 ((i ((shot an) elephant)) ((in my) pajamas))
0.46 ((i (shot an)) ((elephant in) (my pajamas)))
0.55 ((john (saw a)) ((man with) binoculars))
0.45 ((john ((saw a) man)) (with binoculars))
0.53 ((roger ((dodger is) one)) ((((of the) most) (compelling variations)) ((of this) theme)))
0.47 (((roger ((dodger is) one)) ((of the) most)) ((compelling variations) ((of this) theme)))

Table 11: Parsed Structures of BT-GRC + Softpath trained on MNLI. Each block represents different
beams.

We found the structures induced by BT-Cell variants after training on SSTS or IMDB to be more
ill-formed. This may indicate that sentiment classification does not provide a strong enough signal
for parsing or rather, exact induction of structures are not as necessary (lyyer et al.,2015). We show
the parsings of these models after training on IMDB and SST datasets in a text file included in the
supplementary.

F EXTENDED RELATED WORKS

Initially RvNN [Pollack| (1990); [Socher et al.| (2010) was used with user-annotated tree-structured
data. Some explored use of heuristic trees such as balanced trees for RvNN-like settings
(Munkhdalai & Yu, 2017} |Shi et al} 2018). In due time, several approaches were introduced for
dynamically inducing structures from data for RvNN-style processing. This includes the greedy
easy-first framework using children-reconstruction loss (Socher et al., |2011) or gumbel softmax
(Choi et al.l 2018), RL-based frameworks (Havrylov et al.l [2019), CYK-based framework (Le &
Zuidema), 2015} Maillard et al.|, 2019; Drozdov et al., [2019; |Hu et al., 2021), shift-reduce parsing
or memory-augmented or stack-augmented RNN frameworks (Grefenstette et al., |2015; |[Bowman
et al} [2016; [Yogatama et al, [2017; Maillard & Clark, 2018} [Shen et al., [2019a; [DuSell & Chi-
ang| 2020;2022), and soft-recursion-based frameworks (Chowdhury & Caragea, [2021} Zhang et al.,
2021). Besides RvNNs, other approaches range from adding information-ordering biases to hidden
states in RNNs (Shen et al., 2019b) or even adding additional structural or recursive constraints to
Transformers (Wang et al., 2019; [Nguyen et al., [2020; [Fei et al., [2020; [Shen et al., 2021; |Csordas
et al., [2022).

27

Under review as a conference paper at ICLR 2023

Score ‘ Parsed Structures
BT-GRC + Gumbelpath (beam size 5)
0.42 ((((did not)) (like a)) ((single (minute of)) (this film)))
0.38 (((did) ((not like) (a single))) ((minute (of this)) film))
0.20 (((i did) ((not like) (a single))) ((minute (of this)) film))
0.43 ((i (shot an)) ((elephant in) (my pajamas)))
0.20 ((@ shot) (an elephant)) ((in my) pajamas))
0.19 (((i shot) (an (elephant in))) (my pajamas))
0.18 (((i (shot an)) (elephant in)) (my pajamas))
0.39 | (((john saw) (a man)) (with binoculars))
0.39 ((john saw) ((a man) (with binoculars)))
0.21 ((john (saw a)) ((man with) binoculars))
0.41 (((roger (dodger is)) (one (of the))) ((most (compelling variations)) ((of this) theme)))
0.21 (((roger dodger) (is one)) (((of the) (most (compelling variations))) ((of this) theme)))
0.20 (((roger dodger) ((is one) (of the))) ((most (compelling variations)) ((of this) theme)))
0.19 (((roger (dodger is)) ((one (of the)) (most (compelling variations)))) ((of this) theme))
BT-GRC + Gumbelpath (beam size 2)
0.58 (((((1 did) (not like)) (a single)) (minute (of this))) film)
0.42 (((((did) (not like)) (a single)) (minute of)) (this film))
0.64 ((@ (shot an)) (elephant (in my))) pajamas)
0.36 (((i (shot an)) (elephant in)) (my pajamas))
0.53 ((john (saw a)) (man (with binoculars)))
0.47 | (((john (saw a)) (man with)) binoculars)
0.51 (((((roger dodger) (is one)) (of the)) (most (compelling variations))) (of (this theme)))
0.49 ((((((roger dodger) (is one)) (of the)) (most (compelling variations))) (of this)) theme)

Table 12: Parsed Structures of BT-GRC + Gumbelpath trained on MNLI. Each block represents
different beams.

G LIMITATIONS AND FUTURE WORKS

The ideal future direction would be to extend to methods which generalize better in all aspects while
maintaining computational efficiency and at the same time having a more flexible architecture for
handling more free structures like non-projective trees or directed acyclic graphs and also richer
classes of languages (DuSell & Chiang| 2022} |Del’etang et al.,|2022). Another direction to explore
would be to linearize the recursion particularly taking inspiration from state space models (Gu et al.,
2022)) to make these models more scalable.

H HYPERPARAMETERS

For all recursive/recurrent models, we use a linear layer followed by layer normalization for initial
leaf transformation before starting the recursive loop (similar to |Shen et al.| (2019a); (Chowdhury &
Caragea|(2021)). Overall we use the same boilerplate classifier architecture for classification and the
same boilerplate sentnece-pair siamese architecture for logical inference as (Chowdhury & Caragea
(2021)) over our different encoders. In practice, for BT-Cell, we use a stochastic top-k through
gumbel perturbation similar to Kool et al.|(2019). However, we find deterministic selection to work
similarly.

In terms of the optimizer, hidden size, and other hyperparameters besides dropout, we use the same
ones as used by (Chowdhury & Caragea, 202 1)) for all models for corresponding datasets; for number
of memory slots and other ordered memory specific parameters we use the same ones as used by
(Shen et al.l [2019a). For BSRP-Cell we use a beam size of 8 (we also tried with 5 but results
were similar or slightly worse). We use a dropout rate of 0.1 for logical inference for all models
(tuned on the validation set using grid search among [0.1,0.2, 0.3, 0.4] with 5 epochs per run using
BalancedTreeCell for GRC-based models and GumbelTreeLSTM for LSTM based models). We

28

Under review as a conference paper at ICLR 2023

use dropouts in the same places as used in (Chowdhury & Carageal 2021). We then use the same
chosen dropouts for ListOps. We tune the dropouts for SST in the same way (but with a maximum
epoch of 20 per trial) on SST5 using RecurrentGRC for GRC-models, and Gumbel-Tree-LSTM for
LSTM models. After tuning, for GRC-based models in SST5, we found a dropout rate of 0.4 for
input/output dropout layers, and 0.2 for the dropout layer in the cell function. We found a dropout
of 0.3 for LSTM-based models in SSTS. and We share the hyperparameters of SST5 with SST2 and
IMDB. For MNLI, we used similar settings as Chowdhury & Caragea) (2021)).

For NDR experiments, we use the same hyperparameters as used for ListOps by |Csordas et al.
(2022). The hyperparameters will also be available in code.

All codes are run in a single RTX A6000 GPU.

29

	Pseudocodes
	Beam Tree Cell Algorithm

	Gated Recursive Cell (GRC)
	BSRP-GRC Details
	ST-Gumbel Top-k Issues
	Additional Experiments and Analysis
	Differentiable Sorting
	ListOps-DG Experiment
	NDR Experiments
	Synthetic Logical Inference Results
	Natural Language Inference Experiments
	Efficiency Analysis
	Parse Tree Analysis

	Extended Related Works
	Limitations and Future Works
	Hyperparameters

