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ABSTRACT

Despite remarkable progress in autoregressive language models, alternative
generative paradigms beyond left-to-right generation are still being actively
explored. Discrete diffusion models, with the capacity for parallel generation,
have recently emerged as a promising alternative. Unfortunately, these models
still underperform the autoregressive counterparts, with the performance gap
increasing when reducing the number of sampling steps. Our analysis reveals
that this degradation is a consequence of an imperfect approximation used by
diffusion models. In this work, we propose Energy-based Diffusion Language
Model (EDLM), an energy-based model operating at the full sequence level for
each diffusion step, introduced to improve the underlying approximation used
by diffusion models. More specifically, we introduce an EBM in a residual
form, and show that its parameters can be obtained by leveraging a pretrained
autoregressive model or by finetuning a bidirectional transformer via noise
contrastive estimation. We also propose an efficient generation algorithm via
parallel important sampling. Comprehensive experiments on language modeling
benchmarks show that our model can consistently outperform state-of-the-art
diffusion models by a significant margin, and approaches autoregressive models’
perplexity. We further show that, without any generation performance drop, our
framework offers a 1.3× sampling speedup over existing diffusion models.

1 INTRODUCTION

In recent years, autoregressive (AR) models have achieved remarkable advances in modern large
language modeling (Vaswani et al., 2017; Wolf et al., 2020; Brown et al., 2020; Chowdhery et al.,
2023; Touvron et al., 2023), showing impressive results in tasks such as expert-level coding (Roziere
et al., 2023) and reasoning (Wei et al., 2022; Trinh et al., 2024). Despite the considerable progress
achieved, the left-to-right generative paradigm exhibits several long-standing drawbacks. For ex-
ample, training and sampling of autoregressive models require a fixed ordering of the sequence,
constraining their generation flexibility (Hoogeboom et al., 2022; Shih et al., 2022). Furthermore, at
test time, the generation is heavily conditioned on previous generations, which leads to accumulated
error a.k.a exposure bias (Bengio et al., 2015). As a result, alternative generative paradigms beyond
left-to-right generation are actively being explored.

Discrete diffusion models (DMs) have recently emerged as a promising competitor for discrete se-
quence generation (Austin et al., 2021; Dieleman et al., 2022; Gat et al., 2024). Unlike AR models,
discrete DMs conduct generation by progressively decoding the full sequence in parallel starting
from a fully masked sequence, offering great potential in bidirectional controllable generation and
sampling acceleration. Most recently, great efforts have been invested in improving their perfor-
mance by extending discrete diffusions to operate in continuous time (Campbell et al., 2022; 2024;
Sahoo et al., 2024; Shi et al., 2024). Unfortunately, despite their promise, these models still under-
perform AR models by a large margin, resulting in limited practical usage. Developing principled
and powerful discrete DMs remains an open problem.

In this work, we take a closer look at the existing discrete diffusion models and reveal a vital mis-
match issue between the training and sampling distribution in its current form. Specifically, the
existing discrete diffusion models aim to predict all missing tokens in parallel at each intermediate
diffusion step, but the denoising joint distribution is simply parameterized as a product of token-wise
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independent distributions. As a result, intermediate denoising steps ignore sequence-level correla-
tions, which results in serious accumulated decoding errors and prevents users from efficient parallel
decoding with fewer timesteps. To this end, in this paper, we propose Energy-based Diffusion Lan-
guage Model (EDLM), an unnormalized energy-based model (EBM) that learns to jointly denoise
the full sequence at each diffusion step. Our key innovation is to learn an EBM for each denoising
distribution p(xt−1|xt), where the energy directly operates on the sequence level and captures the
correlation between tokens. The fundamental challenge of our framework is to develop efficient
training and sampling methods for the unnormalized model. To overcome these challenges, we
design the EBM in a novel residual form

pEDLM(xt−1|xt) = pdiffusion(xt−1|xt) exp(−E(xt−1,xt)), (1)

applied over pretrained diffusion models pdiffusion. Such formulation enjoys several distinct advan-
tages. First, we analytically show that the EBM parameters can be easily obtained by leveraging
pretrained autoregressive models or finetuning from bidirectional transformers via noise contrastive
estimation, bypassing expensive maximum likelihood training. Furthermore, the framework corrects
the decoding error and enables fast generation by conducting efficient important sampling in parallel
over samples from the diffusion proposal distribution. Importantly, we highlight that, when leverag-
ing pretraiend AR as the energy function, our approach can be interpreted as parallel sampling from
pretrained language models using diffusion models as the proposal distribution.

EDLM can be viewed as a new family of discrete generative models that marries energy-based and
diffusion-based models. The novel combination addresses the training and sampling distribution
mismatch problem, enjoys better generation quality with less accumulated error, and improves sam-
pling efficiency by reducing the number of sampling steps. We further provide a formal estimator
to calculate the perplexity of EDLM, allowing our model to be compared against other models
in a standard way. We conduct comprehensive experiments on two common language modeling
benchmarks to evaluate the performance of our proposed method. Results show that on the per-
plexity metric, EDLM can consistently achieve state-of-the-art performance among diffusion-based
counterparts, and approaches or matches AR models. On the generation quality metric, compared
over the most competitive diffusion baseline, EDLM shows up to 49% generative perplexity gain
with the same number of sampling timesteps, and can achieve up to 1.3× sampling speedup when
keeping the same sampling performance.

2 RELATED WORK

Diffusion models are powerful models with surprising results in generating high-quality im-
ages (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Dhariwal & Nichol, 2021).
These models were originally designed for continuous data, with both forward and backward re-
verse processes parameterized as Gaussian Markov chains. In recent years, several methods have
been developed to extend the diffusion framework to generate discrete data (Austin et al., 2021;
Hoogeboom et al., 2022), with Campbell et al. (2022); Zhao et al. (2024) further extending the
framework to model discrete data in continuous time. Most recently, several concurrent works (Lou
et al., 2024; Sahoo et al., 2024; Shi et al., 2024) archived impressive progress in large-scale language
modeling by scaling the model and simplifying the training and sampling processes. Additionally,
Campbell et al. (2024); Gat et al. (2024) developed flow matching methods for discrete data, which
rely on a formulation similar to that of diffusion models. Despite the considerable progress in the
area, we observe that all these approaches are subject to the training and sampling distribution mis-
match issue, where the learned joint denoising distribution is simplified as independent distributions
for each token. This problem results in a significant accumulated decoding error during the parallel
sampling process and prevents users from conducting fast sampling with a small number of denois-
ing timesteps. Deng et al. (2020) studies similar accumulated error problem (a.k.a exposure bias)
in the autoregressive model setting and proposes energy-based models for modeling global con-
text, but the methodology focuses on improving autoregressive models and therefore fundamentally
different from ours. Other work (Gu et al., 2018; Ghazvininejad et al., 2019; Gu & Kong, 2021;
Savinov et al., 2022; Zheng et al., 2023) study similar non-autoregressive text generation but com-
bined with reranking and/or remasking methods. However, these methods typically result in biased
sampling, which can generate high-quality samples but fail to model the distribution and suffer from
low sampling diversity. Therefore, these methods mainly focus on different tasks such as machine
translation. Notably, Lezama et al. (2023) notices a similar issue (focusing on diffusion models in
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the image generation domain) and proposes to learn a corrector network to correct the independent
decoding error. However, this work concentrates on the image generation domain, and the correction
process needs to be run sequentially, which takes additional inference time. In contrast, we propose
an energy-based denoising process that directly captures the correlation at each denoising step and
enables efficient parallel decoding via an importance sampling scheme.

3 DISCRETE DIFFUSION MODELS

General Discrete Diffusion. Assume our data x lives in a finite discrete space of size m − 1.
In this paper, we augment the categorical space with an additional mask state with index m. In
a general discrete diffusion framework (Austin et al., 2021), the diffusion process is defined as a
Markov chain q(xt|xt−1) = Cat(xt;Qtxt−1), which repeatedly multiplies x with matrices Qt over
T discrete time steps. Given these transitions, the marginal distributions at each timestep can be
written in closed-form as q(xt|x) = Cat(xt; Q̄tx) = Cat(xt;Qt · · ·Q1x). Such forward process
can also be viewed as an interpolation between a clean data sample x and a reference distribution
Cat(·;π) induced by Q̄T :

q(xt|x) = Cat(xt;αtx0 + (1− αt)π), (2)
where αt ∈ [0, 1] is a strictly decreasing function w.r.t t, with α0 ≈ 1 and α1 ≈ 0.

In the continuous time limit, for two arbitrary times 0 ≤ s ≤ t ≤ 1, the transition distributions can
be written as q(xt|xs) = Cat(xt;αt|sxs + (1 − αt|s)π), where αt|s = αt/αs (Zhao et al., 2024;
Shi et al., 2024). This implies that during each diffusion step s→ t the token will jump to a sample
from the prior distribution π with a probability of (1 − αt|s). The forward process allows us to
compute many distributions in closed form. One particular distribution of interest is the reversal of
the forward process given x0, that is, the posterior distribution given by

q(xs|xt,x0) = Cat

(
xs;

[αt|sxt + (1− αt|s)1π
⊤xt]⊙ [αsx0 + (1− αs)π]

αtx⊤
t x0 + (1− αt)x⊤

t π

)
. (3)

Masked Diffusion. In this paper, we focus on masked (i.e., absorbing state) diffusion models, where
the target distribution is set as π = m. At each diffusion step t each token transitions to the ‘masked’
state m with some probability. Under such masking framework, the forward marginals (Eq. (2)) are
given by q(xt|x0) = αtx0 + (1− αt)m, and the posterior (Eq. (3)) can be simplified as

q(xs|xt,x0) =

{
Cat(xs;xt) xt ̸= m,

Cat
(
xs;

(1−αs)m+(αs−αt)x0

1−αt

)
xt = m.

(4)

Diffusion models aim to learn a backward model pθ(xs|xt) to approximate the reversal of the for-
ward process. Leveraging Eq. (4) we can parameterize the model pθ(xs|xt) as

pθ(xs|xt) = q(xs|xt,x0 = µθ(xt, t)) =

{
Cat(xs;xt), xt ̸= m,

Cat
(
xs;

(1−αs)m+(αs−αt)µθ(xt,t)
1−αt

)
, xt = m,

(5)

where µθ = pθ(x0|xt) is known as x0 predictor, since it predicts the mean of the distribution over
x0 given xt. However, as explained next, the practical implementation of this x0 predictor results in
a mismatch between training and sampling distributions.

Problem Statement. Existing discrete DMs learn a denoising distribution µθ = pθ(x0|xt) to match
the true reversal q(x0|xt). Let x denote the tokens of a full sequence in this section. In practice, the
model is parameterized as a factorized denoising model:

pθ(x0|xt) = Πipθ(x
i
0|xt) = Πiµ

i
θ(xt, t), where µθ(xt, t) =

{
softmax(fθ(xt, t)) xt = m,

xt xt ̸= m,
(6)

and the predictor µθ factorizes each token in x0 independently. This factorization enables us to
conduct an efficient denoising step pθ(xs|xt) by first sampling all x0|t tokens from pθ(x0|xt) in
parallel and then masking certain tokens according to the forward q(xs|xt,x0|t). However, this
parameterization ignores dependencies between tokens in the sequence, a fundamental limitation
which implies that pθ(x0|xt) can never match the exact backward q(x0|xt). As a result, this parallel
sampling introduces accumulated errors, as the factorized denoising step pθ does not match the
original generative model pθ for the joint distribution of the elements of x0.
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4 METHOD

In this section, we formally introduce Energy-based Diffusion Language Model (EDLM). Our work
aims to design a new family of energy-based discrete generative models that address the fundamental
mismatch problem between pθ(x0|xt) and q(x0|xt) in existing models. We first describe the general
EBM formulation in Section 4.1, and then elaborate on how to obtain the energy function by either
leveraging pretrained AR models or finetuning via noise contrastive estimation in Section 4.2. Then
we discuss how to estimate the likelihood (perplexity) of EDLM in Section 4.3, and finally introduce
the efficient parallel sampling algorithm in Section 4.4

4.1 RESIDUAL ENERGY-BASED MODELS

Discrete DMs can be viewed as learning a conditional x0 predictor for each denoising step t. For
example, original discrete DMs learn µ(xt, t) to directly predict independent distributions for each
token in x0. In our framework, given diffused data xt at timestep t, we introduce the generative
denoising kernel as an unnormalized density:

pθ,ϕ(x0|xt) = µθ(x0|xt)
exp(−Eϕ(x0,xt, t))

Zϕ(xt)
(7)

where µθ is the pretrained diffusion model, Eϕ is the energy introduced to capture the correlation
in the x0 sequence, and Zϕ(xt) is a normalizing factor known as the partition function. In the
following text, we use pθ,ϕ to denote the joint model, Eϕ the (residual) energy function, and keep
the pretrained µθ fixed. Computing the partition function is intractable since it requires summing
over the whole x space, which is exponential in the sequence length. In our language modeling
experiments, the vocabulary size is around 50k and the generation length is 1024 tokens, resulting
in a space of size around 50, 0001024. We aim to design solutions to efficiently train the parameters
of the energy function so that the joint model distribution gets close to the true reversal q(x0|xt),
while avoiding computing the partition function.

4.2 IMPLEMENTATION OF ENERGY FUNCTION

Training energy-based models with the intractable partition function is a long-standing challenge
in machine learning (Hinton, 2002; Carreira-Perpinan & Hinton, 2005; LeCun et al., 2006). Typ-
ical maximum likelihood estimation training requires approximation of the participation function
using Markov chain Monte Carlo (MCMC) sampling, which is computationally infeasible for high-
dimensional data. We aim to find efficient ways to train the energy function’s parameters for the x0

predictor pθ,ϕ(x0|xt). In the following, we describe two methods to do this. One involves taking
pretrained autoregressive language models as energy functions without any training, and efficiently
running sampling by taking all tokens as inputs in parallel. The second solution involves fine-tuning
the pretrained diffusion model via noise contrastive estimation, where the model is parameterized
with bidirectional transformers and potentially captures richer correlations.

4.2.1 LEVERAGE PRE-TRAINED AUTOREGRESSIVE MODELS

Let pAR(x0) be an autoregressive model trained over clean samples x0, i.e., pAR(x0) =
ΠipAR(x

i
0|x<i

0 ). Since AR models are only defined over clean samples x0, it is not directly clear
how to leverage them in denoising tasks, since the models are never trained on diffused data xt. Our
key insight is that, in absorbing discrete diffusion, the diffused xt is the same as x0 with certain
tokens masked according to the forward process. More specifically, letting x̄0 = x0[xt ̸= m] and
x0/x̄0 denote the set of x0 tokens corresponding to unmasked and masked components in xt, we
observe that we can induce the denoising transitions using

pAR(x0 |xt) = pAR(x0 | x̄0) =
pAR(x0/x̄0, x̄0)

pAR(x̄0)
=

pAR(x0)

pAR(x̄0)
, (8)

where the normalizing constant is given by pAR(x̄0) =
∑

x0/x̄0
pAR(x0/x̄0, x̄0). This partition

function also involves a sum over the x0 space and is intractable to compute. However, noting that in
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the reversal of masked diffusion (Eq. (5)) unmasked tokens x̄0 are fixed, we have that pAR(x0 |xt) ∝
pAR(x0),1 which can be computed efficienctly.

Unlike the original diffusion models (Eq. (6)) that decode each token independently, AR models
factorize the sequence distribution and take into account dependencies between tokens. Therefore,
it is reasonable to assume AR models can provide a better approximation of the diffusion posterior
than the factorized approximation used by diffusoin models, i.e., pAR(x0 |xt) ≈ q(x0 |xt). The
key challenge is that sampling the autoregressive model pAR(x0 |xt) at each denoising step is com-
putationally expensive. However, it is efficient to evaluate pAR(x0), which is proportional to the
posterior pAR(x0 |xt), and thus can be used in our residual energy-based formulation.

Recall that our residual energy model (Eq. (7)) uses pθ(x0 |xt)
exp (−Eϕ(x0,xt))

Zϕ(xt)
to approximate

q(x0 |xt). By taking pAR(x0 |xt) as the proxy of q(x0 |xt), we approximate the optimal resid-
ual energy as

Eϕ(x0,xt) = − log q(x0|xt) + log pθ(x0 |xt)− logZ

≈ − log pAR(x0|xt) + log pθ(x0 |xt)− logZ q(x0 |xt) ≈ pAR(x0|xt)

= − log pAR(x0) + log pθ(x0 |xt) + log pAR(x̄0)− logZ︸ ︷︷ ︸
New Partition Function

See Eq. (8).

(9)
For common EBM model inference, such as MCMC, we only require energies up to a constant.
Therefore, as shown in the equation above, with a pretrained AR model we can simply define the
energy function as − log pAR(x0) + log pθ(x0 |xt). The fact that AR language models can evaluate
likelihoods in parallel enables the development of efficient sampling algorithms. We leverage this
fact to develop a sampling method based on self-normalized importance sampling using pθ(x0 |xt)
as the proposal distribution (see Section 4.4). Importantly, we highlight that this energy formulation
translates to sampling from the AR language model as the target distribution using the denoising
distribution as the proposal distribution, providing a novel way to conduct parallel sampling from
pretrained AR language models via importance sampling.

Carry-Over (CO) Parameterization. Note that in diffusion reversal (Eq. (4)), unmasked tokens
are always directly carried over from xt to x0, i.e., q(x0|xt) = Cat(·;xt) for xt ̸= m. Recent
progress in discrete diffusion models show that directly parameterizing this property into denoising
model may improve the generation performance. In practice this is implemented by substituting
the output of the µθ network to simply copy the unmasked tokens of xt. Similarly, in our AR
EBM model, we can also carry over the unmasked tokens in each denoising step, by directly setting
pAR(x

i
0|x<i

0 ) = xi
t for xt ̸= m. This “carry-over autoregressive” (coAR) EBM implementation

allows simply computing pcoAR(x0 |xt) = pcoAR(x0)
pcoAR(x̄0)

by just pcoAR(x0), as we always carry over
those tokens from xt and therefore pcoAR(x̄0) = 1. Such practice enables us to evaluate the exact
denoising likelihood without estimating the partition function. We will introduce how to calculate
the data likelihood based on denoising distribution in Section 4.3.

4.2.2 TRAINING WITH NOISE CONTRASTIVE ESTIMATION

We can also train the parameters of the residual energy function using Noise Contrastive Estimation
(NCE) (Gutmann & Hyvärinen, 2010), specifically its conditional version (Ma & Collins, 2018).
First, NCE training relies on contrastive samples from the data distribution and a noise distribution,
where the noise distribution needs to be close to the data distribution. Second, it involves computing
the likelihoods of these samples by model distribution and noise distribution. In our approach,
given a pair of clean data x0 and diffused data xt, we set true posterior q(x̂0|xt,x0)

2 as positive
distribution and the denoising distribution pθ(x̂0|xt) as the negative distribution. Thanks to the
residual energy formulation from Eq. (7), the log-odds reduce to log pθ,ϕ − log pθ = −Eϕ, and the

1This property does not require the autoregressive structure of pAR, but only relies on the fact that during
the diffusion reversal process unmasked tokens do not change.

2In this subsection, we use notation x̂0 instead x0 to distinguish the generated data and clean data x0.
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objective is simplified into the binary classification objective

LNCE(ϕ; θ) = −Ex0∼pdata,xt∼q(xt|x0)

[
Ex+∼q(x̂0|xt,x0) log

1

1 + exp(Eϕ(x+,xt, t))
+ Ex−∼pθ(x̂0|xt) log

1

1 + exp(−Eϕ(x−,xt, t))

]
,

(10)
where x+ is positive data from the true posterior and x− is negative data from diffusion model, given
the diffused sequence xt. Here, the true posterior q(x̂0|xt,x0) := x0 is defined as simply recovering
the true data. Training the energy function can be viewed as training a conditional classifier to
discriminate the real text and text generated by the denoiser used by the diffusion model. Intuitively,
the training objective attempts to capture the correlation in x0 generations, assigning negative energy
to real data and positive energy to data produced by the denoiser network. As a result, the joint model
pθ,ϕ acts as a corrected denoising distribution able to take into account correlations between tokens.
A detailed pseudo code for the NCE training process is provided in Algorithm 2.

4.3 EVALUATION WITH RAO-BLACKWELLIZED LIKELIHOOD BOUNDS

A common protocol for evaluating discrete generative models on language modeling is perplexity
(PPL), which relies on computing log-likelihoods for a hold-out test dataset. In this section, we
explain how to estimate the log-likelihood with EDLM. First, with the energy-based x0 predictor
pθ,ϕ(x0|xt), the step denoising model pθ,ϕ(xs|xt) is given by

pθ,ϕ(xs|xt) = Epθ,ϕ(x0|xt)q(xs|xt,x0)

=
1− αs

1− αt
Cat (xs;xt) +

αs − αt

1− αt
pθ,ϕ(x0[xs ̸= m] = xs[xs ̸= m]|xt)

(11)

For the simplified reverse process in Eq. (5), the log-likelihood can be simply computed as a form of
Rao-Blackwellization. The Rao-Blackwellized likelihood bound can be estimated by the discrete-
time diffusion loss of finite T : Ldiffusion =

∑T
i=1 Eq[DKL(q(xsi |xti ,x)∥pθ,ϕ(xsi |xti))]. Under

EDLM, the loss can be written as:

Ldiffusion =

T∑
i=1

Eq

[
αti − αsi

1− αti

(log pθ(x0|xti)−Eϕ(x0,xti , ti)− logZϕ(xti))

]
, (12)

where pθ(x0|xti) = ⟨µθ(xti),x⟩ is a simple cross-entropy between µθ predicted logits and the
clean data. We can extend the objective Eq. (12) to the continuous limit by taking T → ∞, which
induces the following negative evidence lower bound (NELBO) L∞:

L∞ = Eq

∫ t=1

t=0

α′
t

1− αt
(log pθ(x0|xt)−Eϕ(x0,xt, t)− logZϕ(xt)) dt. (13)

where α′
t denotes the derivative of αt w.r.t t. Such ELBO is tighter than the discrete-time version, and

is invariant to the noise schedule. However, this bound requires the partition function logZϕ(xt) =
log
∑

x0
pθ(x0|xt) exp(−Eϕ(x0,xt)) = logEx0∼pθ

exp(−Eϕ(x0,xt)) and thus is intractable to
compute. We use two estimators based on the work (Nowozin, 2018; Deng et al., 2020) to estimate
the partition function logZϕ.
Theorem 1. Given diffused data xt at timestep t, let logZn denote the empirical estimation
of logZϕ(xt) = logEx0∼pθ

exp(−Eϕ(x0,xt)) with n samples x
(i)
0 ∼ pθ(i = 1, · · · , n|xt):

logZn = log 1
n

∑n
i=1 exp(−E(x

(i)
0 ,xt)). Then ∀ϵ > 0, ∃N > 0 such that ∀n > N we have

logZϕ − ϵ < E[logZn] < logZϕ < E[(2n− 1) logZn − 2(n− 1)Zn−1] < logZϕ + ϵ. (14)

This can be used to estimate lower and upper bounds of the partition function. We note, however, that
the bounds only hold asymptotically when n is sufficiently large. In practice, we follow Nowozin
(2018) to use the leave-one-out strategy to estimateZn−1, which is proven to yield an estimator with
lower variance. In addition, we want to recall that in our autoregressive energy function instance
(section 4.2.1), we introduce the carry-over parameterization, where the joint energy model is self-
normalized, which enables us to exactly compute the ELBO without estimating Zϕ.
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4.4 EFFICIENT GENERATION VIA IMPORTANCE SAMPLING

Sampling from EDLM with each denoising step operated by the joint model is non-trivial. Naive
approaches relying on Gibbs sampling (Gelfand, 2000; Hinton, 2002) were originally applied to bi-
nary inputs and are not scalable to large dictionaries with energy functions parameterized as large
transformer models. In this paper, we resort to self-normalizing importance sampling (Owen, 2013;
Hammersley, 2013). With our joint model as the product of the diffusion model pθ and residual
energy function Eϕ, and given intermediate diffusion data xt at timestep t, we can conduct effi-
cient parallel sampling by: 1) sampling multiple x0 predictions {xi

0}ki=1 from the diffusion denoiser
pθ(x0|xt); 2) feeding samples into energy function in parallel to compute energies; and 3) resam-
pling a single x0 from the pool {xi

0}ki=1 according to the energy values. The sampled x0 is then fed
into the posterior formulation q(xs|xt,x0) to perform one reverse step (i.e. one-step denoising).

Algorithm 1 Denoising via Importance Sampling

1: Input: discrete diffusion model θ, energy-
based model ϕ, sequence of timesteps τ1 >
τ2 > · · · > τN−1, number of sampling size
k, importance sampling window w

2: xτ1 ←m
3: for n = 1 to N − 1 do
4: pθ(x0|xτn)← µθ(x̂τn)
5: if τn ≥ 1− w then
6: {x1

0, · · · ,xk
0} ∼ pθ(x0|xτn)

7: Compute energies ei = Eϕ(x
i
0,xτn)

for xi
0 ∼ {x1

0, · · · ,xk
0}

8: Sample x0 ∼ {x1
0, · · · ,xk

0}
with probability exp(−ei)∑k

j=1 exp(−ej)

9: else
10: Sample x0 ∼ pθ(x0|xτn)
11: end if
12: xτn+1 ∼ q(xτn+1 |xτn+1 ,x0)
13: end for
14: Output: x = xτN

Importance Sampling Window. While im-
portance sampling introduces additional com-
putation, it yields a significant reduction in
the parallel decoding error. Therefore, the
method allows us to conduct diffusion sampling
with fewer denoising steps, reducing the over-
all sampling wall-clock time. To further ac-
celerate the sampling speed, we introduce the
concept of importance sampling window length
w ∈ [0, 1], which sets the timestep for stop-
ping importance sampling, i.e., we only con-
duct importance sampling in the time window
t ∈ [1 − w, 1]. Interestingly, in our experi-
ment, we notice that the energy-based impor-
tance sampling during the early stage of de-
noising sampling contributes more to the gen-
eration quality improvement. We conclude that
this phenomenon is due to the fact that during
the early stage of sampling the diffusion model
is prone to make more errors in independent x0

prediction, since there is little information on
the full sequence. This encourages us to ex-
plore sampling with a short time window w for
higher efficiency, which we discuss in detail in section 5.3.

Detailed pseudo code for the sampling procedure is provided in Algorithm 1. In practice, we ob-
serve that a relatively small importance sampling size can already yield significant performance
gain, though theoretically we would only recover exact samples from the joint model distribution
asymptotically when the number of importance samples goes to infinity.

5 EXPERIMENTS

This section presents the results achieved by our method on different language modeling tasks.
We compare our EDLM against existing diffusion models, reporting the widely adopted metrics
perplexity and generative perplexity. We provide the experimental setup in section 5.1, describe our
results in section 5.2, and provide additional ablation studies in section 5.3.

5.1 EXPERIMENTAL SETUP

Datasets. We use two text datasets: 1) Text8 (Mahoney, 2006), a relatively small-scale, character-
level text modeling benchmark extracted from English Wikipedia, and 2) OpenWebText, an open-
source replica of the unreleased WebText (Gokaslan & Cohen, 2019) dataset used to train GPT-2.

Baselines. We compare EDLM against state-of-the-art discrete diffusion models and a transformer
AR model (Vaswani et al., 2017). Discrete diffusion baselines include Discrete Diffusion Model
(D3PM) (Austin et al., 2021), Score Entropy Discrete Diffusion model (SEDD) (Lou et al., 2024),
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Masked Diffusion Language Model (MDLM) (Sahoo et al., 2024). We notice other recent works
such as discrete flow matching (Campbell et al., 2024; Gat et al., 2024) and continuous-time masked
diffusion (Shi et al., 2024), but they are either not open-sourced or focus on non-language set-
tings. Therefore, we take their concurrent work with similar formulation MDLM (Sahoo et al.,
2024) as the representative for comparison. On the small-scale Text8 benchmark, we additionally
evaluate other discrete generative models including Plaid (Gulrajani & Hashimoto, 2024), Bayesian
Flow Network (Graves et al., 2023), Any-order Autoregressive Models ARDM (Hoogeboom et al.,
2022) and MAC (Shih et al., 2022), and flow-based methods IAF/SCF (Ziegler & Rush, 2019), AR
Argmax Flow (Hoogeboom et al., 2021), Discrete Flow (Tran et al., 2019), and Multinomial Diffu-
sion (Hoogeboom et al., 2021). Note that, these methods are not scaled up yet to the large dictionary
and long sequence length, and thus we only involve them in the small-scale benchmark.

Table 1: Bits Per Character (BPC)
on Text8 test set.

Method BPC (↓)

Autoregressive
Transformer AR 1.23
IAF/SCF 1.88
AR Argmax Flow 1.39
AR Discrete Flow 1.23

Any-order Autoregressive
ARDM ≤ 1.43
MAC ≤ 1.40

Continuous Diffusion
Plaid ≤ 1.48
BFN ≤ 1.41

Discrete Diffusion
Mult. Diffusion ≤ 1.72
D3PM Uniform ≤ 1.61
D3PM Absorb ≤ 1.45
SEDD Absorb ≤ 1.41
MDLM ≤ 1.40
EDLM (Ours) ≤ 1.24

Metrics. We follow the convention (Shi et al., 2024) to use
the common protocols Bits Per Character (BPC), Perplexity
(PPL), and Generative Perplexity (Gen PPL) to evaluate gen-
erative sequence models. For a sequence of length L, BPC
metric is given by − 1

L

∑L
i=1 log2 p(xi) and PPL is given by

exp (− 1
L

∑L
i=1 log p(xi)), which can be viewed as the aver-

age number of tokens the model is uncertain of. BPC and PPL
are calculated based on model likelihoods on true data from
the test set. Gen PPL instead consists of likelihoods calcu-
lated by another large oracle model on data generated by the
evaluated models. Intuitively, PPL and BPC similarly eval-
uate the likelihood modeling capacity, while Gen PPL evalu-
ates generation quality and consistency. To compute Gen PPL
we generate 2048 samples of 1024.

Implementation Details. For all models including our meth-
ods and baselines, we follow the common practice of us-
ing standard 12-layer transformers similar to GPT2-small
scale (Radford et al., 2019; Shi et al., 2024). Our proposed
EDLM combines two models, the diffusion model pθ and
the energy function Eϕ. For all experiments, we use pre-
trained MDLM (Sahoo et al., 2024) as the diffusion model
pθ. For AR-based EBM (see section 4.2.1, named EDLM-
AR or EDLM-coAR when using carry-over), we directly leverage the pretrained AR model as the
energy function. For NCE fine-tuned EBM (see section 4.2.2, named EDLM-NCE), we finetune
the pretrained MDLM, with the energy function computed by projecting the mean-pooled last token
embeddings down to a single scalar value. Note that, MDLM relies on transformers with bidirec-
tional attention while AR only imposes casual attention. Therefore, we expect that EDLM-NCE
can capture more sequence information than EDLM-AR.

5.2 RESULTS

Text8. Following the previous common practice (Austin et al., 2021; Lou et al., 2024), we evaluated
all models on short text chunks of length 256. We follow the same dataset splits and transformers
model size to parameterize the denoising models. Results are summarized in Table 1, where we
report the standard bits-per-character metric for the Text8 test set. In this small-scale experiment,
we did not notice significant differences between EDLM-AR and EDLM-NCE, and therefore only
report one result as representative. As shown in the table, EDLM outperforms all previous diffusion
models, whether in discrete or continuous diffusion formulation. We also outperform the any-order
autoregressive models, which also generate sequences with flexible decoding order and therefore
have a strong connection to discrete diffusion models. Importantly, for the first time, our diffusion
model even approaches the performance of transformer AR and AR Discrete Flow, both relying
on autoregressive modeling. For this experiment, due to the limited dictionary and length size,
we did not observe meaningful signals in generation quality metrics (Gen PPL). We leave detailed
generation quality and diversity evaluation to the large-scale OpenWebText experiments next.

OpenWebText. We report the perplexity results of all models trained on the large-scale Open-
WebText dataset in Table 2. We evaluate the model capacity for both the OpenWebText test set and
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Table 2: Test perplexities (↓). Left part: results evaluated on the OpenWebText test set; Right part:
zero-shot results on unseen datasets. All perplexities for diffusion models are upper bounds.

OpenWebText PTB Wikitext LM1B Lambada AG News Pubmed Arxiv

AR 17.56 82.05 25.75 51.25 51.28 52.09 49.01 41.73

SEDD 24.56 100.09 34.28 68.20 49.86 62.09 44.53 38.48
MLDM 23.83 95.26 32.83 67.01 47.52 61.15 41.89 37.37
EDLM-NCE (Ours) 21.52 93.21 30.77 63.19 46.92 60.02 41.80 36.63
EDLM-AR (Ours) 20.49 89.67 29.24 60.80 49.70 57.27 45.90 38.38
EDLM-coAR (Ours) 17.58 89.73 28.31 60.23 50.04 57.94 46.31 39.02
* Results of baseline methods on unseen datasets are borrowed from (Sahoo et al., 2024).

Table 3: Generative perplexities on unconditional text generation. LLAMA2, LLAMA3, and GPT2
(↓) correspond to Generative perplexities evaluated by different oracle models.

Method Timesteps LLAMA2↓ LLAMA3↓ GPT2↓ Entropy
Data - 7.0 9.4 14.7 7.7

Autoregressive 1024 22.9 40.3 35.7 8.1
SUNDAE 200 29.5 45.1 34.7 5.2
Ssd-LM >10000 73.3 203.1 99.2 4.8

D3PM Absorb 1024 692.3 754.9 842.3 7.6
SEDD 256 / 512 / 1024 / 2048 36.1 / 32.5 / 27.3 / 23.1 65.0 / 54.3 / 43.7 / 36.2 64.8 / 52.2 / 41.5 / 33.7 7.8 / 7.7 / 7.6 / 7.5
MDLM 256 / 512 / 1024 / 2048 37.2 / 30.6 / 27.6 / 23.9 66.8 / 52.6 / 44.6 / 37.6 66.8 / 52.4 / 42.6 / 34.9 7.9 / 7.8 / 7.6 / 7.5
EDLM-AR (Ours) 256 / 512 / 1024 / 2048 34.7 / 26.8 / 19.6 / 14.6 62.2 / 44.4 / 28.8 / 20.8 62.1 / 42.0 / 25.5 / 17.9 7.9 / 7.6 / 7.2 / 6.9
EDLM-NCE (Ours) 256 / 512 / 1024 / 2048 35.7 / 26.3 / 19.0 / 14.6 62.9 / 44.1 / 28.8 / 20.7 61.7 / 42.5 / 25.5 / 17.7 7.9 / 7.6 / 7.3 / 6.9

* Results of SUNDAE and Ssd-LM are borrowed from (Gat et al., 2024).

seven out-of-domain unseen datasets, used to validate the models’ ability in zero-shot generalization.
These unseen datasets include Our Penn Tree Bank (PTB) (Marcus et al., 1993)), Wikitext (Merity
et al., 2016), LM1B, Lambada (Paperno et al., 2016), AG News (Zhang et al., 2015), and Scien-
tific Papers (Pubmed and Arxiv) (Cohan et al., 2018). As shown in the results, we again observe that
EDLM outperforms existing diffusion methods by a significant margin, and also approaches the AR
baseline. For EDLM-NCE and EDLM-AR, since the energy function is unnormalized, we use the
upper bound estimator in Theorem 1 to estimate the upper bound for negative log-likelihood, which
induces the upper bounds of perplexities shown in the table. For EDLM-coAR, as discussed in
Section 4.2.1, we overcome the estimation of the partition function when combined with carry-over
and thus compute the exact ELBO for likelihoods.

We also compare our method against prior non-autoregressive generative models for generation
quality. All models are trained on OpenWebText, and results are presented in Table 3. We addi-
tionally incorporate Step-unrolled Denoising Autoencoder (SUNDAE) (Savinov et al., 2022) and
Ssd-LM (Han et al., 2022) into the comparison. These two methods are also highly related diffusion
methods for text generation which cannot be assessed by log-likelihood. In this experiment, we set
the importance sampling window w = 1, i.e. use importance sampling at every denoising step, to
evaluate the full generation ability of EDLM. Additionally, EDLM-AR shows similar results either
with or without the carry-over trick, therefore we only report one method for simplicity. As shown
in Table 3, our method again consistently outperforms all baselines on generative perplexity for all
numbers of denoising timesteps, while keeping reasonable diversity based on the entropy metric.
We highlight that our method does not hurt the entropy (diversity), since it achieves similar entropy
as MDLM when keeping similar Gen PPL. For example, by comparing EDLM with 512 timesteps
and MDLM with 1024 steps, we can see they show roughly the same Gen PPL and entropy score,
but EDLM requires significantly fewer sampling steps to reach that level of performance.

5.3 ANALYSIS AND ABLATION STUDY

Improved Sampling Efficiency. In previous experiments, we show that with the same number of
timesteps sampling, EDLM can achieve significantly better generation results with less accumulated
error. In this part, we highlight that EDLM can also enable better sampling efficiency when keeping
the same generative quality, by using reduced denoising steps. As introduced in section 4.4, our
key observation is that the energy-based importance sampling correction during the early stage of
denoising sampling contributes more to the generative perplexity improvement. Therefore, to accel-
erate the sampling speed, in this experiment, we set the importance sampling size as k = 2 window
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Figure 1: Analysis and ablation study for EDLM. Figures 1a and 1b: we run AR baseline and
diffusion-based models with [512, 768, 1024] denoising steps, and plot the curve of corresponding
metric vs. wall-clock time. For generative perplexity, the metric is evaluated by GPT-2, and a curve
on the bottom-left indicates a better sampling quality vs time trade-off. Figure 1c: ablation study of
EDLM under different importance sampling size and window length.

as w = 0.2, which empirically yields the best generation quality with the same wall-clock sampling
time budget. w = 0.2 means we use importance sampling for t ∈ [0.8, 1], and just use the original
diffusion model µθ for denoising for t ∈ [0, 0.8). We provide additional results with other win-
dow size in Appendix C.2. We test AR baseline and diffusion-based models with [512, 768, 1024]
denoising steps, and plot the curve of corresponding metric vs. wall-clock time for generating a
single 1024-length sentence in Figures 1a and 1b. As shown in the figure, EDLM achieves a better
sampling quality vs time trade-off compared against MDLM. Specifically, when achieving a similar
generative perplexity as the AR baseline (35.7), we can see from the figure that EDLM only takes
∼13 seconds while the MDLM baseline takes∼17 seconds, indicating a∼1.3× acceleration without
any performance drop. This speedup further highlights the advantage of our energy-based denois-
ing formulation and importance sampling scheme, where we can conduct sampling with reduced
denoising steps and correct the decoding errors by parallel importance sampling.

Effect of Importance Sampling. We further study the effect of importance sampling hyperpa-
rameters in this section. We fix the number of denoising timesteps as 1024, and investigate the
generation performance with varying importance sampling size and window length. We refer read-
ers to Section 4.4 and Algorithm 1 for details of these two hyperparameters. Again, we found that
EDLM-NCE and EDLM-AR exhibit similar trends in the study, and therefore show one study re-
sult here. The ablation study results are summarized in Figure 1c, from which we highlight two key
observations: 1) Row-wise comparison indicates that the sampling quality is not sensitive to the im-
portance sampling size. However, we emphasize that the conclusion is based on sizes smaller than
16, as a larger size will lead to out-of-memory issues on the GPU. 2) Column-wise study show that
a longer importance sampling window can consistently improve the sampling quality. However, we
note here that when setting the window as 0, the sampling decays to the original MDLM sampling,
and the 1024 steps GPT-2 Gen PPL is 42.6 (see Table 3). Therefore, a 0.2 window already signif-
icantly reduces the Gen PPL to ∼ 30 while a longer window only marginally further improves the
results. This phenomenon suggests that major decoding error happens during early-stage denoising
sampling, and a short window can greatly overcome the errors while maintaining high sampling
efficiency, as shown in our efficiency study above.

6 CONCLUSION

In this paper, we introduced Energy-based Diffusion Language Model (EDLM), which integrates
energy-based models with discrete diffusion models to address the limitations of parallel text gener-
ation. By leveraging a residual energy-based approach, EDLM effectively reduces the mismatch
between training and sampling distributions in discrete diffusion models, resulting in improved
generation quality and efficiency. Through experiments on both small and large language mod-
eling benchmarks, EDLM demonstrates state-of-the-art performance among diffusion models and
approaches the quality of autoregressive models, while offering significant sampling speedup. These
results highlight the potential of energy-based approaches in advancing discrete generative model-
ing, setting the stage for further exploration of parallel generation techniques.
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A PROOF

To make the paper self-contained, we incorporate the relevant theoretical proof for Theorem 1 from
(Nowozin, 2018; Deng et al., 2020). Our key difference is correcting a minor misargument from
estimation on Zϕ to estimation on logZϕ.
Theorem 1. Given diffused data xt at timestep t, let logZn denote the empirical estimation
of logZϕ(xt) = logEx0∼pθ

exp(−Eϕ(x0,xt)) with n samples x
(i)
0 ∼ pθ(i = 1, · · · , n|xt):

logZn = log 1
n

∑n
i=1 exp(−E(x

(i)
0 ,xt)). Then ∀ϵ > 0, ∃N > 0 such that ∀n > N we have

logZϕ − ϵ < E[logZn] < logZϕ < E[(2n− 1) logZn − 2(n− 1)Zn−1] < logZϕ + ϵ, (15)

Proof. Following Eq. 35 in Nowozin (2018), we have E[logZn] as

E[logZn] = logZθ−
γ2
2γ2

1

n
+

1

3γ3

γ3
n2
− 1

4γ4
(
3

n2
γ2
2+

1

n3
(γ4−3γ2

2))+
1

5γ5
(
10

n3
γ3γ2+

1

n4
(γ5−10γ3γ2))+o(n−3)

(16)
where γ = E[logZn], γk = E[(logZn − γ)k].

By omitting the higher-order expansion, we equivalently have E[logZn] = logZθ− γ2

2γ2
1
n+o(n−1),

which indicates that limn→∞ E[logZn] = logZθ. Then, we have

• ∀ϵ > 0, ∃N1 > 0 such that for n > N1, E[logZn] > logZθ − ϵ.

• Since limn→∞ n(logZθ − E[logZn]) = limn→∞
γ2

2γ2 + o(1) = γ2

2γ2 > 0, so ∃N2 > 0

such that for n > N2, logZθ > E[logZn].

In summary, we have proved that logZθ − ϵ < E[logZn] < logZθ.

Again, by omitting higher-order expansions using Eq. (16), we can have another equivalent form.
E[logZn] = logZθ− γ2

2γ2
1
n + c

n2 +o(n−2) where c is a constant, and therefore E[(2n−1) logZn−
2(n−1)Tn−1] = (2n−1)E[logZn]−2(n−1)E[Tn−1] = logZθ+

γ2

2γ2
1
n +o(n−1). This indicates

limn→∞ E[(2n− 1) logZn − 2(n− 1)Tn−1] = logZθ. Therefore, we have

• ∀ϵ > 0, ∃N3 > 0 such that ∀n > N3 E[(2n− 1) logZn − 2(n− 1)Tn−1] < logZθ + ϵ.

• Since limn→∞ n(E[(2n−1) logZn−2(n−1)Tn−1]−logZθ) = limn→∞
γ2

2γ2 +o(1) > 0,
so ∃N4 > 0 such that when n > N4 we have E[(2n−1) logZn−2(n−1)Tn−1 > logZθ.

Given all the results above, we have that ∀ϵ > 0, for ∀n > N that N = max{N1, N2, N3, N4}
logZθ − ϵ < E[logZn] < logZθ < E[(2n− 1) logZn − 2(n− 1)Tn−1] logZθ + ϵ

B ALGORITHM

We provide the detailed pseudo code for noise contrastive training of the EBM in Algorithm 2.

Algorithm 2 Noise Contrastive Estimation Training

1: Input: dataset D, discrete diffusion model θ, energy-based model ϕ, learning rate η
2: repeat
3: Sample x0 ∼ D and t ∼ U [0, 1]
4: xt ∼ q(xt|x0)
5: Sample positive data x+ ∼ q(·|xt,x0)
6: Sample negative data x− ∼ pθ(·|xt)
7: L(ϕ; θ)← LNCE(x+,x−) in Eq. (10)
8: ϕ← ϕ− η∇ϕL(ϕ; θ)
9: until convergence
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C ADDITIONAL EXPERIMENT DETAILS AND RESULTS

C.1 ADDITIONAL EXPERIMENT DETAILS

We provide additional experiment setup details in this section.

Text8. We follow all the common practices in Austin et al. (2021); Campbell et al. (2024) to conduct
Text8 experiments, which has a dictionary size of 28 with 26 lowercase letters, a white-space token,
and a mask token. We follow the standard dataset split and train MDLM using a standard 12-layer
transformer architecture. the transformer also has the same number of heads (12) and hidden dimen-
sion (784) as in Austin et al. (2021). The model is trained text chunks of length 256 for 1 million
steps with batch size 512. In the NCE setting, we then finetune from this MDLM with a pooling
layer and an additional scalar energy prediction head. We observe the finetuning procedure to con-
verge fast in just 10, 000 steps. For both MDLM training and EDLM-NCE finetuning, we follow
previous work to use the cosine learning rate schedule with a linear warm-up of 2000 steps. We set
the channel-wise dropout rate as 0.05 and conducted optimization with AdamW and a learning rate
of 0.0003. We similarly adopt a weight decay factor of 0.03. The NCE finetuning process can be
done on 4 GPUs for less than 4 hours.

OpenWebText. We follow the standard data split in (Sahoo et al., 2024) to leave a validation split
with the last 100k docs as the validation set. We tokenize OpenWebText with the GPT2 tokenizer,
with a vocabulary size of around 50K. All models are trained with sequences wrapped to a length
of 1, 024 and additionally set eos as the first and last token of every batch. All the architectural
choices are kept the same with the Text8 experiment, where we use transformers with 12 layers, a
hidden dimension of 768, 12 attention heads, and a timestep embedding of 128 when applicable.
Word embeddings are not tied between the input and output. Other training details are also kept
the same, i.e., we use the AdamW optimizer with a batch size of 512, learning rate 0.0003 with a
linear warm-up of 2500 steps. We train all models for 1M steps with the dropout rate reduced to 0.1.
Again, the NCE finetuning of the energy function from the pretrained diffusion model is efficient
and can converge in 400, 000 steps.

C.2 ADDITIONAL EXPERIMENT RESULTS

We provide additional experimental results in this section.

Behavior of Energy Function. We first provide a closer look at the behavior of energy func-
tion across different denoising steps. Specifically, for each timestep t, we draw diffused data from
q(xt|x0), and then sample positive data x+ ∼ q(·|xt,x0) and negative data x− ∼ pθ(·|xt), similar
to Algorithm 2. Then we study the energy value for Eϕ(x+,xt) and Eϕ(x−,xt).

We summarize all plots for the energy w.r.t timestep in Figure 2. We sample 16 negative samples for
the visualization. Specifically, in Figure 2, in the first row, we plot the energy of positive samples
and the average energy of negative samples, to see whether the energy function can differentiate
true and generate data; in the second row, we plot the maximum and minimum energy value of the
16 negative samples, to see whether energy function can differentiate better and worse samples in
generated data; and in the third row, we plot the effective sampling size (ESS) for energies of the 16
negative samples. Formally, let ei denote the energy for i-th negative sample, we first normalize the
energies to êi = ei∑16

i=1 ei , and then ESS is given by

ESS =
(
∑16

i=1 ê
i)2∑16

i=1(ê
i)2

, (17)

which intuitively helps quantify the degeneracy of the sample weights in importance sampling. A
low ESS indicates that a few samples dominate the weights, which can lead to poor estimation
quality. Different columns of Figure 2 correspond to results for different EDLM parameterization.
From the first two rows, we can see all EDLM implementations can assign meaningful energies to
true data, good generated sample, and bad generated sample. For ESS, it indicates that the NCE
energy function is generally better than AR ones for importance sampling. However, we note that
we did not observe that EDLM-NCE is clearly better than EDLM-AR, and we conclude that this
is mainly because our ESS analysis is conducted with 16 samples instead of an extremely large
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Figure 2: Behavior of the energy function under different parameterization. The first row plots the
energy of positive samples and the average energy of negative samples; the second row plots the
maximum and minimum energy values of the 16 negative samples; the third row plots the effective
sampling size (ESS) for energies of the 16 negative samples. Different columns correspond to results
for different EDLM parameterization.
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(a) Generative Perplexity vs. Time.
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(b) Entropy vs. Time.

Figure 3: Additional EDLM sampling results with varying importance sampling window w. Similar
to section 5.3, we run each setting with [512, 768, 1024] denoising steps, and plot the curve of the
corresponding metric vs. wall-clock time. For generative perplexity, the metric is evaluated by GPT-
2, and a curve on the bottom-left indicates a better sampling quality vs time trade-off.

number. We recall here that GPU memory bound the sampling batch size to 16, and therefore large
ESS analysis in practice is not useful.
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Additional results with different sampling window length w. We provide additional sampling
results with different importance sampling window sizes w. All results are provided in Figure 3.
As shown in the figure, especially the reference line of AR in Figure 3a, we can see that generally
w ≤ 0.6 can all lead to better efficiency, among which w = 0.2 achieve the best speedup.
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Figure 4: Gen. PPL vs. Entropy.

Additional visualization of Gen PPL and entropy results.
We provide a more detailed trade-off between entropy and
Gen PPL compared to the baselines and the proposed model.
Specifically, we rearrange Figures 1a and 1b to a new figure
with Entropy and Gen PPL axis, and provide the figure in Fig-
ure 3b. As shown in the figure, EDLM shows a trade-off sim-
ilar to MDLM (< 0.1 difference of entropy in the overlapping
part). However, EDLM aims to reduce the sampling errors and
therefore has a similar performance as MDLM but with much
fewer sampling timesteps.

D GENERATED SAMPLES FROM EDLM

D.1 GENERATED SAMPLES FROM EDLM-NCE WITH 1024 TIMESTEPS.

...a lot. I remember when you was a kid, you felt like you weren’t
a human. And I said, \You didn’t wanna get into that." \Yeah,
that’s just physically [grown-up], I kind of weighed down with
that.\n\nWell, yeah, trying to help him, but it was something
to give. Not the little stuff. It was tough to get from an
older person. It just kinda won. That’s the way with things like
that.\n\nBut you had to learn something else, more of appreciation
of it, watching guys play [inside out] as you grew. Everything
they showed up you knew was always in the way they wanted, as just
as your parents wanted you.\n\nAnd [my mom] when I was yelling
at her: \But you get the opportunity to work something for each
other, and you can cook us meals as well." \Yep.\n\nWe had to
find some way out. It got borderline ridiculous, but we found a
way.\n\nHe and I speak and we talk a lot. That’s really the thing
about us. Just the two dogs at the right time.\n\n\Not funny man.
Just like we are, baby. We’re not stupid."\n\n\What happened like
when you’re getting bumps?"\n\n\No, I can\’t see it from that side
of the eye. I wish I could. I can\’t see it on my face. Yeah, I
don\’t really. I picked it up and it’s not the right way. But the
way I got it."\n\nMarcus Cousins\n\nI think I’m not confused. He
was so close to me. But I’m never confused either.\n\n\Are you
playing the same type of game now?"\n\n\Always the same way. You
play it at the same time. You don’t have the same way before you
play the game. And I got used to it. He had a good season. He was
a defensive superstar.\n\n\Sometimes we would go through the type
of moves when I’s saying things, be like, ‘Oh, he’m cheating on
me,’ or something like that because we just know like that. Lord,
you know, stuff. That’s part of this life. Like my dad and I had
a little bit, and that got you sometimes it didn’t work to the
liking. [You] would physically get him.\n\nWe did, but he always
demanded that I catch up to him. And when I tell him, \Catch me
if you say something stupid, you’re not stupid." If he does say
stupid something, you know, I’m going to respond to it."\n\nIt’s
like \What\’s going to do catch \’n\’ it? If he’s gonna catch it,
that\’s my one."\n\nAnything like that?\n\n\It\’s funny because
a lot of people have a playing style that plays the player they
are. He’s a caricature of what it is, but he’s a kind guy and
it affects the game."\n\n\That’s a good one.\n\n\His skills
that he play, can he tell you?"\n\n\Yes. He’s an unbelievable
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dude.\n\nYeah, he’s not the guy that everybody goes to play with,
just out on the team. He plays stuff because he takes the game
seriously. But you see a player that goes and develop that’s easy
to feed off of, and that’s good. They win games, too, by being a
teammate, in that environment.\n\nBut that’s all.\n\nHonestly, it
hasn’t been really easy for me. I played 35 percent of the time
and these guys ask a lot about me [laughs]. I told you guys those
guys. I know that when I was young I would not have made it. I was
just born that way when I was there. So don\’t call me the only
man that I really liked or the backbone of the team, ever. That
guy is the person in the locker.\n\nWhen you’re all of the guys in
your team, you don’t have to make credit for what you do.\n\nBut
I definitely miss Tom or Cole. Everybody does that to me. I love
Chad Mac. It’s the Strict style. He\’s always teaching me on being
an open guy.\n\nThat kind of stuff, what I like the most. If I
lose a lot of games,...

D.2 GENERATED SAMPLES FROM EDLM-AR WITH 1024 TIMESTEPS.

...have to make you better. But all you have to do, you can go
talk about that with him. If you want it to accomplish that from
his position as the coach, then you definitely feel that as a
manager will have a tremendous benefit as a player, and that’s
very important, that is, why hockey. That’s what you want to
achieve as an organization. So, when you get to manage, where
the truth is that you’re better as a player and the more points
you score and the more passes you have to make and make plays
more often, you feel that it’s enhanced your effectiveness as
a player.\n\nRNS: And you can do that?\n\nJPP: Totally. I just
think you can. So, you’ve gotta know, if you’re going to play
that role of a manager, you’ll be the one that knows where to go.
And that’s how great it is, every year.\n\nRNS: If it’s difficult
as a manager in your last one, did you find yourself right about
that decision? Did you feel better?\n\nQ \Well, I sat there the
other day thinking, ‘OK, I have to do this job to get a career
in that position.’ So when I do that: one-thousand up, no down.
I could not go on. I didn’t do what I need to say about that and
I can’t help but be proud of the success that I have created."
And I think, \You just gotta realize that you’re not supposed to
truly have your own voice." \I can’t do that’ ‘I let the people
out of my decisions,’ then I think you are one of that.\n\nBut
you can go through that. Just to live in this is to live in having
to really utilize this and offer this to you. So, if you’re to
move out of this job, where you want to move out of this job
when you are a player, where maybe when you gotta be manager,
when you gotta do business, or when you are a hockey player, you
decide which is different. So we’re the same positions but we talk
about how to do it.\n\nAnd just, more and more we’ve said: that’s
how you’re gonna get there. If you want that manager role, you
should do this. Because you’ve got to be passionate about your
passion for your side, frontend your team up and do everything
that takes to build this team as an organization. And they’re
players. So you don’t get to go around and have to do that. If
you don’t do that, you’ll have a lot of control of your players
on the team. You also’ve got to help them and show them what
they’re doing, to be involved. To take care of and make sure that
their players succeed. So, you have to be productive within the
team. That’s two things.\n\nRNS: So what level of coaching is
interesting and what do you hope to get out of all of those roles
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and positions?\n\nJPP: Yeah, you never know. And you know how
they’re actually putting these things. So when you start a coach,
you’re in to young players, you’re in with multiple players every
day, you coach to the players who are currently in a role in an
organization, and obviously that helps build them. So basically,
your really good coaching means you’ll wear your jersey, be the
best player you can be from your experiences. I always tell people
after you’re done doing the things, you trust me that it’s the
most important to take place next.\n\nSo, when I started coaching,
I do not think that was a great leap because that was my first
time in the NHL. But I would like to tell the coaches, \You’re
gonna stick with your team, you’ll lead the team. Let’s be with
the best," and I assume, the next coach, you’ll be the one and
you’ll be the one and that season you’ll be the one. And that’s
what you gotta think about is that if you’re more involved and in
unique ways, if you’re learning from your experience and will be
successful as importantly, just, you know, put their teams on the
table. That’s part of what we are trying to do. And I’d say I’d
like to put people on that front that are strong and fit for the
job. So that it...

D.3 GENERATED SAMPLES FROM EDLM-COAR WITH 1024 TIMESTEPS.

...to explain that to someone who has not shared information with
Google itself and not the powers that be. And Kim didn’t.\n\n\I
never wanted to do this because before it, I didn’t know anything.
Finally, you feel as if you do."\n\nI laughed.\n\n\It didn’t
feel right."\n\n\But yeah, we stayed together for a while," Kim
said, \and when we had time for us to, we were talking."\n\nI was
almost in silence. \I’m not able to act out that way," she said,
\so I just kept having my time. One day when I was traveling and
rehearsing with my own band, we had a really funny meeting. It’s
funny, it was just plain funny."\n\n\That day, we were talking
to other girls friends and friends and I had my first year-long
meeting with social media guys. As a women’s boss."\n\n\I feel
like different company here," she said. \I mean, it’s basically an
out-of-work company."\n\n\I had to pick up my car at the same time
when we first met."\n\n\Oh yeah. It was weird, because I did a lot
with her, and she didn’t know my love for her while I was in her
way. Odd. She was sitting right right next to me at my cousin’s
house, hanging out with friends."\n\nWhen she was speaking to
North, she felt in touch with friends and family in Marlboro where
I lived, where she raised me and how we still hadn’t familiar
with each other since as far back as I went and saw how she had
got confidence over him when I was 18. I didn’t, too, but she
said he took everything else into account. Even with Wests death
this morning, I can still have a private conversation with Kim
with everyone. Some conversations on the phone and for the other
girls.\n\nKim leaned in very talkily and he said to her, \We don’t
like you much," but he wasn’t trying to make California’s jealous.
\You’re the one if you’re engaged to somebody and if you see
someone else, it’s probably never good for you, so don’t go out to
anything that’s not good for you." And that’s all too true.\n\nI
first asked Kim West about his faith in him as a woman’s friend,
what he thought of moving to Marlboro and how that goes him
down.\n\n\I’m a guy that is always doing something great," West
had said. \And then I’ll come up short, do well myself, and I go,
‘I really want someone on this,’" she said.\n\n\That’s sad," Jörg
smiled, \this kind of guy who’s not that smart and not do well. I
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mean, you looked the fuck you down and you figured out that’s more
important to me than you thought you were, basically. You wanted
to do something."\n\n\It’s sad," he said. \That was all I had my
years trying to figure out about you so that I could link you and
spend time with somebody who’s gonna roll."\n\n\I could just read
his shit and die," she said, gesturing to West’s letters. \And
that’s how I was left behind. It’s always struck me that I didn’t
know how I wanted to spend with this group or another."\n\n\Had
you dated her in the past?" she asked, asking if he had more of
a problem with her? \No, not really," he said. \I’m a nice guy
and I would talk back to anyone and that is why I actually talk
to people."\n\n\That would be a really creepy place to be in,"
he told her, adding, \it was like...the first time I’ve lost a
friend."\n\nThere was blood in the room. \Lemmer, he was a funny
dude at the time."\n\nHe smiled. \But you know that. This way a
happy friend would have been if I had him back then. I didn’t care
for him. ..."
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