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ABSTRACT

Deep representation learning methods struggle with continual learning, suffering
from both catastrophic forgetting of useful units and loss of plasticity, often due to
rigid and unuseful units. While many methods address these two issues separately,
only a few currently deal with both simultaneously. In this paper, we introduce
Utility-based Perturbed Gradient Descent (UPGD) as a novel approach for the
continual learning of representations. UPGD combines gradient updates with per-
turbations, where it applies smaller modifications to more useful units, protecting
them from forgetting, and larger modifications to less useful units, rejuvenating
their plasticity. We use a challenging streaming learning setup where continual
learning problems have hundreds of non-stationarities and unknown task bound-
aries. We show that many existing methods suffer from at least one of the issues,
predominantly manifested by their decreasing accuracy over tasks. On the other
hand, UPGD continues to improve performance and surpasses or is competitive
with all methods in all problems. Finally, in extended reinforcement learning ex-
periments with PPO, we show that while Adam exhibits a performance drop after
initial learning, UPGD avoids it by addressing both continual learning issues.1

1 CHALLENGES OF CONTINUAL LEARNING

Continual learning remains a significant hurdle for artificial intelligence, despite advancements in
natural language processing, games, and computer vision. Catastrophic forgetting (McCloskey &
Cohen 1989, Hetherington & Seidenberg 1989) in neural networks is widely recognized as a major
challenge of continual learning (De Lange et al. 2021). The phenomenon manifests as the failure of
gradient-based methods like SGD or Adam to retain or leverage past knowledge due to forgetting or
overwriting previously learned units (Kirkpatrick et al. 2017). In continual learning, these learners
often relearn recurring tasks, offering little gain over learning from scratch (Kemker et al. 2018).
This issue also raises a concern for reusing large practical models, where finetuning them for new
tasks causes significant forgetting of pretrained models (Chen et al. 2020, He et al. 2021).

Methods for mitigating catastrophic forgetting are primarily designed for specific settings. These
include settings with independently and identically distributed (i.i.d.) samples, tasks fully contained
within a batch or dataset, growing memory requirements, known task boundaries, storing past sam-
ples, and offline evaluation. Such setups are often impractical in situations where continual learning
is paramount, such as on-device learning. For example, retaining samples may not be possible due
to the limitation of computational resources (Hayes et al. 2019, Hayes et al. 2020, Hayes & Kannan
2022, Wang et al. 2023) or concerns over data privacy (Van de Ven et al. 2020).

In the challenging and practical setting of streaming learning, catastrophic forgetting is more severe
and remains largely unaddressed (Hayes et al. 2019). In streaming learning, samples are presented to
the learner as they arise, which is non-i.i.d. in most practical problems. The learner cannot retain the
sample and is thus expected to learn from it immediately. Moreover, evaluation happens online on
the most recently presented sample. This setup mirrors animal learning (Hayes et al. 2021, also c.f.,
list-learning, Ratcliff 1990) and is practical for many applications, such as robotics or autonomous
on-device learning. In this work, we consider streaming learning with unknown task boundaries.

1Code is available at https://github.com/mohmdelsayed/upgd
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(a) Catastrophic Forgetting (b) Loss of Plasticity (c) Closer look at Loss of Plasticity
UPGD Adam-RestartsAdam

Figure 1: (a) Adam suffers from catastrophic forgetting and hence hardly improves performance. (b
& c) Adam loses plasticity as newer and newer tasks are presented and performs much worse than
Adam with restarts later. In contrast, our proposed method, UPGD, quickly learns and maintains
plasticity throughout learning. See Appendix I.1 for experimental details.

Streaming learning provides the learner with a stream of samples (xt,yt) generated using a non-
stationary target function ft such that yt = ft(xt). The learner observes the input xt ∈ Rd, outputs
the prediction ŷt ∈ Rm, and then observes the true output yt ∈ Rm, strictly in this order. The
learner is then evaluated immediately based on the online metric E(yt, ŷt), for example, accuracy in
classification or squared error in regression. The learner uses a neural network for prediction and E
or a related loss to learn the network parameters immediately without storing the sample. The target
function ft is locally stationary, where changes to ft occur occasionally, creating a nonstationary
continual learning problem composed of a sequence of stationary tasks.

Fig. 1(a) illustrates catastrophic forgetting with Adam in the streaming learning setting. Here, a
sequence of tasks based on Label-Permuted EMNIST is presented to the learner. The tasks are de-
signed to be highly coherent, where the features learned in one task are fully reusable in the other.
Full details of the problem are described in Section 4.4. If the learner can remember and leverage
prior learning, it should continue to improve performance as more tasks are presented. However,
Fig. 1(a) reveals that Adam can hardly improve its performance, which remains at a low level of ac-
curacy, indicating forgetting and relearning. Although catastrophic forgetting is commonly studied
under offline evaluation (solid lines), the issue also manifests in online evaluation (dashed lines).
This result indicates that current representation learning methods are unable to leverage previously
learned useful features but instead forget and relearn them in subsequent tasks.

Yet another pernicious challenge of continual learning is loss of plasticity, where the learner’s ability
to learn new things diminishes. Recent studies reveal that SGD or Adam continues to lose plastic-
ity with more tasks, primarily due to features becoming difficult to modify (Dohare et al. 2021,
Lyle et al. 2023). Several methods exist to maintain plasticity, but they generally do not address
catastrophic forgetting. Figures 1(b) and 1(c) illustrate loss of plasticity, where Adam is presented
with a sequence of new tasks based on Input-Permuted MNIST (Goodfellow et al. 2013). Adam’s
performance degrades with more tasks and becomes worse than Adam-Restarts, which learns from
scratch on each task. The stable performance of Adam-Restarts indicates that the tasks are of similar
difficulty. Yet, Adam becomes slower to learn over time, demonstrating loss of plasticity.

A method that preserves useful units, such as features or weights, while leaving the other units
adaptable would potentially address both catastrophic forgetting and loss of plasticity. Although
a few methods address both issues simultaneously, such methods expect known task boundaries,
maintain a replay buffer, or require pretraining, which does not fit streaming learning (Hayes et al.
2022). In this paper, we intend to fill this gap and present a continual learning method that addresses
both catastrophic forgetting and loss of plasticity in streaming learning without such limitations.

2 RELATED WORKS

Addressing Catastrophic Forgetting. Different approaches have been proposed to mitigate catas-
trophic forgetting. For example, replay-based methods (e.g., Chaudhry et al. 2019, Isele & Cosgun
2018, Rolnick et al. 2019) address forgetting by using a replay buffer to store incoming non-i.i.d.
data and then sample from the buffer i.i.d. samples. Catastrophic forgetting is also addressed by
parameter isolation methods (e.g., Rusu et al. 2016, Schwarz et al. 2018, Wortsman et al. 2020, Ge
et al. 2023) that can expand to accommodate new information without significantly affecting previ-
ously learned knowledge. There are also sparsity-inducing methods (e.g., Liu et al. 2019) that work
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by maintaining sparse connections so that the weight updates can be localized and not affect many
prior useful weights. Finally, regularization-based methods use a penalty to discourage the learner
from moving too far from previously learned weights (Kirkpatrick et al. 2017, Aljundi et al. 2018,
Aljundi et al. 2019) or approximations (Lan et al. 2023). The penalty amount is usually a function
of the weight importance based on its contribution to previous tasks.

Addressing Loss of Plasticity. Dohare et al. (2023a) introduced a generate-and-test method (Ap-
pendix M, Mahmood & Sutton 2013) that maintains plasticity by continually replacing less useful
features and showed that methods with continual injection of noise (e.g., Ash & Adams 2020) also
maintain plasticity. Later, several methods were presented to retain plasticity. For example, Nik-
ishin et al. (2023) proposed dynamically expanding the network, Abbas et al. (2023) recommended
adapted activation functions, and Kumar et al. (2023) proposed regularization toward initial weights.

Addressing Both Issues. The trade-off between plasticity and forgetting has been outlined early by
Carpenter & Grossberg (1987) as the stability-plasticity dilemma, a trade-off between maintaining
performance on previous experiences and adapting to newer ones. The continual learning commu-
nity focused more on improving the stability aspect by overcoming forgetting. Recently, however,
there has been a new trend of methods that address both issues simultaneously. Chaudhry et al.
(RWalk, 2018) utilized a regularization-based approach with a fast-moving average that quickly
adapts to the changes in the weight importance, emphasizing the present and the past equally. Jung
et al. (2022) introduced different techniques, including structure-wise distillation loss and pretrain-
ing to balance between plasticity and forgetting. Gurbuz et al. (2022) proposed using connection
rewiring to induce plasticity in sparse neural networks. Finally, Kim et al. (2023) proposed using
a separate network for learning the new task, which then is consolidated into a second network for
previous tasks. Despite the recent advancement in addressing the two issues of continual learning,
most existing methods do not fit the streaming learning setting since they require knowledge of task
boundaries, replay buffers, or pretraining.

Importance Measure in Neural Network Pruning. Pruning in neural networks requires an impor-
tance metric to determine which weights to remove. Typically, the network is pruned using different
measures such as the weight magnitude (e.g., Han et al. 2015, Park et al. 2020), first-order informa-
tion (e.g., Mozer & Smolensky 1988, Hassibi & Stork 1992, Molchanov et al. 2016), second-order
information (e.g., LeCun et al. 1989, Dong et al. 2017), or both (e.g., Tresp et al. 1996, Molchanov
et al. 2019). Similar to pruning, regularization-based methods that address catastrophic forgetting
use weight-importance measures such as the Fisher information diagonals to weigh their penalties.

3 METHOD

Our approach is to retain useful units while modifying the rest, which requires a metric to assess
the utility or usefulness of the units. In this section, we introduce a measure for weight utility and
outline an efficient method for computing it. Weight utility can be defined as the change in loss when
setting the weight to zero, essentially removing its connection (Mozer & Smolensky 1988, Karnin
1990). Removing an important weight should result in increased loss. Ideally, both immediate and
future losses matter, but we can only assess immediate loss at the current step. Finally, we devise a
gradient-based update rule that protects or modifies weights based on this utility measure.

To define utility precisely, let us consider that the learner produces the predicted output ŷ using a
neural network with L layers, parametrized by the set of weights W = {W1, ...,WL}. Here Wl

is the weight matrix at the l-th layer, and its element at the i-th row and the j-th column is denoted
by Wl,i,j . At each layer l, we get the activation output hl of the features by applying the activation
function σ to the activation input al: hl = σ(al). We simplify notations by defining h0

.
= x.

The activation output hl is then multiplied by the weight matrix Wl+1 of layer l + 1 to produce the
next activation input: al+1,i =

∑dl

j=1 Wl+1,i,jhl,j ,∀i, where hl ∈ Rdl . Here, σ applies activation
element-wise for all layers except for the final layer, which becomes the softmax function.

The utility Ul,i,j(Z) of the weight i, j at layer l and sample Z is defined as

Ul,i,j(Z)
.
= L(W¬[l,i,j], Z)− L(W, Z), (1)

where L(W, Z) is the sample loss given W , and L(W¬[l,i,j], Z) is a counterfactual loss where
W¬[l,i,j] is the same as W except the weight Wl,i,j is set to 0. We refer to it as the true utility
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to distinguish it from its approximations, which are referred to as either approximated utilities or
simply utilities. Note that this utility is a global measure, and it provides a total ordering for weights
according to their importance. However, computing it is prohibitive since it requires additional Nw

forward passes, where Nw is the total number of weights.

3.1 SCALABLE APPROXIMATION OF THE TRUE UTILITY

Since the computation of the true utility is prohibitive, we aim to approximate it such that no addi-
tional forward passes are needed. To that end, we estimate the true utility by a second-order Taylor
approximation. We expand the counterfactual loss L(W¬[l,i,j], Z) around the current weight Wl,i,j

and evaluate at weight zero. Hence, the quadratic approximation of Ul,i,j(Z) can be written as
Ul,i,j(Z) = L(W¬[l,i,j], Z)− L(W, Z)

≈ L(W, Z) +
∂L(W, Z)

∂Wl,i,j
(0−Wl,i,j) +

1

2

∂2L
∂W 2

l,ij

(0−Wl,i,j)
2 − L(W, Z)

= −∂L(W, Z)

∂Wl,i,j
Wl,i,j +

1

2

∂2L(W, Z)

∂W 2
l,i,j

W 2
l,i,j . (2)

We refer to the utility measure containing the first term as the first-order utility and the measure con-
taining both terms as the second-order utility. The computation required for the second-order term
has quadratic complexity. Therefore, we use the approximation by Elsayed and Mahmood (2022)
that provides a Hessian diagonal approximation in linear complexity. This makes the computation of
both of our utility approximations linear in complexity and therefore scalable. Moreover, we present
a way for propagating our approximated utilities by the utility propagation theorem in Appendix B.
We also define the utility of a feature and provide its scalable approximation in Appendix C and D.

3.2 UTILITY-BASED PERTURBED GRADIENT DESCENT (UPGD)

Now, we devise a new method called Utility-based Perturbed Gradient Descent (UPGD) that per-
forms gradient-based learning guided by utility-based information. The utility information is used
as a gate, referred to as utility gating, for the gradients to prevent large updates to already useful
weights, addressing forgetting. On the other hand, the utility information helps maintain plasticity
by perturbing unuseful weights which become difficult to change through gradients (see Dohare et
al. 2023a). The update rule of UPGD is given by

wl,i,j ← wl,i,j − α

(
∂L

∂wl,i,j
+ ξ

)(
1− Ūl,i,j

)
, (3)

where ξ ∼ N (0, 1) is noise, α is the step-size parameter, and Ūl,i,j ∈ [0, 1] is a scaled utility. For
important weights with utility Ūl,i,j = 1, the weight remains unaltered even by gradient descent,
whereas unimportant weights with Ūl,i,j = 0 get updated by both perturbation and gradient descent.

Another variation of UPGD, which we call non-protecting UPGD, is to add the utility-based pertur-
bation to the gradient as wl,i,j ← wl,i,j − α[∂L/∂wl,i,j + ξ(1 − Ūl,i,j)]. However, such an update
rule can only help against loss of plasticity, not catastrophic forgetting, as useful weights are not
protected from change by gradients. We include non-protecting UPGD in our experiments to vali-
date that using the utility information as a gate for both the perturbation and the gradient update is
necessary to mitigate catastrophic forgetting. We provide convergence analysis for both UPGD and
Non-protecting UPGD on non-convex stationary problems in Appendix A.

Utility scaling is important for the UPGD update rule. We present here a global scaling and present
a local scaling variation in Appendix E. The global scaled utility requires the maximum utility of all
weights (e.g., instantaneous or trace) at every time step, which is given by Ūl,i,j = ϕ(Ul,i,j/η). Here
η is the maximum utility of the weights and ϕ is the scaling function, for which we use sigmoid. We
show the pseudo-code of our method using the global scaled utility in Algorithm 1, where Fl con-
tains first derivatives and Sl contains second-derivative approximations (see Appendix F for more
details on the GetDerivatives function). We focus here on weight-wise UPGD and provide
similar pseudo-codes for feature-wise UPGD in Appendix E.

UPGD update rule can be related to some existing update rules. When we perturb all weights
evenly, that is, when all scaled utilities are zero, UPGD reduces to a well-known class of algorithms
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called Perturbed Gradient Descent (PGD) (Zhou et al. 2019). The PGD learning rule is given by
wl,i,j ← wl,i,j − α [∂L/∂wl,i,j + ξ]. It has been shown that a PGD with weight decay algorithm,
known as Shrink and Perturb (S&P) (Ash & Adams 2020), can help maintain plasticity in continual
classification problems (Dohare et al. 2023a) since maintaining small weights prevents weights from
over-committing, making them easy to change. The learning rule of Shrink and Perturb can be
written as wl,i,j ← ρwl,i,j −α (∂L/∂wl,i,j + ξ), where ρ = 1− λα and λ is the weight decay factor.
When no noise is added, the update reduces to SGD with weight decay (Loshchilov & Hutter 2019),
known as SGDW. Incorporating the useful role of weight decay into UPGD, we can write the UPGD
with weight decay (UPGD-W) update rule as wl,i,j ← ρwl,i,j − α

(
∂L

∂wl,i,j
+ ξ
) (

1− Ūl,i,j

)
.

3.3 FORGETTING AND PLASTICITY EVALUATION METRICS

Algorithm 1 UPGD
Given a stream of data D, a network f with
weights {W1, ...,WL}.
Initialize step size α, utility decay rate β,
and noise standard deviation σ.
Initialize {W1, ...,WL}.
Initialize Ul,∀l and time step t to zero.
for (x,y) in D do
t← t+ 1
for l in {L,L− 1, ..., 1} do
η ← −∞
Fl,Sl ←GetDerivatives(f,x,y, l)
Ml ← 1/2Sl ◦W 2

l − Fl ◦Wl

Ul ← βUl + (1− β)Ml

Ûl ← Ul/(1− βt)

if η < max(Ûl) then η ← max(Ûl)

for l in {L,L− 1, ..., 1} do
Sample ξ elements from N (0, σ2)

Ūl ← ϕ(Ûl/η)
Wl ←Wl − α(Fl + ξ) ◦ (1− Ūl)

Here, we present two metrics to characterize plastic-
ity and forgetting in streaming learning. First, we
introduce a new online metric to quantify plasticity.
Neuroplasticity is usually defined as the ability of
biological neural networks to change in response to
some stimulus (Konorski 1948, Hebb 1949). Simi-
larly, in artificial neural networks, plasticity can be
viewed as the ability of a neural network to change
its predictions in response to new information (Lyle
et al. 2023). We provide a definition that captures
the existing intuition in the literature. We define the
plasticity of a learner given a sample as the ability to
change its prediction to match the target. The learner
achieves plasticity of 1 given a sample if it can ex-
actly match the target and achieves plasticity of 0 if
it achieves zero or negative progress toward the target
compared to its previous prediction given the same
sample. Formally, we define the sample plasticity
to be p(Z) = max

(
1− L(W†,Z)

max(L(W,Z),ϵ) , 0
)
∈ [0, 1],

where W† is the set of weights after performing the
update and ϵ is a small number to maintain numeri-
cal stability. Note that the term

(
1− L(W†,Z)

max(L(W,Z),ϵ)

)
∈ (−∞, 1] has an upper bound of 1, since

L(W, Z) ∈ [0,∞),∀W, Z for cross-entropy and squared-error losses. We use this metric to mea-
sure plasticity directly, especially since most measures that are introduced (e.g., weight norm) to
show loss of plasticity do not often correlate with plasticity (see Lyle et al. 2023). Our metric can
be viewed as a baseline-normalized version of the plasticity metric by Lyle et al. (2023), where the
baseline is the loss prior to the update. We measure loss of plasticity as ∆p̄k+1 = p̄k − p̄k+1, where
p̄k is the average plasticity over all samples in the k-th evaluation window. Note that this metric
ranges from −1 to 1, ∆p̄k ∈ [−1, 1],∀k. Negative values indicate the learner has gained plasticity,
whereas positive values indicate the learner has lost plasticity. In our experiments, we report the
overall loss of plasticity on T evaluation windows:

∑T−1
k=1 ∆p̄k+1 = p̄1 − p̄T .

Existing metrics for catastrophic forgetting are predominantly based on offline evaluations. In
streaming learning, forgetting previously learned useful features leads to future learning deterio-
ration rather than affecting past performance. If the learner keeps improving its representations with
each task, the average online accuracy on new tasks should improve continually. On the other hand,
if it cannot improve representations, its average online accuracy on new tasks may stay the same or
even decrease (see Fig. 1(a)). Hence, we propose measuring forgetting using different online evalua-
tion windows for streaming learning. Inspired by the windowed-forgetting metric introduced by De
Lange et al. (2023), we propose the metric Fk+1 = Ak −Ak+1, where Ak is the accuracy averaged
over all samples on the k-th evaluation window. This metric assumes the learned representations
in one task remain relevant for future tasks, and all tasks have the same complexity. Note that this
metric ranges from −1 to 1, Fk ∈ [−1, 1],∀k, where negative values indicate the learner can im-
prove on previous representations, and positive values indicate re-learning, hence forgetting. In our
experiments, we report the overall forgetting on T evaluation windows,

∑T−1
k=1 Fk+1 = A1 −AT .
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4 EXPERIMENTS

In this section, we begin by studying the quality of our approximated utilities. Then we study the
effectiveness of UPGD in mitigating loss of plasticity and catastrophic forgetting. For the latter, we
use non-stationary streaming problems based on MNIST (LeCun et al. 1998), EMNIST (Cohen et
al. 2017), CIFAR-10 (Krizhevsky 2009), and ImageNet (Deng et al. 2009) datasets with learners that
use multi-layer perceptrons, convolutional neural networks (LeCun et al. 1998), and residual neural
networks (He et al. 2016) (however, see Appendix G for validating UPGD on stationary tasks). We
also validate UPGD in extended reinforcement learning experiments. UPGD is compared to suitable
baselines for our streaming learning setup, that is, without replay, batches, or task boundaries.

The performance of continual learners is evaluated based on the average online accuracy for classi-
fication problems. In each of the following experiments, a thorough hyperparameter search is con-
ducted (see Appendix I). Our criterion was to find the best set of hyperparameters for each method
that maximizes the area under the online accuracy curve. Unless stated otherwise, we averaged the
performance of each method over 20 independent runs. We focus on the key results here and give
the full experimental details in Appendix I.

4.1 QUALITY OF THE APPROXIMATED UTILITIES
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Figure 2: Rank correlation between the
true utility and approximated utility.

A high-quality approximation of utility should give a sim-
ilar ordering of weights to the true utility. We use the ordi-
nal correlation measure of Spearman to quantify the qual-
ity of our utility approximations. An SGD learner with a
small neural network with ReLU activations is used on a
simple problem to minimize the online squared error.

At each time step, Spearman’s correlation is calculated
for first- and second-order global utility against the
random ordering, the squared-gradient utility, and the
weight-magnitude utility. We report the correlations be-
tween the true utility and approximated global weight
utilities in Fig. 2. The correlation is the highest for the
second-order utility throughout learning. On the other
hand, the first-order utility becomes less correlated when
the learner plateaus, likely due to zigzagging gradient el-
ements near the solution. The weight-magnitude utility shows a small correlation to the true utility
that gets smaller. The correlation of the squared-gradient utility increases with time steps but re-
mains smaller than that of the first-order utility. We use random ordering as a baseline, which
maintains zero correlation with the true utility, as expected. We also show the correlation between
approximated local utility and true utility in Appendix J in addition to results with other activations.

4.2 UPGD AGAINST LOSS OF PLASTICITY

In this section, we use Input-Permuted MNIST, a problem where only loss of plasticity is present, and
answer two main questions: 1) how UPGD and the other continual learning methods perform on this
problem, and 2) whether performance alone is indicative of plasticity in this task. Performance has
been used to measure plasticity on various problems and settings (Dohare et al. 2021, Nikishin et al.
2023, Kumar et al. 2023, Abbas et al. 2023). The decaying performance is usually attributed to loss
of plasticity. Here, we question using performance to measure plasticity in arbitrary problems since
performance can also be affected by other issues such as catastrophic forgetting (see Fedus et al.
2020). However, we hypothesize that if the only underlying issue is loss of plasticity, performance
might actually reflect plasticity. Therefore, it is necessary to use a problem where only loss of
plasticity is present to test our hypothesis. This approach also allows us to study the effectiveness of
UPGD against loss of plasticity, isolated from catastrophic forgetting. In Input-permuted MNIST,
we permute the inputs every 5000 steps where the time step at each permutation marks the beginning
of a new task. After each permutation, the learned features become irrelevant to the new task, so
the learner is expected to overwrite prior-learned representations as soon as possible. Thus, the
input-permuted MNIST is a suitable problem to study loss of plasticity.
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Figure 3: Performance of methods on
the Input-permuted MNIST problem.

We compare SGDW, PGD, S&P, which addresses loss
of plasticity, Adam with weight decay (Loshchilov
& Hutter 2019) known as AdamW, UPGD-W, and
Non-protecting UPGD-W. We also introduce and com-
pare against Streaming Elastic Weight Consolidation
(S-EWC), Streaming Synaptic Intelligence (S-SI), and
Streaming Memory-Aware Intelligence (S-MAS). These
methods can be viewed as a natural extension of EWC
(Kirkpatrick et al. 2017), SI (Zenke et al. 2017), and
MAS (Aljundi et al. 2018), respectively, which are
regularization-based methods for mitigating forgetting to
the streaming learning setting. Finally, we introduce and
compare against Streaming RWalk (S-RWalk). This can
be seen as a natural extension of RWalk (Chaudhry et al.
2018), a method that addresses both issues, adapted for
streaming learning. We write the update rule of the last
four methods in streaming learning as wl,i,j ← wl,i,j − α [∂L/∂wl,i,j + κΩl,i,j(wl,i,j − w̄l,i,j)],
where κ is the regularization factor, Ωl,i,j is the weight importance, and w̄l,i,j is the trace of weight
i, j at the l-th layer. The weight importance is estimated as a trace of squared gradients in S-EWC,
whereas it is estimated as a trace of gradient magnitudes in S-MAS. S-RWalk is different from
RWalk since it uses a trace of previous weights instead of the instantaneous previous weights. We
omit the details of S-SI and RWalk weight importance estimation here and defer it to Appendix I.4.
Lastly, since we compare against methods that use first-order information, we use global first-order
utility traces in this and subsequent experiments for a fair comparison (however, see Appendix H for
an experiment using second-order utilities).
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Figure 4: Each method’s average plas-
ticity against average accuracy of on
Input-permuted MNIST.

Fig. 3 shows that methods that only address catastrophic
forgetting (e.g., S-EWC) continue to decay in perfor-
mance whereas methods that address loss of plasticity
alone (e.g., S&P) or together with catastrophic forget-
ting (e.g., UPGD), except S-RWalk, maintain their perfor-
mance level. We plot the average online accuracy against
the number of tasks. The average online accuracy is the
percentage of correct predictions within each task, where
the sample online accuracy is 1 for correct prediction and
0 otherwise. The prediction of the learner is given by
argmax over its output probabilities. The learners are pre-
sented with a total of 1 million examples, one example per
time step, and are required to maximize online accuracy
using a multi-layer (300×150) network with ReLU units.

In order to answer the second question, we measure on-
line plasticity as defined in Section 3.3 for each method
and plot performance against measured plasticity in Fig. 4. The average online plasticity of each
method is shown against the average online accuracies of the last 100 tasks. We notice that plasticity
and accuracy are strongly correlated, indicating that when the learner loses plasticity, its accuracy
also decreases. This result corroborates that when the only underlying issue is loss of plasticity,
performance indeed reflects plasticity. Note that such a correlation is not expected when loss of
plasticity is not the only issue, and hence, the plasticity metric can be generally more reliable.

Finally, in Fig. 5, we use diagnostic statistics to further analyze the solutions each method achieves.
More statistics for learners on this problem and next ones are reported in Appendix K.1. Notably,
the results show that, for all methods, the fraction of zero activations increases and ℓ0 gradient norm
decreases substantially except for UPGD-W along with Non-protecting UPGD-W and S&P.

4.3 UPGD AGAINST CATASTROPHIC FORGETTING

Now, we study how UPGD and other continual learning methods address forgetting, and for that
we use Label-permuted CIFAR-10. CIFAR-10 dataset contains 60,000 RGB images of size 32× 32
belonging to 10 classes; each class has 6000 images. The labels are permuted every 2500 time step.
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Figure 5: Diagnostic statistics on Input-permuted MNIST. The percentage of zero activations, ℓ0-
norm and ℓ1-norm of the gradients, and ℓ1-norm of the weights are shown. We stacked the elements
from the network gradients or weights into vectors to compute each norm at every sample.

Each learner is trained for 1M samples, one sample each time step, using a convolutional neural
network with ReLU activations. Such permutations should not make the learner change its learned
representations since it can simply change the weights of the last layer to adapt to that change. This
makes the Label-permuted CIFAR10 problem suitable for studying catastrophic forgetting. It is not
clear, however, whether the issue of loss of plasticity is present. We hypothesize that the issue of
loss plasticity does not occur in this problem mainly due to its small number of classes (Lesort et
al. 2023), leading to a probability of 10% for the same label re-occurrence after label permutation,
resulting in less amount of non-stationarity that causes loss of plasticity.
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(a) Label-permuted CIFAR-10
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(b) Label-permuted EMNIST
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(c) Label-permuted miniImageNet
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Figure 6: Performance of methods on Label-permuted CIFAR-10, Label-permuted EMNIST, and
Label-permuted mini-ImageNet. The higher the online accuracy, the better.

Fig. 6(a) shows that methods addressing catastrophic forgetting continually improve their perfor-
mance. We use our loss of plasticity metric to check whether learners experience any loss of plas-
ticity. Fig. 7(b) shows that the majority of methods have negative values, reflecting no loss of plas-
ticity, which also indicates that catastrophic forgetting is the major issue in this problem. Although
all learners can improve their performance, some can improve more than others, according to their
forgetting metric (see Fig. 7(a)). We observe that learners without an explicit mechanism for ad-
dressing forgetting (e.g., AdamW) can reach a maximum accuracy of slightly above 40%, compared
to learners addressing catastrophic forgetting that keep improving their performance.

4.4 UPGD AGAINST LOSS OF PLASTICITY AND CATASTROPHIC FORGETTING

In this section, we study the interplay of catastrophic forgetting and loss of plasticity using the
Label-permuted EMNIST problem. The EMNIST dataset is an extended form of MNIST that has 47
classes, of both digits and letters, instead of just 10 digits. We permute the inputs every 2500 time
steps and present the learners with a total 1 million examples, one example per time step, using the
same network architecture from the first problem. Hence, this problem is also suitable for studying
catastrophic forgetting. Since EMNIST has more classes, label re-occurrence probability becomes
significantly smaller, leading to more non-stationarity. Thus, we expect that loss of plasticity might
be present in this problem. Fig. 7(b) shows that most learners indeed suffer from loss of plasticity.

Fig. 6(b) shows that methods addressing catastrophic forgetting, including UPGD-W but except
S-RWalk and S-SI, keep improving their performance and outperform methods that only address
loss of plasticity. Notably, we observe that S-RWalk, which addressed catastrophic forgetting in the
previous problem, struggles in this problem, likely due to the additional loss of plasticity. On the
other hand, the performance of S-SI and the rest of the methods keeps deteriorating over time.
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Figure 7: Forgetting and loss of plasticity of each method in different problems. I/P is short for
input-permuted, and L/P is short for label-permuted. (a) forgetting is reported using our overall
forgetting metric, where positive values indicate forgetting. The metric is computed starting from
the sample number 1 using windows of twice the task length. (b) loss of plasticity is measured based
on the overall loss in plasticity, meaning that positive values indicate loss of plasticity. The metric is
computed starting from the sample number 0.5 million using windows of twice the task length.

Next, we perform a large-scale experiment using the Label-permuted mini-ImageNet problem, which
has a large number of classes; hence, loss of plasticity is expected along with catastrophic forgetting.
The mini-ImageNet (Vinyals et al. 2016) is a subset of the ImageNet dataset. The mini-ImageNet
dataset contains 60,000 RGB images of size 84 × 84 belonging to 100 classes; each class has 600
images. In Label-permuted mini-ImageNet, the labels are permuted every 2500 time step. Each
learner uses a fully connected network of two layers on top of a pre-trained ResNet-50 (He et al.
2016) on ImageNet with fixed weights.

Fig. 6(c) exhibits the same trends manifested in the previous problem, where methods address-
ing catastrophic forgetting (e.g., S-EWC) performed the best, whereas methods addressing loss of
plasticity (e.g., S&P) only maintained their performance at a lower level. Fig. 7(a) and Fig. 7(b)
demonstrate that both metrics of UPGD-W are among the best overall values across all problems,
indicating diminished forgetting and loss of plasticity. We refer the reader to Appendix L for an
ablation study on the components of UPGD.

4.5 UPGD AGAINST POLICY COLLAPSE

Lastly, we study the role of UPGD in preventing a gradual performance drop or policy collapse
(Dohare et al. 2023b) in reinforcement learning (RL). Dohare et al. (2023b) showed that non-
stationarities in RL might exhibit both continual learning issues and demonstrated that the PPO
algorithm (Schulman et al. 2017) can experience policy collapse when trained for an extended pe-
riod. Since UPGD helps against catastrophic forgetting and loss of plasticity, we test whether UPGD
can address policy collapse in PPO. We devise an adaptive variant of our method based on Adam
normalization (Kingma & Ba 2015), which we call Adaptive UPGD (AdaUPGD), making its step
size robust in several RL environments without tuning. We refer the reader to Algorithm 5 for the
full description and Appendix I.6 for experimental details. Fig. 8 shows that AdaUPGD continually
improves its performance, unlike Adam, which suffers from policy collapse.
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Figure 8: Performance of Adaptive UPGD (blue) and Adam (red) with PPO in different MuJoCo
environments. The results are averaged over 40 independent runs.

5 CONCLUSION

In this paper, we introduced a novel approach to mitigating loss of plasticity and catastrophic for-
getting. We devised learning rules that protect useful weights and perturb less useful ones, thereby
maintaining plasticity and reducing forgetting. We performed a series of challenging streaming
learning experiments with many non-stationarities alongside reinforcement learning experiments.
Our experiments showed that UPGD maintains network plasticity and reuses previously learned
useful features, being among the only few methods that can address both issues effectively. Our
work endeavors to pave the way for a new class of methods for addressing these issues together.
Finally, we discuss the limitations of our method and future works in Appendix N.
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A CONVERGENCE ANALYSIS FOR UPGD AND NON-PROTECTING UPGD

In this section, we provide convergence analysis for UPGD and Non-protecting UPGD in noncon-
vex stationary problems. We focus on the stochastic version of these two algorithms since we are
interested in continual learners performing updates at every time step. The following proof shows
the convergence to a stationary point up to the statistical limit of the variance of the gradients, where
∥∇f(θ)∥2 ≤ δ represent a δ-accurate solution and is used to measure the stationarity of θ. Noncon-
vex optimization problems can be written as:

min
θ∈Rd

f(θ)
.
= ES∼P [L(θ, S)] ,

where f is the expected loss, L is the sample loss, S is a random variable for samples and θ is
a vector of weights parametrizing L. We assume that L is L-smooth, meaning that there exist a
constant L that satisfy

∥∇L(θ1, s)−∇L(θ2, s)∥ ≤ L∥θ2 − θ1∥, ∀θ1,θ2 ∈ Rd, s ∈ S. (4)

We further assume that L has bounded variance in the gradients E[∥∇L(θ, S) − ∇f(θ)∥2] ≤
σ2,∀θ ∈ Rd. Note that the assumption of L-smoothness on the sample loss result in L-smooth
expected loss too, which is given by ∥∇f(θ1) − ∇f(θ2)∥ ≤ L∥θ1 − θ2∥. We assume that the
perturbation noise in both UPGD versions has bounded variance E[∥ξ∥2] ≤ σ2

n. For the simplicity
of this proof, we use the true instantaneous weight utility, not an approximated one. We assume that
the utility of any connection in the network is upper bounded by a number close to one ū→ 1−.

A.1 NON-PROTECTING UTILITY-BASED PERTURBED GRADIENT DESCENT

Remember that the update equation of the Non-protecting UPGD can be written as follows when
the parameters are stacked in a single vector θ:

θt+1,i = θt,i − α(gt,i + ξt,iρt,i).

where α is the step size, gt is the sample gradient vector at time t, ρt = (1 − ut) is the opposite
utility vector, and ξt is the noise perturbation. Since the function f is L-smooth, we can write the
following:

f(θt+1) ≤ f(θt) + (∇f(θt))⊤(θt+1 − θt) +
L

2
∥θt+1 − θt∥22 (5)

= f(θt)− α

d∑
i=1

(∇[f(θt)]i(gt,i + ξt,iρt,i)) +
Lα2

2

d∑
i=1

(gt,i + ξt,iρt,i)
2. (6)

Next, we take the conditional expectation of f(θt+1) as follows:

Et[f(θt+1)|θt] ≤ f(θt)− α

d∑
i=1

∇[f(θt)]iEt[(gt,i + ξt,iρt,i)] +
Lα2

2

d∑
i=1

Et[(gt,i + ξt,iρt,i)
2]

= f(θt)− α

d∑
i=1

∇[f(θt)]iEt[gt,i] +
Lα2

2

d∑
i=1

(
Et[g

2
t,i] + Et[(ξt,iρt,i)

2]
)

= f(θt)− α

d∑
i=1

∇[f(θt)]2i +
Lα2

2

d∑
i=1

(
Et[g

2
t,i] + Et[(ξt,iρt,i)

2]
)

= f(θt)− α∥∇f(θt)∥2 +
Lα2

2

d∑
i=1

(
Et[g

2
t,i] + Et[(ξt,iρt,i)

2]
)

≤ f(θt)− α∥∇f(θt)∥2 +
Lα2

2

d∑
i=1

Et[g
2
t,i] +

Lα2

2
σ2
n.
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Note that Et[gt,i] = [∇f(θt)]i, Et[ξt,i] = 0, and E[(ξt,iρt,i)2] ≤ E[ξ2t,i], since 0 ≤ ρt,i ≤ 1 ∀t, i.
From the bounded variance assumption, we know that the E[∥gt∥2] is bounded as follows:

E[∥gt∥2] ≤
σ2

bt
+ ∥∇f(θt)∥2,

where bt is the batch size at time step t. We can now bound Et[f(θt+1)|θt] as follows:

Et[f(θt+1)|θt] ≤ f(θt)− α∥∇f(θt)∥2 +
Lα2

2

(
σ2
n +

σ2

bt
+ ∥∇f(θt)∥2

)
= f(θt)−

2α− Lα2

2
∥∇f(θt)∥2 +

Lα2

2

(
σ2
n +

σ2

bt

)
.

Rearranging the inequality, taking expectations on both sides, and using the telescopic sum, we can
write the following:

2α− Lα2

2

T∑
t=1

E∥∇f(θt)∥2 ≤ f(θ1)− E[f(θT+1)] +
Lα2T

2

(
σ2
n +

σ2

bt

)
.

Multiplying both sides by 2
T (2α−Lα2) and using the fact that f is the lowest at the global minimum

θ∗: f(θT+1) ≥ f(θ∗), we can write the following:

1

T

T∑
t=1

E∥∇f(θt)∥2 ≤ 2
f(θ1)− f(θ∗)

T (2α− Lα2)
+

Lα22(σ2
nbt + σ2)

bt(2α− Lα2)
.

Therefore, the algorithm converges to a stationary point. However, in the limit T → ∞, the algo-
rithm has to have an increasing batch size or a decreasing step size to converge, which is the same
requirement for convergence of other stochastic gradient-based methods at the limit (see Zaheer et
al. 2018, Ammar 2020).

A.2 UTILITY-BASED PERTURBED GRADIENT DESCENT

Remember that the update equation of UPGD can be written as follows when the parameters are
stacked in a single vector θ:

θt+1,i = θt,i − α(gt,i + ξt,i)ρt,i.

where α is the step size, gt is the sample gradient vector at time t, ρt = (1 − ut) is the opposite
utility vector, and ξt is the noise perturbation. Since the function f is L-smooth, we can write the
following:

f(θt+1) ≤ f(θt) + (∇f(θt))⊤(θt+1 − θt) +
L

2
∥θt+1 − θt∥22 (7)

= f(θt)− α

d∑
i=1

(∇[f(θt)]iρt,i(gt,i + ξt,i)) +
Lα2

2

d∑
i=1

(gt,i + ξt,i)
2ρ2t,i. (8)

Next, we take the conditional expectation of f(θt+1) as follows:

Et[f(θt+1)|θt] ≤ f(θt)− α

d∑
i=1

∇[f(θt)]iEt[ρt,i(gt,i + ξt,i)] +
Lα2

2

d∑
i=1

Et[(gt,i + ξt,i)
2ρ2t,i]

= f(θt)− α

d∑
i=1

∇[f(θt)]2iEt[ρt,i] +
Lα2

2

d∑
i=1

Et[g
2
t,i]Et[ρ

2
t,i] + Et[(ξt,iρt,i)

2]

≤ f(θt)− αρ̄

d∑
i=1

∇[f(θt)]2i +
Lα2

2

(
σ2
n +

σ2

bt
+ ∥∇f(θt)∥2

)
= f(θt)−

(
αρ̄− Lα2

2

)
∥∇f(θt)∥2 +

Lα2

2

(
σ2
n +

σ2

bt

)
.
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Note that ρ̄ = 1 − ū, Et[gt,i] = [∇f(θt)]i, Et[ξt,i] = 0, and E[(ξt,iρt,i)2] ≤ E[ξ2t,i], since 0 ≤
ρt,i ≤ 1 ∀t, i.
Rearranging the inequality, taking expectations on both sides, and using the telescopic sum, we can
write the following:

2αρ̄− Lα2

2

T∑
t=1

E∥∇f(θt)∥2 ≤ f(θ1)− E[f(θT+1)] +
Lα2T

2

(
σ2
n +

σ2

bt

)
.

Multiplying both sides by 2
T (2αρ̄−Lα2) and using the fact that f is the lowest at the global minimum

θ∗: f(θT+1) ≥ f(θ∗), we can write the following:

1

T

T∑
t=1

E∥∇f(θt)∥2 ≤ 2
f(θ1)− f(θ∗)

T (2αρ̄− Lα2)
+

Lα2(σ2
nbt + σ2)

bt(2αρ̄− Lα2)
.

Therefore, the algorithm converges to a stationary point. However, in the limit T → ∞, the algo-
rithm has to have an increasing batch size or a decreasing step size to converge, which is the same
requirement for convergence of other stochastic gradient-based methods at the limit (see Zaheer et
al. 2018, Ammar 2020).

B UTILITY PROPAGATION

The instantaneous utility measure can be used in a recursive formulation, allowing for backward
propagation. We can get a recursive formula for the utility equation for connections in a neural
network. This property is a result of Theorem 1.

Theorem 1. If the second-order off-diagonal terms in all layers in a neural network except for the
last one are zero and all higher-order derivatives are zero, the true weight utility for the weight ij
at the layer l can be propagated using the following recursive formulation:

Ul,i,j(Z)
.
= fl,i,j + sl,i,j

where

fl,i,j
.
=

σ′(al,i)

hl,i
hl−1,jWl,i,j

|al+1|∑
k=1

fl+1,k,i,

sl,i,j
.
=

1

2
h2
l−1,jW

2
l,i,j

|al+1|∑
k=1

(
2sl+1,k,i

σ′(al,i)
2

h2
l,i

− σ′′(al,i)

hl,i
fl+1,k,i

)
.

Proof. First, we start by writing the partial derivative of the loss with respect to each weight in terms
of earlier partial derivatives in the next layers as follows:

∂L
∂al,i

=

|al+1|∑
k=1

∂L
∂al+1,k

∂al+1,k

∂hl,i

∂hl,i

∂al,i
= σ′(al,i)

|al+1|∑
k=1

∂L
∂al+1,k

Wl+1,k,i, (9)

∂L
∂Wl,i,j

=
∂L
∂al,i

∂al,i
∂Wl,i,j

=
∂L
∂al,i

hl−1,j . (10)

Next, we do the same with second-order partial derivatives. We use the hat notation for approximated
second-order information (off-diagonal terms are dropped) as follows:

∂̂2L
∂a2l,i

.
=

|al+1|∑
k=1

[
∂̂2L

∂a2l+1,k

W 2
l+1,k,iσ

′(al,i)
2 +

∂L
∂al+1,k

Wl+1,k,iσ
′′(al,i)

]
, (11)

∂̂2L
∂W 2

l,i,j

.
=

∂̂2L
∂a2l,i

h2
l−1,j . (12)
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Now, we derive the utility propagation formulation as the sum of two recursive quantities, fl,ij and
sl,ij . These two quantities represent the first and second-order terms in the Taylor approximation.
Using Eq. 9, Eq. 10, Eq. 11, and Eq. 12, we can derive the recursive formulation as follows:

Ul,i,j(Z)
.
= −∂L(W, Z)

∂Wl,i,j
Wl,i,j +

1

2

∂2L(W, Z)

∂W 2
l,ij

W 2
l,ij

≈ −∂L(W, Z)

∂Wl,i,j
Wl,i,j +

1

2

̂∂2L(W, Z)

∂W 2
l,ij

W 2
l,ij

= − ∂L
∂al,i

hl−1,jWl,i,j +
1

2

̂∂2L(W, Z)

∂a2l,i,j
h2
l−1,jW

2
l,ij

= fl,i,j + sl,i,j . (13)

From here, we can write the first-order part fl,i,j and the second-order part sl,i,j as follows:

fl,i,j = −σ′(al,i)hl−1,jWl,i,j

|al+1|∑
k=1

(
∂L

∂al+1,k
Wl+1,k,i

)
(14)

sl,i,j =
1

2
h2
l−1,jW

2
l,i,j

|al+1|∑
k=1

(
∂̂2L

∂a2l+1,k

W 2
l+1,k,iσ

′(al,i)
2 +

∂L
∂al+1,k

Wl+1,k,iσ
′′(al,i)

)
(15)

Using Eq. 14 and Eq. 15, we can write the recursive formulation for fl,ij and sl,ij as follows:

fl,ij = −σ′(al,i)hl−1,jWl,i,j

|al+1|∑
k=1

(
∂L

∂al+1,k
Wl+1,k,i

)

=
σ′(al,i)

hl,i
hl−1,jWl,i,j

|al+1|∑
k=1

(
− ∂L

∂al+1,k
hl,iWl+1,k,i

)

=
σ′(al,i)

hl,i
hl−1,jWl,i,j

|al+1|∑
k=1

fl+1,k,i, (16)

sl,i,j =
1

2
h2
l−1,jW

2
l,i,j

|al+1|∑
k=1

(
∂̂2L

∂a2l+1,k

W 2
l+1,k,iσ

′(al,i)
2 +

∂L
∂al+1,k

Wl+1,k,iσ
′′(al,i)

)

=
1

2
h2
l−1,jW

2
l,i,j

|al+1|∑
k=1

(
∂̂2L

∂a2l+1,k

h2
l,iW

2
l+1,k,i

σ′(al,i)
2

h2
l,i

− σ′′(al,i)

hl,i
fl+1,k,i

)

=
1

2
h2
l−1,jW

2
l,i,j

|al+1|∑
k=1

(
2sl+1,k,i

σ′(al,i)
2

h2
l,i

− σ′′(al,i)

hl,i
fl+1,k,i

)
. (17)

C APPROXIMATED FEATURE UTILITY

We define the true utility of a feature as the change in the loss after the feature is removed. The
utility of the feature i in the l-th layer and sample Z is given by

ul,j(Z)
.
= L(W, Z|hl,j = 0)− L(W, Z), (18)

where hl,j = 0 denotes setting the feature output to zero (e.g., by adding a mask set to zero).

We refer to it as the true feature utility to distinguish it from its approximations, which are referred
to as either approximated utilities or simply utilities. Note that this utility is a global measure, and
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it provides a total ordering for features according to their importance. However, computing it is
prohibitive since it requires additional Nf forward passes, where Nf is the total number of features.

Since the computation of the true feature utility is prohibitive, we aim to approximate it such that
no additional forward passes are needed. We approximate the true utility of features by a second-
order Taylor approximation. We expand the true utility ui around the current feature i at layer l and
evaluate it at the value of that feature output set to zero. The quadratic approximation of ul,j(Z) can
be written as

ul,j(Z) = L(W, Z|hl,j = 0)− L(W, Z)

≈ − ∂L
∂hl,i

hl,i +
1

2

∂2L
∂h2

l,i

h2
l,i. (19)

We refer to the utility measure containing the first term as the first-order feature utility, and the utility
measure containing both terms as the second-order feature utility. We use the approximation by
Elsayed and Mahmood (2022) that provides a Hessian diagonal approximation in linear complexity.

When we use an origin-passing activation function, σ(0) = 0, we can instead compute the feature
utility by setting its input to zero. Thus, the feature utility can be approximated by expanding the
loss around the current activation input al,i as follows:

ul,j(Z) = L(W, Z|al,j = 0)− L(W, Z)

≈ − ∂L
∂al,i

al,i +
1

2

∂2L
∂a2l,i

a2l,i. (20)

The gradient of the loss with respect to pre-activations or activations is not readily available using
most available deep learning frameworks. To have an easily implemented algorithm, we create an
equivalent rule to Eq. 18 for general activations by adding a mask on top of the activation at each
layer. This mask acts as a gate on top of the activation output: h̄l = gl ◦ hl. Note that the weights
of such gates are set to ones and never change throughout learning. The quadratic approximation of
ul,j(Z) can be written as

ul,j(Z) = L(W, Z|gl,j = 0)− L(W, Z)

≈ L(W, Z) +
∂L
∂gl,i

(0− gl,j) +
1

2

∂2L
∂g2l,i

(0− gl,j)
2 − L(W, Z)

= − ∂L
∂gl,i

+
1

2

∂2L
∂g2l,i

. (21)

For feature-wise UPGD, the global scaled utility is given by ūl,j = ϕ(ul,j/η), where η is the
maximum utility of the features and ϕ is the scaling function, for which we use sigmoid, with
its corresponding Algorithm 3, whereas UPGD with the local scaled utility is given by ūl,j =

ϕ
(
ul,j/

√∑
j u

2
l,j

)
in Algorithm 4.

The approximated feature utility can be computed using the approximated weight utility, which
gives rise to the conservation of utility property. We show this relationship in Appendix D.

D FEATURE UTILITY APPROXIMATION USING WEIGHT UTILITY

Instead of deriving feature utility directly, we derive the utility of a feature based on setting its output
weights to zero. Equivalently to Eq. 18, the utility of a feature i at layer l is given by

ul,i(Z) = L(W¬[l,i], Z)− L(W, Z), (22)

whereW is the set of all weights, L(W, Z) is the sample loss of a network parameterized byW on
sample Z, andW¬[l,i] is the same asW except the weight Wl+1,i,j is set to 0 for all values of i.

Note that the second-order Talyor’s approximation of this utility depends on the off-diagonal ele-
ments of the Hessian matrix at each layer, since more than one weight is removed at once. For our
analysis, we drop these elements and derive our feature utility. We expand the difference around the
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current output weights of the feature i at layer l and evaluate it by setting the weights to zero. The
quadratic approximation of ul,i(Z) can be written as

ul,j(Z) = L(W¬[l,i], Z)− L(W, Z)

=

|al+1|∑
i=1

(
− ∂L
∂Wl+1,i,j

Wl+1,i,j +
1

2

∂2L
∂W 2

l+1,ij

W 2
l+1,i,j

)

+

|al+1|∑
i=1

2
∑
j ̸=i

∂2L
∂Wl+1,i,j∂Wl+1,i,k

Wl+1,i,jWl+1,i,k


≈

|al+1|∑
i=1

(
− ∂L

∂Wl+1,ij
Wl+1,ij +

1

2

∂2L
∂W 2

l+1,ij

W 2
l+1,ij

)

=

|al+1|∑
i=1

Ul+1,i,j . (23)

Alternatively, we can derive the utility of feature i at layer l by dropping the input weights when the
activation function passes through the origin (zero input leads to zero output). This gives rise to the
property of conservation of utility shown by Therom 2.
Theorem 2. If the second-order off-diagonals in all layers in a neural network except for the last
one are zero, all higher-order derivatives are zero, and an origin-passing activation function is used,
the sum of output-weight utilities to a feature equals the sum of its input-weight utilities.

|al+1|∑
i=1

Ul+1,i,j =

|al|∑
i=1

Ul,j,i.

Proof. From Eq. 23, we can write the utility of the feature j at layer l by dropping the output
weights. The sample feature utility of is given by

ul,j(Z) =

|al+1|∑
i=1

Ul+1,i,j(Z).

Similarly, we can write the utility of the feature j at layer l by dropping the input weights when the
activation function passes through the origin (zero input leads to zero output) as follows:

ul,j(Z) =

|al|∑
i=1

Ul,j,i(Z).

Therefore, we can write the following equality:

|al+1|∑
i=1

Ul+1,i,j =

|al|∑
i=1

Ul,j,i.

This theorem shows the property of the conservation of instantaneous utility. The sum of utilities
of the outgoing weights to a feature equals the sum of utilities of the incoming weights to the same
feature when origin-passing activation functions are used and the off-diagonal elements are dropped.
This conservation law resembles the one introduced by Tanaka et al. (2020).
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E WEIGHT-WISE UPGD, FEATURE-WISE UPGD, AND ADAPTIVE UPGD

Algorithm 2 Weight-wise UPGD with local utility
Given a stream of data D and a neural network f with weights {W1, ...,WL}.
Initialize step size α, utility decay rate β, and noise standard deviation σ.
Initialize {W1, ...,WL}.
Initialize Ul,∀l and time step t to zero.
for (x,y) in D do
t← t+ 1
for l in {L,L− 1, ..., 1} do
Fl,Sl ←GetDerivatives(f,x,y, l)
Ml ← 1/2Sl ◦W 2

l − Fl ◦W
Ul ← βUl + (1− β)Ml

Ûl ← Ul/(1− βt)
Sample ξ elements from N (0, σ2)

Ūl ← ϕ(DÛl) ▷ Dii = 1/∥Ul,i,:∥ and Dij = 0,∀i ̸= j
Wl ←Wl − α(Fl + ξ) ◦ (1− Ūl)

Algorithm 3 Feature-wise UPGD w/ global utility
Given a stream of data D and a neural net-
work f with weights {W1, ...,WL}.
Initialize step size α, utility decay rate β, and
noise standard deviation σ.
Initialize {W1, ...,WL} randomly.
Initialize {g1, ..., gL−1} to ones.
Initialize ul,∀l and time step t to zero.
t← t+ 1
for (x,y) in D do
t← t+ 1
for l in {L− 1, ..., 1} do
η ← −∞
Fl, ←GetDerivatives(f,x,y, l)
fl, sl ←GateDerivatives(f,x,y, l)
ml ← 1/2sl − fl

ul ← βul + (1− β)ml

ûl ← ul/(1− βt)
if η < max(ûl) then η ← max(ûl)

for l in {L,L− 1, ..., 1} do
if l = L then
WL ←WL − αFL

else
ūl ← ϕ(ûl/η)
Sample ξ elements from N (0, σ2)
Wl ←Wl − α(Fl + ξ) ◦ (1− 1ū⊤

l )

Algorithm 4 Feature-wise UPGD w/ local utility
Given a stream of data D and a neural net-
work f with weights {W1, ...,WL}.
Initialize step size α, utility decay rate β, and
noise standard deviation σ.
Initialize {W1, ...,WL} randomly.
Initialize {g1, ..., gL−1} to ones.
Initialize ul,∀l and time step t to zero.
t← t+ 1
for (x,y) in D do
t← t+ 1
for l in {L,L− 1, ..., 1} do
Fl, ←GetDerivatives(f,x,y, l)
if l = L then
WL ←WL − αFL

else
fl, sl ←GateDerivatives(f,x,y, l)
ml ← 1/2sl − fl

ul ← βul + (1− β)ml

ûl ← ul/(1− βt)
ūl ← ϕ(ûl/∥ûl∥)
Sample ξ elements from N (0, σ2)
Wl ←Wl − α(Fl + ξ) ◦ (1− 1ū⊤

l )

F THE GETDERIVATIVES AND GATEDERIVATIVES FUNCTIONS

Here, we describe GetDerivatives used in UPGD and GateDerivatives used in the
feature-wise variation of UPGD. Each function takes four arguments: the neural network f , the
input x, the target y, and the layer number l. The GetDerivatives function returns the gradient
of the loss with respect to the weight matrix Wl given by Fl and the approximated second-order in-
formation of the loss with respect to the matrix Wl given by Sl. The GateDerivatives function
is similar, which returns the gradient of the loss with respect to the gate gl given by fl and the ap-
proximated second-order information of the loss with respect to the gate gl given by sl. The matrix
Sl and the vector sl store the diagonal approximation of Diag(∇2

Wl
L) and Diag(∇2

gl
L) reshaped

to be of the same size as Wl and gl, respectively. While different methods can be used to get the
derivatives, UPGD uses HesScale for it, which is given by Algorithm 6.
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Algorithm 5 AdaUPGD: Adaptive Utility-based Gradient Descent
Given a stream of data D, a network f with weights {W1, ...,WL}.
Initialize utility decay rate βu, momentum decay rate β1, and RMSprop decay rate β2, where
βu, β1, β2 ∈ [0, 1) and set a small number ϵ for numerical stability (e.g., 10−8).
Initialize step size α and noise standard deviation σ.
Initialize {W1, ...,WL}.
Initialize Ul,Ml,Vl,∀l and time step t to zero.
for (x,y) in D do
t← t+ 1
for l in {L,L− 1, ..., 1} do
η ← −∞
Fl,Sl ←GetDerivatives(f,x,y, l)
Rl ← 1/2Sl ◦W 2

l − Fl ◦Wl

Ul ← βuUl + (1− βu)Rl

Ml ← β1Ml + (1− β1)Fl

Vl ← β2Vl + (1− β2)F
◦2
l

Ûl ← Ul/(1− βt
u)

M̂l ←Ml/(1− βt
1)

V̂l ← Vl/(1− βt
2)

if η < max(Ûl) then
η ← max(Ûl)

for l in {L,L− 1, ..., 1} do
Sample ξ elements from N (0, σ2)

Ūl ← ϕ(Ûl/η)

Wl ←Wl − α
(
M̂l ⊘

(
V̂ ◦ 1

2 + ϵ
)
+ ξ
)
◦ (1− Ūl)

Algorithm 6 The HesScale Algorithm in Classification (Elsayed & Mahmood 2022)
Require: Neural network f and a layer number l

Require: ∂̂L
∂al+1

and ∂̂2L
∂a2

l+1
, unless l = L

Require: Input-output pair (x, y).
Compute preference vector aL ← f(x) and target one-hot-encoded vector p← onehot(y).
Compute the predicted probability vector q ← σ(aL) and Compute the loss L(p, q).
if l = L then

Compute ∂L
∂aL
← q − p

Compute ∂L
∂WL

using Eq. 10
∂̂2L
∂a2

L
← q − q ◦ q

Compute ∂̂2L
∂W 2

L
using Eq. 12

else
Compute ∂L

∂al
and ∂L/∂Wl using Eq. 9 and Eq. 10

Compute ∂̂2L
∂a2

l
and ∂̂2L

∂W 2
l

using Eq. 11 and Eq. 12

Return ∂L
∂Wl

, ∂̂2L
∂W 2

l
, ∂L
∂al

, and ∂̂2L
∂a2

l

G UPGD ON STATIONARY MNIST

We use the MNIST dataset to assess the performance of UPGD under stationarity. A desirable
property of continual learning systems is that they should not asymptotically impose any extra per-
formance reduction, which can be studied in a stationary task such as MNIST. We report the results
in Fig. 9. We notice that UPGD improves performance over SGD. Each point in the stationary
MNIST plots represents an average accuracy over a non-overlapping window of 10000 samples.
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The learners use a network of 300× 150 units with ReLU activations. We used the hyperparameter
search space shown in Table 1. The utility traces are computed using exponential moving averages
given by Ũt = βuŨt−1+(1−βu)Ut, where Ũt is the utility trace at time t and Ut is the instantaneous
utility at time t.
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Figure 9: Performance of Utility-based Perturbed Gradient Descent with first-order approximated
utilities on stationary MNIST. The results are averaged over 20 independent runs.

H UPGD ON NON-STATIONARY TOY REGRESSION PROBLEM

We study UPGD’s effectiveness in mitigating catastrophic forgetting and loss of plasticity in a simple
toy regression problem that is easy to analyze and understand. The target at time t is given by
yt = a

|S|
∑

i∈S xt,i, where xt,i is the i-th entry of input vector at time t, S is a set of some input
indices, and a ∈ {−1, 1}. The inputs are sampled from N (0, 1).

In this problem, the task is to calculate the average of two inputs or its negative out of 16 inputs. We
introduce non-stationarity using two ways: changing the multiplier a or changing the input-index set
S. The learner is required to match the targets by minimizing the online squared error. The learner
uses a multi-layer (300 × 150) linear network, where the activation used is the identity activation
(σ(x) = x). We use linear activations to see if catastrophic forgetting and loss of plasticity may
occur even in such simple networks.

The first variation of the problem focuses solely on loss of plasticity. We can study plasticity when
the learner is presented with sequential tasks requiring little transfer between them. Here, |S| = 2
and the input indices change every 200 time steps by a shift of two. For instance, if the first task
has S = {1, 2}, the next would be {3, 4} and so on. Since the tasks share little similarity between
them, we expect the continual learners to learn as quickly as possible by discarding old features
when needed to maintain their plasticity. We compare UPGD against SGD, PGD, S&P, and Non-
protecting UPGD. We also use a baseline with one linear layer mapping the input to the output.

The second variation of the problem focuses on catastrophic forgetting. Here, the sign of the target
sum is flipped every 200 time steps by changing a from 1 to −1 and vice versa. Since the two
tasks share high similarities, we expect continual learners to initially learn some features during the
first 200 steps. Then, after the target sign flip, we expect the learner to change the sign of only the
output weights and keep the features intact since the previously learned features are fully useful.
The frequency of changing a is high to penalize learners for re-learning features from scratch.

For the input-index changing problem, Fig. 10 shows that the performance of SGD degrades with
changing targets even when using linear neural networks, indicating SGD loses plasticity over time.
Each point in the toy problem figures represents an average squared error of 20 tasks. The results are
averaged over 20 independent runs. Empirically, we found that the outgoing weights of the last layer
get smaller, hindering the ability to change the features’ input weights. S&P outperforms the linear-
layer baseline. However, PGD and Non-protecting UPGD perform better than S&P, indicating that
weight decay is not helpful in this problem, and it is better to just inject noise without shrinking the
parameters. UPGD cannot only maintain its plasticity but also improve its performance rapidly with
changing targets compared to other methods.

For the output-sign changing problem, Fig. 11 shows that the performance of SGD degrades with
changing targets, indicating that it does not utilize learned features and re-learn them every time
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the targets change. S&P, Non-protecting UPGD, and PGD do not lose plasticity over time but
perform worse than UPGD, indicating that they are ineffective in protecting useful weights. UPGD
is likely protecting and utilizing useful weights in subsequent tasks. Moreover, the performance
keeps improving with changing targets compared to the other methods.

In both variations, we use utility traces (e.g., using exponential moving average) instead of instan-
taneous utility, as we empirically found utility traces to perform better. We found that the second-
order approximated utility improves performance over the first-order approximated utility in these
problems. A hyperparameter search, given in Table 1, was conducted. The best-performing hyper-
parameter set was used for plotting (see Table 3 for weight-wise UPGD alongside other algorithms).
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Figure 10: Performance of UPGD on the toy problem with a changing input-index set against SGD,
PGD, and S&P. First-order and second-order approximated utilities are used.
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Figure 11: Performance of UPGD on the toy problem with changing output sign against SGD, PGD,
and S&P. First-order and second-order approximated utilities are used.

I EXPERIMENTAL DETAILS

In each experiment, the utility traces are computed using exponential moving averages given by
Ũt = βuŨt−1 +(1− βu)Ut, where Ũt is the utility trace at time t and Ut is the instantaneous utility
at time t. Each learner is trained for 1 million time steps, except for the experiment in Fig. 1(b) and
its closer look in Fig. 1(c), which we run for 15 million time steps.

I.1 EXPERIMENTS IN FIG. 1

In the problem of Label-permuted EMNIST, the labels are permuted every 2500 sample. For the
offline variation, we form a held-out set comprised of 250 samples of the test set of EMNIST. The
performance is measured based on the learner’s prediction on this held-out set after the end of each
task in an offline manner. We permute the labels of the held-out set with the same permutation in
the task presented to the learner to have consistent evaluation. We observe the same phenomenon
indicated by Lesort et al. (2023), in which the performance of SGD decreases on the first few tasks,
matching the vast majority of works on catastrophic forgetting. However, when scaling the number
of tasks, SGD recovers and maintains its performance. The online variation uses the same experi-
mental details in Section 4.4. The hyper-parameters used are given in Table 3.

In the problem of input-permuted MNIST, the inputs are permuted every 60000 sample. In Fig. 1(c),
we show the online accuracy in 4 tasks where each point represents an average of over 600 samples.
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The step-size α used for Adam is 0.0001 using the default β1 = 0.9, β2 = 0.9999, and ϵ = 10−8.
We used for UPGD-W a step size α of 0.01, a utility trace decay factor βu of 0.999, a weight decay
λ of 0.001, and a noise standard deviation σ of 0.01.

I.2 INPUT-PERMUTED MNIST AND LABEL-PERMUTED EMNIST/MINI-IMAGENET

Each point in the Input-permuted MNIST and Label-permuted EMNIST figures represents an aver-
age accuracy of one task. The learners use a network of two hidden layers containing 300 and 150
units with ReLU activations, respectively. The results are averaged over 20 independent runs, and
the shaded area represents the standard error.

I.3 LABEL-PERMUTED CIFAR-10

The learners use a network with two convolutional layers with max-pooling followed by two fully
connected layers with ReLU activations. The first convolutional layer uses a kernel of 5 and outputs
6 filters, whereas the second convolutional layer uses a kernel of 5 and outputs 16 filters. The max-
pooling layers use a kernel of 2. The data is flattened after the second max-pooling layer and fed
to a fully connected network with two hidden layers containing 120 and 84 units, respectively. The
results are averaged over 10 independent runs, and the shaded area represents the standard error.

I.4 S-SI AND S-RWALK DETAILS

We compute weight importance Ωl,i,j in S-SI by first maintaining a trace of the gradient multiplied
by the weight change from its previous value (with a decay factor βI ). We then maintain a trace of
the weight change from its previous value (with a decay factor βI ). The weight importance for S-SI
is defined as the ratio of the first trace and the squared value of the second trace as follows:

Ωl,i,j =
ω̃l,i,j

(∆̃l,i,j)2 + ϵ
,

where ω̃l,i,j is a moving average of the gradient gl,i,j multiplied by the weight change from its
previous weight w−

l,i,k as: gl,i,j(w
−
l,i,k − wl,i,k), ∆̃l,i,j is a moving average of the weight change

from its previous weight as (w−
l,i,k − wl,i,k), and ϵ is a small number for numerical stability which

we set to 10−3. Note that the update rule uses a trace of weights with a decay rate βw.

On the other hand, the weight importance estimation in S-RWalk is computed as:

sl,i,j =
ω̃l,i,j

1
2 F̃l,i,j(wl,i,k − w−

l,i,k)
2 + ϵ

,

Ωl,i,j = s̃l,i,j + Fl,i,j ,

where F̃l,i,j is a moving average of past squared gradients (with a decay factor βI ). Note that s̃l,i,j
is estimated with a fast-moving average with a decay factor of 0.5 based on sl,i,j .

I.5 HYPERPARAMETER SEARCH SPACE

In this section, we present the hyperparameter search space we conduct for each method in each
problem in Table 1. Our grid search is quite exhaustive and can reach up to 100 configurations per
algorithm for a single run. Table 3 and Table 2 show the best hyperparameter configuration for each
method on each problem.

I.6 POLICY COLLAPSE EXPERIMENT

We evaluate AdaUPGD using various MuJoCo (Todorov et al. 2012) environments in comparison to
Adam. We use the CleanRL (Huang et al. 2022) implementation for PPO with its default best hyper-
parameters. For AdaUPGD, we used the same values of β1, β2, and ϵ used in Adam, which are 0.9,
0.999, and 10−5, respectively. We used noise with a standard deviation of 0.001 and a utility trace
with a decay rate of 0.999 in all environments except for Humanoid-v4 and HumanoidStandup-v4,
in which we use a utility trace with a decay rate of 0.9.
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Table 1: Hyperparameter search spaces. N-UPGD is short for non-protecting UPGD.

Problem Space Method

α {0.1, 0.01, 0.001, 0.0001} All

Toy Problems βu {0.0, 0.9, 0.99, 0.999} UPGD, N-UPGD

Stationary MNIST σ {0.001, 0.01, 0.1, 1.0} S&P, UPGD, N-UPGD

λ {0.1, 0.01, 0.001, 0.0001} S&P

α {0.1, 0.01, 0.001, 0.0001} All
Input-permuted

MNIST βu {0.9, 0.99, 0.999, 0.9999} UPGD, N-UPGD

σ {0.001, 0.01, 0.1, 1.0} S&P, UPGD, N-UPGD

Label-permuted λ {0.0, 0.1, 0.01, 0.001, 0.0001} S&P, UPGD, N-UPGD
EMNIST

β1 {0.0, 0.9} Adam

β2 {0.99, 0.999, 0.9999} Adam
Label-permuted

CIFAR-10 ϵ {10−4, 10−8, 10−16} Adam

κ {100, 10.0, 1.0, 0.1, 0.01} S-EWC, S-SI, S-MAS, S-RWalk

Label-permuted βI {0.9, 0.99, 0.999, 0.9999} S-EWC, S-SI, S-MAS, S-RWalk
mini-ImageNet

βw {0.9, 0.99, 0.999} S-EWC, S-SI, S-MAS, S-RWalk

Table 2: Best hyperparameter set of each method on Label-permuted CIFAR10.

Problem Method Best Set

SGDW α = 0.01, λ = 0.001
S&P α = 0.01, σ = 0.01, λ = 0.001
PGD α = 0.001, σ = 0.01

AdamW α = 0.001, β1 = 0.0, β2 = 0.9999, ϵ = 10−8, λ = 0.01
Label-permuted S-EWC α = 0.01, βI = 0.9999, βw = 0.999, κ = 10.0

CIFAR-10 S-MAS α = 0.01, βI = 0.9999, βw = 0.999, κ = 10.0
S-SI α = 0.001, βI = 0.99, βw = 0.99, κ = 0.01

S-RWalk α = 0.001, βI = 0.9, βw = 0.999, κ = 10.0
UPGD-W α = 0.01, σ = 0.001, βu = 0.999, λ = 0.0

N-UPGD-W α = 0.01, σ = 0.01, βu = 0.99, λ = 0.001
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Table 3: Best hyperparameter set of each method in the toy problems, Input-permuted MNIST,
Label-permuted EMNIST, and Label-permuted mini-ImageNet.

Problem Method Best Set

Toy Problem 1

SGD α = 0.01
PGD α = 0.01, σ = 0.1
S&P α = 0.01, σ = 1.0, λ = 0.1

UPGD α = 0.01, σ = 0.0001, βu = 0.9
N-UPGD α = 0.01, σ = 0.1, βu = 0.999
Reference α = 0.01

Toy Problem 2

SGD α = 0.01
PGD α = 0.01, σ = 0.1
S&P α = 0.01, σ = 1.0, λ = 0.1

UPGD α = 0.01, σ = 0.1, βu = 0.9
N-UPGD α = 0.01, σ = 0.1, βu = 0.999
Reference α = 0.01

SGDW α = 0.001, λ = 0.001
S&P α = 0.001, σ = 0.1, λ = 0.01
PGD α = 0.001, σ = 0.1

AdamW α = 0.0001, β1 = 0.0, β2 = 0.99, ϵ = 10−8, λ = 0.0
Input-permuted S-EWC α = 0.001, βI = 0.9999, βw = 0.99, κ = 0.001

MNIST S-MAS α = 0.001, βI = 0.9999, βw = 0.999, κ = 0.1
S-SI α = 0.001, βI = 0.9999, βw = 0.999, κ = 0.1

S-RWalk α = 0.001, βI = 0.99, βw = 0.999, κ = 10.0
UPGD-W α = 0.01, σ = 0.1, βu = 0.9999, λ = 0.01

N-UPGD-W α = 0.001, σ = 0.1, βu = 0.9, λ = 0.01

SGDW α = 0.01, λ = 0.0001
S&P α = 0.01, σ = 0.01, λ = 0.001
PGD α = 0.01, σ = 0.01

AdamW α = 0.0001, β1 = 0.0, β2 = 0.9999, ϵ = 10−8, λ = 0.1
Label-permuted S-EWC α = 0.01, βI = 0.999, βw = 0.999, κ = 1.0

EMNIST S-MAS α = 0.01, βI = 0.999, βw = 0.999, κ = 10.0
S-SI α = 0.01, βI = 0.9, βw = 0.9, κ = 0.1

S-RWalk α = 0.01, βI = 0.9, βw = 0.999, κ = 0.1
UPGD-W α = 0.01, σ = 0.001, βu = 0.9, λ = 0.0

N-UPGD-W α = 0.01, σ = 0.01, βu = 0.999, λ = 0.001

SGDW α = 0.01, λ = 0.001
S&P α = 0.01, σ = 0.01, λ = 0.001
PGD α = 0.01, σ = 0.01

AdamW α = 0.0001, β1 = 0.9, β2 = 0.9999, ϵ = 10−8, λ = 0.1
Label-permuted S-EWC α = 0.01, βI = 0.999, βw = 0.999, κ = 1.0
mini-ImageNet S-MAS α = 0.01, βI = 0.999, βw = 0.999, κ = 10.0

S-SI α = 0.001, βI = 0.9, βw = 0.99, κ = 0.01
S-RWalk α = 0.01, βI = 0.99, βw = 0.999, κ = 0.1
UPGD-W α = 0.01, σ = 0.001, βu = 0.9, λ = 0.0

N-UPGD-W α = 0.01, σ = 0.01, βu = 0.999, λ = 0.0001
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J THE QUALITY OF THE APPROXIMATED UTILITY

Fig. 12 shows the Spearman correlation at every time step with different activation functions. An
SGD learner with a step size of 0.01 used a single hidden layer network containing 50 units with
ReLU activations (Nair & Hinton 2010) and Kaiming initialization (He et al. 2015). The network
has five inputs and a single output. The target of an input vector is the sum of two inputs out of the
five inputs, where the inputs are sampled from U [−0.5, 0.5].
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Figure 12: Spearman correlation between the true utility and approximated utilities. The activations
used in the first, second, and third rows are ReLU, LeakyReLU, and Tanh. The shaded area repre-
sents the standard error.

K ADDITIONAL EXPERIMENTS

K.1 MORE DIAGNOSTIC STATISTICS CHARACTERIZING SOLUTION METHODS

Here, we provide more diagnostic statistics for our methods Fig. 13, Fig. 14, Fig. 15, and Fig. 16.
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Figure 13: Additional diagnostic statistics of methods on Input-permuted MNIST. The average plas-
ticity, the average online loss, the ℓ1-norm of gradients, and the ℓ2-norm of weights are shown.
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Figure 14: Diagnostic statistics of methods on Label-permuted CIFAR10. The average plasticity,
percentage of zero activations, ℓ0, ℓ1 and ℓ2-norm of gradients, the average online loss, the ℓ1-norm
and ℓ2-norm of the weights are shown. The shaded area represents the standard error.
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Figure 15: Diagnostic statistics of methods on Label-permuted EMNIST. The average plasticity,
percentage of zero activations, ℓ0, ℓ1 and ℓ2-norm of gradients, the average online loss, the ℓ1-norm
and ℓ2-norm of the weights are shown. The shaded area represents the standard error.
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Figure 16: Diagnostic Statistics of methods on Label-permuted mini-ImageNet. The average plas-
ticity, percentage of zero activations, ℓ0, ℓ1 and ℓ2-norm of gradients, the average online loss, the
ℓ1-norm and ℓ2-norm of the weights are shown. The shaded area represents the standard error.
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K.2 COMPUTATIONAL TIME FOR MAKING UPDATES

Here, we conduct a small experiment to determine the computation overhead by each method. We
are interested in the computational time each algorithm needs to perform a single update. Fig.
17 shows the computational time needed to make a single update using a batch of 100 MNIST
samples. The results are averaged over 10000 updates. Each learner used a multi-layered network
of 1024× 512 units. The error bars represent one standard error.
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Figure 17: Computational time in milliseconds needed to make a single update. N-UPGD is short
for Non-protecting UPGD.

K.3 FEATURE-WISE AND WEIGHT-WISE UPGD ON THE INPUT-PERMUTED MNIST

We repeat the experiment on Input-permuted MNIST but with feature-wise approximated utility. In
addition, we show the results using the local approximated utility for both weight-wise and feature-
wise UPGD in Fig. 18. The weights are initialized by Kaiming initialization (He et al. 2015). A
hyperparameter search was conducted (see Table 1), and the best-performing hyperparameter set
was used for plotting.
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Figure 18: Performance of methods on Input-Permuted MNIST. First-order utility traces are used
for UPGD and Non-protecting UPGD. Results are averaged over 10 runs.

K.4 FEATURE-WISE AND WEIGHT-WISE UPGD ON LABEL-PERMUTED EMNIST

We repeat the experiment on Label-permuted MNIST but with feature-wise approximated utility. In
addition, we show the results using the local approximated utility for both weight-wise and feature-
wise UPGD in Fig. 19. The weights are initialized by Kaiming initialization (He et al. 2015). A
hyperparameter search was conducted (see Table 1), and the best-performing hyperparameter set
was used for plotting.

K.5 LOCAL WEIGHT-WISE UPGD ON LABEL-PERMUTED CIFAR-10

We repeat the experiment on Label-permuted CIFAR-10 but with the local approximated utility.
Fig. 20 shows the results for UPGD using local and global approximated utilities. The weights are
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Figure 19: Performance of methods on Label-permuted EMNIST. First-order utility traces are used
for UPGD and Non-protecting UPGD. Results are averaged over 10 runs.

initialized by Kaiming initialization (He et al. 2015). A hyperparameter search was conducted (see
Table 1), and the best-performing hyperparameter set was used for plotting.
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Figure 20: Performance of methods on Label-permuted CIFAR-10. First-order utility traces are used
for UPGD and Non-protecting UPGD. Results are averaged over 10 runs.

L ABLATION ON THE COMPONENTS OF UPGD-W

We conducted an ablation study on the components of UPGD-W: weight decay, weight perturbation,
and utility gating. Starting from SGD, we add each component step by step until we reach UPGD-W.
Fig. 21 shows the performance of learners on Input-permuted MNIST, Label-permuted CIFAR10,
Label-permuted EMNIST, and Label-permuted mini-ImageNet. We notice that both weight pertur-
bation and weight decay separately improve SGD performance. Still, the role of weight decay seems
to be more important in Input-permuted MNIST and Label-permuted mini-ImageNet. Notably, the
combination of weight decay and weight perturbation makes the learner maintain its performance.
When utility gating is added on top of weight decay and weight perturbation, the learner can improve
its performance continually in all label-permuted problems and slightly improve its performance on
input-permuted MNIST.

We also conducted an additional ablation in Fig. 22 where we start from UPGD-W and remove
each component individually. This ablation bolsters the contribution of utility gating more. Using
utility gating on top of SGD allows SGD to maintain its performance instead of dropping on input-
permuted MNIST and improves its performance continually on label-permuted problems. The role
of weight decay and weight perturbation is not significant in label-permuted problems, but including
both with utility gating improves performance and plasticity on input-permuted MNIST.

M RELATIONSHIP TO GENERATE-AND-TEST METHODS

The generate-and-test method (Mahmood & Sutton 2013) is a method that finds better features
using search, which, when combined with gradient descent (see Dohare et al. 2023a), is similar
to a feature-wise variation of our method. However, this method only works with networks with
single-hidden layers in single-output regression problems. It uses the weight magnitude to determine
feature utilities; however, it has been shown that weight magnitude is not suitable for other problems,
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(d) mini-ImageNet

Figure 21: Ablation on the components of UPGD-W: Weight Decay (WD), Weight Perturbation
(WP), and Utility Gating (UG) shown on Input-permuted MNIST, Label-permuted EMNIST, Label-
permuted CIFAR10, and Label-permuted mini-ImageNet. A global first-order utility trace is used.
Results are averaged over 10 runs. The shaded area represents the standard error.
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(d) mini-ImageNet
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Figure 22: Ablation on the components of UPGD-W: Weight Decay (WD), Weight Perturbation
(WP), and Utility Gating (UG) shown on Input-permuted MNIST, Label-permuted EMNIST, Label-
permuted CIFAR10, and Label-permuted mini-ImageNet, starting from UPGD-W and removing
each component individually. SGD+WD and SGD+WP are added as baselines that do not use utility
gating. A global first-order utility trace is used. Results are averaged over 10 runs. The shaded area
represents the standard error.

such as classification (Elsayed 2022). On the contrary, our variation uses a better notion of utility that
enables better search in the feature space and works with arbitrary network structures or objective
functions so that it can be seen as a generalization of the generate-and-test method.

N FUTURE WORKS

Arguably, one limitation of our approach is that it measures the weight utility, assuming other
weights remain unchanged. A better utility would include interaction between weight variations,
which is left for future work. One desirable property of continual learners is the ability to modify
their hyperparameter, allowing for greater adaptation to changes. Although our method does not re-
quire intensive hyperparameter tuning, it still requires some level of tuning, similar to other methods,
which may hinder its ability in true lifelong learning. A promising direction is to use a generate-and-
test approach that continually learns the best set of hyperparameters. In our evaluation, we assumed
that the non-stationary target function is piece-wise stationary. Studying the effectiveness of UPGD
against hard-to-distinguish non-stationarities would be an interesting future direction.
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