A Omitted Derivations of Formulas

We have omitted a number of complicated formulas in the main text to provide clear intuition and
concise proof sketch. We will list all mentioned formulas here for readers’ reference.

oa(Ai1) > oa(Ar+n(E — AAD)A) — 0 (3v201||Bel2, + V201 (|1 Ke|Z, + [17:012,))
> \/oa(Sit1) — 1 (3v201e5e%d® + V201 (m +n))
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B Dynamics in the Symmetric and Full-Rank Case

We consider the case where U = V = A and & is symmetric and full-rank, and we use gradient
flow. We can derive the dynamics of S = AAT as S := (X — S)S + S(X — S), which is a quadratic
ordinary differential equation and it is hard to solve directly.
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However, if we define X := S~1, we have SX = I. Taking the derivative implies SX + SX = 0.

Hence, X = —S~ 1551, Substitute S = (X — 5)S + S(X — S) in it, we have
X=-S1(Z-8)S+5E-5)85"!=-X2— %X +2I,

which is a linear ordinary differential equation.

For simplicity, define X := X — X!, Then

X =-X¥Y¥-3¥X. (24)
Solving this equation and we have
X(t) = e P Xge tE. (25)
Finally, we could conclude that
S(t) = (e ™P(Sy = v e P 4 n ) (26)

Similarly, because P’s dynamic is P = —(X — P)P — P(X — P), we have

P(t) = (2Pt =2 1S 4 n )7 @7)
where Py := ¥ — Sp.
And it is interesting to verify that S(t) + P(t) = X by using the following lemma.

Lemma B.1. Suppose S, P, E € R%*¢ are three positive definite matrices. ¥ = S + P. Suppose E
commutes with 3. Then

(E(S = HE+x )7

+(ENP - HE 42 ) =y

C Proof of Lemmas

Proof of lemma Since ¥ is invertible, we only need to verify the equation after right multiplying
both side by >7". We have

(ES™ =S HE+S ) sl (ETY(P =S )E 42 T e
= (BES'-DE+I) +(ENSP -DE +1)7 (28)
= (B(PSHE+I) " +(ENSPHE 1 +1) (29)
= Z+D*'+(Zz '+ D! (we denote E(PS™1)E by Z here) (30)
= Z+D'+2z(Zz+1)!
= 1T
= ¥y
where (28) is because ¥ commutes with E, (29) is because 3 = S + P and finally (30) is because
(E(PS~Y)E)™' = E-Y(SP~1)E~1, O

General analysis for lemmaand Suppose S, S and X are three symmetric matrices. Define
D = S — S. Then we have equation

(I+nE=8)5UI+n(E=S8) = (I +n(E -9 +n(E-9))
- §—§+n((z—§)§+5(z_§)—(2—§)§ 5*(2—5))

+n? ((E -



Proof of lemma[3.2] First of all, we can expand the expression of S and split it in the following
terms.

oa(S) > X (BS—20S* +1*S%) + 04 <(1 - B)

+1° X\ (—5252 »SS — SSE)

1-p

2
n
T ﬂESZ>

For the first term 35 — 2nS? + 7253, its eigenvalues are 3s; — 2ns? + n?s? since S is commutable
with itself, where s; is the i'" largest singular value of S. By the assumptions s; < 207 and ) < 8§ -,

we see the smallest eigenvalue of .S — 21752 + 1?53 is exactly Bs — 2ns? + n?s3

For the second term, it can be rewritten as

UN _ U "
(1-8)S +1SS +nST+ L7097 = (ﬂH mz) s (mﬂr mz) :

2
Hence, the minimal singular value can be bounded by (\/ 1-8+ \/’7%) s.

Finally, the last term can be lower bounded by —7%0; (7%252 - X85 — SSE) > — 81"’_6/? n%o}.
Summing up all three terms and we get

2
s > (Bs—2ms?+Ps?) + </Jr 104 > s—8+657720f

i=p) T 15
= (14+n(oqg—9))%s ﬂ ‘an s+ 204n%s? — 81+_6§U?172
> (1t n(ou— )% - 1*_65 o

O

Remark: If we choose S = S and S = ¢4(S)I in equation (3T)), we know D = S — S = 0. Hence
0a(S') = (1 +n(oq — 5))%s — O(oin?).

Proof of lemma[3.3] If p > 0, it suggests that P is positive semi-definite, and P’ is positive semi-
definite, too. Hence p’ > 0if p > 0.

If p < 0, we can expand the expression of P’ and split it in the following terms.
n?
1-p

A(P) > X (BP+2nP? +0°P%) + \g ((1 -B)

EPZ)

+n?Xg (-1582132 —YPP— PPZ) .

For the first term 5P + 277P2 +n?P3, its eigenvalues are Bp; + 2np? + 1°p3 since P is commutable
with itself, where p; is the 7' largest eigenvalue of P. By the assumptions \ pi| <201 andn < 85 =
we see the smallest eigenvalue of 3P + 2nP? + n?P3 is exactly Bp + 2np? + n%p3

For the second term, it can be rewritten as

2
(lﬂ)PnEPnPE+177_EPE_( 131 — —1 2>P( [y g— 2).

8 V-8 V-5
2
Hence, the minimal eigenvalue can be bounded by (\/1 - 8- \;’%) pifp <0.
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Finally, the last term can be lower bounded by —n?c; (—LEPE —YXPP — PPE) >
8+6Bﬁ n?0$. Summing up all three terms and we get that when p < 0,
2
/ 2 2 n0d 8+658 5 5
P = (Bp+2np°+n7p ( - ) p— o
(Bp + 200" +17°9") + { V1 =3 5o
Bo2 8465
= (1—n(ad—p))2p+1 Bnp+2aamp - 17[30?772
2 B
> (=nloa=p)p-7—5°
8+ 65
2 (1=noa)’p = T—goin"
O

Remark: Similarly, if we choose S = P and S = A\g(P)I in equation (31), we have D =
P — Xg(P)I = 0. Hence we have \q(P") > min {0, (1 — noq)?p + O(oin?)}.

D Solving the Iteration Formula of a

In this section we analyze the iteration formula (I3).

We first consider the case when a; < ./ ‘” . Notice that a; > we have

f’

\/(1 +1(04 — 04(Ar)?))204(Ar)? — 22080% > (1 + 1(0a — 0a(Ar)?))oa(Ar) — 22#%’772,

2
where we choose 7 so small that 22077 < 5

By taking e = O (m) andn = O (‘zl‘f;), we have %77(051 —a?)a; > %77%05 >

22#‘7:15772 + 1.5v/201n(€j + ¢*)e*(m + n)d, hence,

3

a1 = (145 (0a—a})) ar, (32)
and

n 2
St+1 Z (1 + 5(0’d — St)) St 2 (1 + 'r](O'd — St)) St. (33)

Subtracting o4 by (33)), we have

oq — St+1 < (1 —nsg)(og — s¢)- (34)
Dividing (33) by (34) we have
S 1+n(oqg—s S
1 n(oa—st) st > (14 509) _
0d — St+1 1*778,5 04 — St 04 — St

_SsT__ T so i -
Hence, o > (14 nog) - So, it takes at most 77 := O (

S

at least /5.

E Solving the Iteration Formula on B

o In d‘”) iterations to bring a; to

The iteration formula can be summarized as

Bl < (X + ) Bell 7 + 4,
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where p = O(neie?(m + n)dk) and ¢ = O(n/a1ep(m + n)d?e®). Moreover, we have

q
1BrllE < (1+p)" || Bollz + (1 +p)" — Dy

— 1 1 doa i _ O a2
Suppose T' < Ty = O (nad In 52”1). By choosing e = O (%W) we have pT' < pTy <

1. Then (1+p)” = 1+ (7)p+(5)p*+ -+ (7)p" < 14+Tp (14 57+ + 77) < 1+(e—1)Tp <
1+ 2pT. Hence,
IBrl|3 < (1+ 2pT)||Boll% + 24T

Voiep(m+n)

|Br||% < 3||Bol|% + c?d?e? < 4cPd?e? = el d?e?,

Similarly, by choosing & = O (#), we have ¢T' < c2d?c?. By taking e, = 2c, we have

induction succeeds.

F Proof of Stage Two

Here is the full version of the proof. Initially, ||Ag||op = || Pr, + Q1 ||op Where @ = ABT — BAT.
Hence || Ao|lop < 01(Pr,) + 01(Q1,) < % + /20101 (Br,) < %t. Then for Uz, we have 234 <
0a(X) = 01(Ao) < 0u(Un, Vi) < 0a(Un,UF,) 201(Un, BY,) < 0a(Ur,Uf,) ~4v/2710 (54 ).
Hence 04(Ur,) > \/? . We can do the same thing on V7.

First of all, by equations (8] and (9), we have

¢
| ez llop < ce (1 — %) vmax{m’,d},

and

t
1K i1 |lop < ce (1 - %) v/max{n',d}.

Expanding 3 — U141, V; 11, 1, by brute forceEI, we get

? 2t
A1 < (1—%) At + O(Po?) Ay + O (a1 (m + n)) (1_’7;;61)
< (12150 50 e ) (1 5"
Then,
Apyq A ) nogy -1
o™ < oy OO ()
< Ao+0 (e%k(m+n))
2
S gO’d.

. t . .
Thus we can now verify that A; < (1 — %) %ad. Together with the linear convergence of J and
K, we know the gradient descent converge linearly. Notice that by using the operator norm of A;, we
can easily prove that o4(U) and 04(V') in the next iteration is at least /%% once given || Bz, 4| F is

small.
To give an upper bound on || B|| r, we still use equation (T9).

First of all, we have || P|% + [|Q||% = |S — UV T||%,since P+ Q =X — UV ", and (P,Q) = 0.
Hence, || Pryr, ||l r < VdA, and (| Qg || < VdA,.

2Here O means there might be some log terms about m, n, x and e, on the denominator.
"Please see ([23) for the result of the expanding.
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Finally,

og\t 2 g\ 2t
1Bevim 3 < (1 +2y(1-"1) 5@) |Besmll} + O (noa(m + m)de?) (1 - 122)

o 2t
+0 (nQdalag (1 - 772—‘1) ) .
To solve this iteration formula, we first notice that the product of the main coefficient is bounded by a
universal constant,

B T-1 noa\t 2 = noa\t 2 8
=1l (“W“z) 5‘”) = o ;2”(“2) 50¢) <S¢
2
we can then write it into an iteration formula about %
B 2 B 2 2t
Bl o 1Bl | o (n5,(m 4+ n)de?) (1-%)
Sl =t 2
) ) noay 2t
+0 | n°doyo; (1 — 7)
< |BpllF + O ((m+n)de®) + O (ndoyoq) .

. _ o4 (o .
By takinge = O (Gl(ern)d) andn = O (da%>, induction on || B|| ¢ holds.

G Matrix sensing problem

We only consider full-rank case here, i.e. > is a d x d full-rank matrix, and we would like to factorize
YintoU x VT, where U,V € R4x4,

For a sufficiently large integer IV, consider measurements My, My, - -- , My € R?*? generated by
i.i.d. Gaussian distribution. Define labels y; := (M;, X) for i € [N].

The objective function is defined as

fU, V)= % > (M, UVT) =),

i€[N]

which can be equivalently written as ﬁ > <Mi, uv’t — E>2.
1€[N]

And the gradient descent with learning rate 7 can be written as

Ui = U — L]\’[ (M;,UVT = %) M, V;

i€[N]

Vi = Vim 5 > (M UVT =) MU

G.1 Symmetrization

Suppose the SVD of ¥ is ®X/U . Then if we replace the objective matrix by X', replace the
measurements by ® " M; ¥ and replace the initial parameter matrices by ® U and ¥ 'V, then
everything, including the objective function, the gradient descent process, the loss value, etc. are the
same. Hence, we can assume, without loss of generality, ¥ is a positive semi-definite matrix. (We
could also check that the initialization and measurements are still i.i.d. Gaussian generated.)

To simplify the notation, we define a linear operator A : R9*4 — RIX A(X) :=

% > (M;, X) M;. A standard concentration analysis shows that when there are sufficiently large

i€[N]
number of measurements, then with large probability, A is sufficiently close to an identity operator,
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with respect to operator norm. Define the error term F : R4*4 — R4*4 F(X) = A(X) — X. The
error term £ can be described by RIP.

Hence, the gradient process can now be written as
Ui = U =0V, =)V, —nEUY, - )V
Ve = Vi— UV, =%)TU —nEUV," - %) U,

Hence, we can define A; = % and B; = % Then the iteration formula becomes
Arpr = A+0(E - AA] + BB — EfA, —n(AB] — BLA] — E;)By;
Bt+1 = Bt — ’I’](E — AtA;r + BtBtT + E;)Bt + n(AtBtT — BtA;r + E?)Atu

E(UV," —-)+EU,V," —x)" — E(U.V," -2)—EU,V," —2) " .
where E;" = WV, )+2 WeVy =%)_ and E = (WeV, =) 5 WeVy =%)_ are small matrices.

By lemma 3.2 we know that if B and E+/~ is small, the minimal singular value of A is monotonically
increasing. And similarly, we could define P and hopefully we could also use lemma 3.3 to prove
that the minimal eigenvalue of P is not very small and hence the F-norm of B won’t be too large.

Remark G.2. As for deep matrix factorization problem, there could be some similar techniques to
handle it. For instance, if we would like to factorize X into 2m matrices [[ U, one naive idea is
i1€[2m)]
. _ UitUzm—; _ Ui—Usm—; .
to first symmetrize Y. and then define A; = ===~ and B; = ——5""=* for i € [m]. If we can
find any monotonic value in these matrices (possibly the minimal singular values of A;), it would
guide us to the global convergence.
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