
A Neurips Checklist Answer Clarification430

During submission, we were not aware of the guidance for filling the checklist and thus misunderstood431

some questions in it. In this section, we want to correct our answers to some of the checklist questions,432

if allowed:433

• Broader Impacts: n/a434

• Experiments: yes, and the code can be found at: https://github.com/elden-neurips2023/435

ELDEN436

B ELDEN details437

Assumptions We summarize our assumptions on the MDP as follows:438

1. The state space can be factored as S = S1 × · · · × SN .439

2. The transition of each state factor is independent, i.e., the dynamics can be represented440

P(st+1|st, at) =
∏N

n=1 p(s
n
t+1|Pa(Sn

t+1)).441

3. There is no instantaneous dependency between state factors at the same time step t, i.e., no442

dependency such as sit → sjt for any i, j.443

For assumption 1, factored state space is commonly employed in causality literature and is applicable444

to many simulated or robotics environments. In cases where low-level observations or partial445

observability are present, disentangled representation or causal representation methods can be utilized446

to learn a factored state space [16]. When a factored state space is available, assumptions 2 and 3447

generally hold.448

Network Architecture In Figure 4(a), the architecture of ELDEN for predicting each state factor449

sjt+1 is illustrated. The process consists of the following steps:450

1. Feature Extraction: For each input state factor sit, ELDEN utilizes a separate multi-layer perception451

(MLP) to extract its corresponding feature gi.452

2. Entity Interaction: ELDEN employs a multi-head self-attention module to model entity interactions453

and generates a set of transformed features hi that incorporate information from other state factors.454

3. Prediction using Multi-Head Attention: With hj as the query, ELDEN utilizes a multi-head455

attention module to compute the prediction p̂(sjt+1|st, at) for each state factor. For continuous456

state factor, p̂(sjt+1) is modeled as a normal distribution with the mean computed by the network457

and a fixed variance equal to 1. For discrete factor, p̂(sjt+1) is a categorical distribution with458

network outputs as class probabilities.459

Throughout the prediction process, there are a total of N such networks in ELDEN, with each network460

responsible for predicting a separate state factor sjt+1.461

The training loss for the dynamics model is:462

L = − log

N∏
j=1

p̂(sjt+1|st, at) + λ
∑
i,j

∣∣∣∣∣∂p̂(s
j
t+1)

∂sit

∣∣∣∣∣ , (3)

where λ is the coefficient for partial derivative regularization.463

C Environment Details464

In this section, we provide a detailed description of the environment, including its semantic stages465

representing internal progress toward task completion, state space, and action space. We also highlight466

that while each task consists of multiple semantic stages, agents do not have access to this information.467

The learning signal for agents is solely based on a sparse reward of 0 or 1, indicating whether the task468

has been completed or not. Additionally, in each environment, the poses of all environment entities469

are randomly initialized for each episode.470
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Figure 4: The dynamics model of each local dependency detection method. (a) The dynamics model
of ELDEN for predicting sjt+1. Notice that each network predicts sjt+1 only, and there are N such
networks in total, each responsible for predicting one state factor in st+1. For visual simplicity,
the “×N” symbol is only shown in (a). (b) pCMI computes p(sjt+1|st, at) and p(sjt+1|st \ sit, at)
by manually setting the binary mask M to different values, where ⊗ represents element-wise
multiplication. (c) For Input Mask, M is learned to condition on (st, at) and is regularized to use
as few inputs as possible. (d) For Attn Mask, M also conditions on (st, at) but is applied to the
attention score in the self-attention module.

Meanwhile, as ELDEN focuses on exploring novel local dependencies between environment entities,471

in all environments, the action space consists of hard-coded skills to increase the probability of entity472

interactions and bypass navigation challenges under sparse rewards. Extending ELDEN to explore473

local dependency and learn such skills simultaneously would be an important direction for future474

work.475

Thawing As shown in Fig. 5(a), the Thawing environment consists of a sink, a refrigerator, and a476

frozen fish. The task requires the agent to complete the following stages: (1) open the refrigerator, (2)477

take the frozen fish out of the refrigerator, and (3) put the fish into the sink to thaw it. The discrete state478

space consists of (i) the agent’s position and direction, (ii) the positions of all environment entities,479

(iii) the thawing status of the fish, and (iv) whether the refrigerator door is opened. The discrete480

action space consists of (i) moving to a specified environment entity, (ii) picking up / dropping down481

the fish, and (iii) opening / closing the refrigerator door.482

CarWash As shown in Fig. 5(b), the CarWash environment consists of a car, a sink, a bucket, a483

shelf, a rag, and a piece of soap. The task requires the agent to complete the following stages: (1)484

take the rag off the shelf, (2) put it in the sink, (3) toggle the sink to soak the rag up, (4) clean the485
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(a) Thawing (b) CarWash

Initial State Goal State

butter

meatball

(c) Kitchen

Figure 5: Environments.

car with the soaked rag, (5) take the soap off the self, and (6) clean the rag with the soap inside the486

bucket. The discrete state space consists of (i) the agent’s position and direction, (ii) the positions487

of all environment entities, (iii) the soak status of the rag, (iv) the cleanness of the rag and the car,488

and (iv) whether the sink is toggled. The discrete action space consists of (i) moving to a specified489

environment entity, (ii) picking up / dropping down the rag, (iii) toggling the sink, and (iii) picking490

up / dropping down the soap.491

Kitchen As shown in Fig. 5(c), in the kitchen environment, there are a robot arm (i.e., the agent), a492

piece of butter, a meatball, a pot, and a stove with its switch. The task requires the agent to complete493

the following stages: (1) pick and place the butter into the pot, (2) pick and place the pot onto the494

stove, (3) turn on the stove to melt the butter in the pot, (4) pick and place the meatball into the pot495

to cook it, and (5) turn off the stove. Notice that melting the butter is a prerequisite for cooking the496

meatball, otherwise, it will result in the meatball being overcooked and the task failing. The state497

space is continuous, consisting of the pose of all objects, the melting status of the butter, and the498

cooking status of the meatball (whether it is raw, cooked, or overcooked). The action space is discrete,499

consisting of hard-coded skills: moving to [butter, meatball, pot, pot handle, stove, stove switch],500

grasping, dropping, and toggling the switch. Grasping and toggling are only applicable when the501

end-effector is close to the corresponding environment entities.502

D Evaluating the Detection of Local Dependencies503

D.1 Implementation504

Baselines We give a detailed description of each baseline as follows:505

• pCMI (point-wise conditional mutual information): it considers that the local dependency506

sit → sjt+1 exists if their point-wise conditional mutual information is greater than a predefined507

threshold, i.e., pCMIi,j := log
p(sjt+1|st,at)

p(sjt+1|st\sit,at)
≥ ϵ. As shown in Fig. 4(b), to compute pCMIi,j ,508

Wang et al. [32] uses a manually defined binary mask M ∈ [0, 1]N to ignore some inputs when509

predicting sjt+1: (1) to compute p(sjt+1|st, at), M uses all inputs (all its entries are set to 1),510

and (2) to compute p(sjt+1|st \ sit, at), the entry for gi is set to 0. When evaluating the local511

dependency, pCMI needs to compute p(sjt+1|st \ sit, at) for every i, and thus its computation512

cost is N times larger than ELDEN. We also computes pCMI following Seitzer et al. [27], which513

yields similar performance but is even more computationally expensive compared to the method514

proposed by Wang et al. [32].515

• Attn (attention): it uses the same architecture as ELDEN that is shown in Fig. 4(a). When516

computing the overall attention score, it averages the attention score across all heads in each517

module, then computes the likelihood of dependency sit → sjt+1 as
∑N

k=1 c
gi,hk · ch

k,sjt+1 where518

ca,b is the averaged score between the input a and the output b.519

• Input Mask: as shown in Fig. 4(c), it also uses a binary mask M except that M is computed520

from (st, at). During training, to only use necessary inputs for sjt+1 prediction, M is regularized521

with the L1 norm on its number of non-zero entries. The Gumbel reparameterization is used to522

compute the gradient for the binary M [11].523
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Table 2: Parameters of the dynamics model training for local dependency detection experiments.
Parameters shared if not specified.

Name Tasks
Thawing CarWash Kitchen

environment episode length 20 100 100
grid size 10 10 N/A

training

optimizer Adam
learning rate 3× 10−4

batch size 32
# of training batches 500k
# of random seeds 3

mixup Beta parameter 1 1 N/A

ELDEN

activation functions ReLU
{MLP}Ni=1 [64, 64] [64, 64] [128, 128]

λ annealing starts 50k 50k 100k
λ annealing ends 100k 100k 200k

attention

# of heads 4
use bias False

key, query, value size 16 16 32
output size 64 64 128

post attn MLP [64, 64] [64, 64] [128, 128]

Input
Mask

attention parameters same as ELDEN
M regularization coefficient 1× 10−2

M regularization annealing starts 50k 50k 100k
M regularization annealing ends 100k 100k 200k

Attn
Mask

attention parameters same as ELDEN

SKPMD
signature size 64

learnable bandwidth True
bandwidth initialization 1

• Attn Mask: as shown in Fig. 4(d), similar to Input Mask, a mask M of size N ×N is computed524

from (st, at), but it is applied to the attention score. The mask is regularized with Stochastic525

Kernel Modulated Dot-Product (SKMDP) proposed by Weiss et al. [33].526

For modules that are shared by all methods, we use the same architecture for a fair comparison.527

Data For a fair comparison, when training each method, we use the same dataset collected by528

a scripted policy, rather than let each method collect its own data, to avoid potential performance529

differences caused by data discrepancies. Specifically, we use a scripted policy to expose all potential530

local dependencies and collect 500K transitions in each environment.531

Notice that, in exploration with sparse reward experiments, the dynamics models are still trained532

online, using the transition data collected on its own.533

Hyperparameters The hyperparameters used for evaluating local dependency detection of each534

method are provided in Table 2. Unless specified otherwise, the parameters are shared across all535

environments.536

D.2 Ablation of Mixup and Partial Derivative Regularization537

In our ablation study on ELDEN for local dependency detection, we investigate the impact of each538

component with the following variations:539

• No Mixup & No Reg: We disable the use of Mixup for discrete space prediction, and no partial540

derivative regularization is applied in this case.541

• Different partial derivative regularization coefficients: we test with different λ values in542

{0, 10−1, 10−2, 10−3, 10−4, 10−5}.543
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Table 3: Ablation of ELDEN on local dependency detection
THAWING CARWASH KITCHEN

ROC AUC F1 ROC AUC F1 ROC AUC F1

no Mixup &
no Reg 0.48 ± 0.01 0.42 ± 0.01 0.44 ± 0.00 0.27 ± 0.01 N/A N/A

no Reg,
i.e., λ = 0

0.57 ± 0.01 0.52 ± 0.01 0.54 ± 0.01 0.42 ± 0.01 0.64 ± 0.01 0.24 ± 0.01

λ = 10−1 0.68 ± 0.00 0.57 ± 0.00 0.73 ± 0.01 0.58 ± 0.02 0.55 ± 0.00 0.14 ± 0.00
λ = 10−2 0.71 ± 0.01 0.57 ± 0.00 0.76 ± 0.01 0.60 ± 0.00 0.60 ± 0.01 0.21 ± 0.01
λ = 10−3 0.64 ± 0.01 0.55 ± 0.01 0.78 ± 0.02 0.66 ± 0.02 0.65 ± 0.00 0.24 ± 0.01
λ = 10−4 0.65 ± 0.02 0.55 ± 0.01 0.75 ± 0.01 0.60 ± 0.01 0.66 ± 0.00 0.25 ± 0.01
λ = 10−5 0.63 ± 0.00 0.53 ± 0.01 0.72 ± 0.00 0.57 ± 0.00 0.65 ± 0.01 0.24 ± 0.01

Table 4: Parameters of the Policy Learning. Parameters shared if not specified.
Name Tasks

Thawing CarWash Kitchen

PPO

optimizer Adam
activation functions Tanh

learning rate 1× 10−4

batch size 32
clip ratio 0.1
MLP size [128, 128]
GAE λ 0.98

target steps 250
n steps 60 600 100

# of environments 20 20 80

training

# of random seeds 3
intrinsic reward coefficient 1

# of dynamics update per policy step 1
dynamics learning rate 1× 10−5

ensemble size 5
PER level of prioritization N/A N/A 0.5

mixup Beta parameter 0.1 0.1 N/A
partial derivative threshold ϵ 3× 10−4

As shown in Table. 3, in Thawing and CarWash environments, partial derivative regularization with544

appropriate coefficients significantly improves ELDEN’s detection on local dependencies, compared545

to no regularization (i.e., λ = 0) or inappropriate λ values. Furthermore, in these discrete-state546

environments, the use of Mixup is crucial — even when compared to using Mixup without any547

regularization, not using Mixup leads to a noticeable degradation in the prediction performance.548

E Evaluating Exploration in Sparse-Reward RL Tasks549

E.1 Implementation550

During policy learning, all methods share the same PPO and training hyperparameters, provided in551

Table 4. The hyperparameters for dynamics model setup during policy learning are the same as in552

Table 2 unless specified otherwise.553

E.2 Ablation of Local Dependency Metrics554

In this section, we compare the exploration performance when using different local dependency555

detection methods. Specifically, we compare with pCMI as it achieves best local dependency detection556

in Sec. 4.1. We present the comparison results between ELDEN and pCMI in the Kitchen environment557

in Fig. 6(a) where both methods successfully learn to solve the task. However, it is important to558
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(a) Different local dependency detection methods (b) Using PER or not

(c) Different thresholds (th) for local dependencies (d) Different intrinsic reward coefficients

Figure 6: Ablation of ELDEN on task learning.

notice that the computation cost of pCMI is N times more than ELDEN, and thus may not scale to559

environments with a large number of entities.560

E.3 Ablation of Prioritized Experience Replay561

We study the effectiveness of Prioritized Experience Replay (PER) on task learning. Specifically,562

we test ELDEN with and without PER in the Kitchen environment, and show the result in Fig. 6(b).563

We can see that ELDEN without PER fails to learn useful policy. The reason is some key entity564

interactions occur rather rarely before the agent masters them, e.g., there is a small chance for565

the agent to cook the meatball with random actions. Hence, PER helps the dynamics model learn566

such infrequent dependencies quickly, enabling it to bias the exploration toward reproducing such567

dependencies.568

E.4 Ablation of Partial Derivative Threshold569

The partial derivative threshold ϵ determines the dependencies predictions. A threshold that is too570

large / too small will make all dependency predictions negative / positive respectively, leading to571

deteriorated performance. In this section, we examine whether our method is sensitive to the choice572

of threshold in the CarWash environment, where the results are presented in Fig. 6(c). We observe573

that our method is relatively sensitive to the choice of threshold, and an inappropriate threshold could574

cause catastrophic failure. A potential next step for ELDEN is to automatically determine the partial575

derivative threshold.576

E.5 Ablation of Intrinsic Reward Coefficient577

The intrinsic reward coefficient controls the scale of the intrinsic reward relative to the task reward.578

We examine the effect of this coefficient by experimenting with different values in the CarWash579

environment, where the results are presented in Fig. 6(d). We find that our methods work well in a580
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(a) Thawing (b) CarWash (c) Kitchen

Figure 7: Learning curve of ELDEN (ours) compared to baseline approaches (mean ± std dev of
success rate across three random seeds). For both CarWash and Kitchen, the success rates for all
baselines are zero throughout the training, overlapping with the x axis.

(a) a navigation task with the goal in green (b) ELDEN performs worse than Dynamics Curiosity

Figure 8: We demonstrate a failure mode of our method on a navigation task.

large range of the intrinsic reward coefficients (1 - 10), since the task only gives sparse rewards and581

the intrinsic rewards are the only learning signal most of the time. The only exceptions are (1) when582

the intrinsic reward coefficient is too large (e.g., 100), the intrinsic reward significantly surpasses the583

task reward, and (2) when the coefficient is too small (e.g., 0.1), the episode intrinsic reward will also584

be too small (e.g., 0.03) for PPO to learn any useful policy.585

E.6 Success Rate Plots586

As a supplementary to the normalized stage metric used in the main paper, we provide the success587

rate as an additional metric. The success rate learning curves of all methods in the three environments588

are shown in in Fig. 7. Again, ELDEN outperforms and performs comparably with all baselines.589

Notice that, in the CarWash and Kitchen environments, all baselines never succeed throughout the590

training (i.e., success rate = 0 for all episodes), leading to training curves that overlap with the x axis.591

F Failure Modes of ELDEN592

As mentioned in the main paper, ELDEN may have limited advantages for tasks that require precise593

control of a specific environment entity. One such example is navigation, where the agent needs to594

reach a very specific point in space that has no particular semantic meaning. We empirically examine595

this statement in the Minigrid environment [7], where the agent needs to navigate to the green goal596

point in an empty room through primitive actions (turn left, turn right, and move forward), as shown597

in Fig. 8(a). We compare ELDEN against Dynamics Curiosity and Vanilla PPO, and present the result598

in Fig. 8(b). Since this environment is relatively simple, all three methods are eventually able to solve599

the task. However, the Dynamics Curiosity converges faster than ELDEN, showing that ELDEN is600

indeed not as capable as curiosity-driven explorations in tasks that focus on precise control rather than601

exploring dependencies between environment entities. The Vanilla PPO converges slowest, indicating602

that even in the Empty environment, ELDEN still has advantages over purely random exploration.603
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craft @
apply to

Figure 9: (Left) A visualization of the 2-d Minecraft environment. (Right) To get the gem, the agent
needs to (top) craft a bridge to get across the rive, and (bottom) craft a stone pickaxe that is required
to collect the gem.

G Minecraft 2D604

We also evaluate all exploration methods in a discrete 2-d Minecraft environment that exhibits more605

objects and more complex entity dependencies than Thawing and CarWash. The environment is606

modified from the one used by Andreas et al. [1]. Due to limited space in the paper, we chose to show607

the results in the appendix.608

G.1 Environment Details609

Figure 10: Learning curve of ELDEN
(ours) compared to baseline approaches
(mean ± std dev of the number of stages
completed across three random seeds) in
the 2-d Minecraft environment.

As shown in Fig. 9, the environment has complex chained610

dependencies — to get the gem, the agent needs to611

1. get across the river to reach the gem by612

(a) collecting a unit of grass and crafting a rope,613

(b) collecting a unit of wood and crafting a bridge614

with the rope,615

(c) building the bridge on top of the river;616

2. collect the gem by617

(a) collecting a unit of wood to craft a wood stick618

(b) collecting another unit of wood and combining619

it with the stick to craft a wood pickaxe that is620

required for collecting the stone,621

(c) collecting a unit of wood and a unit of stone to622

craft a stick and then a stone pickaxe that is re-623

quired for collecting the gem,624

(d) collecting the gem with the stone pickaxe.625

Notice that all crafting must be conducted at the crafting626

table. The discrete state space consists of (i) the agent’s627

position and direction, (ii) an inventory tracking the number of materials and tools that the agent628

has, and (iii) the positions of all environment entities. The discrete action consists of (i) picking up /629

applying tools to (only effective when the agent faces an environment entity and has the necessary630

tools to interact with it), (ii) crafting a specified tool (only effective when the agent has enough631

materials and faces the crafting table), and (iii) moving to a specified environment entity.632

G.2 Evaluating Exploration in 2-d Minecraft with Sparse Rewards633

As shown in Fig. 10, even though the task requires that the agent follows the complex craft procedure634

with complex chained dependencies, ELDEN still learns to finish the task. In contrast, other635

exploration method fails to finish the task, only ending up with crafting one or two useful tools. This636

result again demonstrates ELDEN’s advantage in exploring complex interactions between a large637

number of environment entities.638
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H Compute Architecture639

The experiments were conducted on machines of the following configurations:640

• Nvidia 2080 Ti GPU; AMD Ryzen Threadripper 3970X 32-Core Processor641

• Nvidia A40 GPU; Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz642

• Nvidia A100 GPU; Intel(R) Xeon(R) Gold 6342 CPU @2.80GHz643
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