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A IMPLEMENTATION DETAILS ON FASTER
R-CNN AND DINO

This section describes the details of implementing our PD on Faster
R-CNN [6] and DINO [1].

Faster R-CNN. Faster R-CNN [6] is a classic two-stage object
detector comprising a backbone, RPN, and detection head. Due to
its detection head directly predicting the position deviation relative
to the Region of Interest (RoI), we modify this localization branch to
model the output as a discrete distribution to meet the requirements
of PD. On the other hand, RPN is a crucial component of Faster
R-CNN, which is responsible for generating proposals most likely
to contain objects. Therefore, we also distill RPN by selecting the
top 512 proposals with the highest confidence. The implementation
is detailed in Fig. 1a.

DINO. As a state-of-the-art transformer-based detector, DINO [8]
utilizes a set of trainable queries to detect objects in images. Sim-
ilar to Faster R-CNN, we also modify DINO’s localization head.
Moreover, considering the special structure of DINO, we add an
additional attention distillation to the encoder, as shown in Fig. 1b.

B ABLATION FOR THE MULTI-SCALE CROSS
ATTENTION DISTILLATION

Here, we perform more detailed ablation experiments on the pro-
posed Multi-scale Cross Attention Distillation (MCAD). We reckon
that multi-scale cross attention can effectively integrate information
from different scales. To validate this hypothesis, we replace the
MCAD with distillation using: (1) 𝐿2 loss [5], (2) Selective Feature
Distillation (SFD) strategy in Faster ILOD [4], and (3) the original
Cross Attention (CA) [7]. All experimental results are presented
in Tab. 1. We can see that simply forcing the student to mimic the
teacher’s behavior by 𝐿2 loss significantly interferes with learning
old and new tasks. In contrast, SFD only calculates distillation loss
with higher activation values in the feature map, thereby alleviating
conflicts between old and current tasks to some extent. Although
cross-attention further mitigates catastrophic forgetting, our MCAD
effectively integrates multiscale information, resulting in a higher
mAP.

C ABLATION FOR THE DISCRIMINATOR
In this section, we analyze the discriminator in feature space distilla-
tion. To investigate the impact of the discriminator on PD, we con-
duct experiments with different discriminators, as presented in Tab. 2.
We compare our discriminator to PixelDiscriminator, NLayerDis-
criminator, and a discriminator composed of fully connected layers.
The PixelDiscriminator and NLayerDiscriminator, proposed in [9],
are widely employed in generative adversarial networks and domain
adaptive object detection, and the experimental results demonstrate
their effectiveness in reducing feature differences. The PixelDiscrim-
inator predicts each pixel using 1 × 1 convolutions, thus it overlooks

Teacher

Student

(a) Faster R-CNN

Teacher

Student

(b) DINO

Figure 1: PD implementation details on (a) Faster R-CNN and
(b) DINO.

Table 1: Ablation results for the multi-scale cross attention distil-
lation. Here, SFD stands for selective feature distillation strategy
in Faster ILOD [4], and CA is the original cross attention [7].

Kitchen → KITTI Comic → Parasites
Distillation

Old New Avg. Old New Avg.

𝐿2 73.92(-20.81) 45.30 59.61 47.79 (- 8.65) 30.66 39.22
SFD 87.22 (- 7.51) 69.68 78.45 49.65 (- 6.79) 80.21 64.93
CA 87.95 (- 6.78) 71.37 79.66 51.03 (- 5.41) 79.58 65.30

MCAD 89.70 (- 5.03) 71.22 80.46 52.39 (- 4.05) 81.07 66.73
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Figure 2: Comparison of different output nodes selection strategy. The first row represents the bounding box with the highest
classification in each image, while the second row represents those with the highest product of classification and normalized entropy of
the location distribution in each image.
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Figure 3: Experiments on the influence of different hyperparameters. Notice that we average the detection performance under scenarios
(Kitchen → KITTI) and (Comic → Parasites) for better visualization.

Table 2: Incremental learning performance with different dis-
criminators. The PixelDiscriminator consists of three 1 × 1 con-
volutional layers, while the NLayerDiscriminator is composed
of several 4 × 4 convolutional layers with different strides. The
FCDiscriminator is designed with three fully connected layers,
and the dimension of the intermediate hidden layer is set to 512.

Kitchen → KITTI Comic → Parasites
Discriminators Parameters

Old New Avg. Old New Avg.

PixelDiscriminator 75,072 86.26 (- 8.47) 70.50 78.38 48.98 (- 7.46) 80.22 64.60

NLayerDiscriminator 8,166,541 88.01 (- 6.72) 70.83 79.42 50.58 (- 5.86) 81.15 65.86

FCDiscriminator 630,961,079 77.75 (-16.98) 65.29 71.52 40.42 (-16.02) 78.90 59.66

Ours 2,659,330 89.61 (- 5.12) 71.05 80.33 52.39 (- 4.05) 81.07 66.73

the spatial information of features. Also, the FCDiscriminator fails
to capture the spatial structure and local patterns of features, sig-
nificantly disrupting knowledge transfer from the teacher to the
student. The NLayerDiscriminator, with its more complex structure
and larger receptive field, better maintains the memory of old tasks
but comes with higher computational costs. Compared with these

discriminators, our discriminator integrates multi-level features to
obtain comprehensive information, thus achieving better incremental
learning performance at a relatively lower computational cost.

D ANALYSIS FOR OUTPUT NODES
SELECTION STRATEGIES

In this section, we assess the performance of our selection strategy by
comparing it to the classification-based strategy. Incremental Object
Detection (IOD) methods mostly utilize output distillation, aiming
to transfer knowledge from the teacher’s output to the student. As
the classification scores and location offsets in the output contain nu-
merous negative samples lacking meaningful information, a criterion
must be defined to filter output nodes. Faster ILOD [4] selects the
top-𝑘 boxes based on the maximum classification score of bounding
boxes to selectively calculate distillation loss. ERD [2] considers
the mean and variation to set a threshold to choose output nodes.
However, none of these methods consider both the classification and
location of bounding boxes simultaneously, which is crucial because
inaccurate boxes can interfere with the student’s learning, especially

2
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Figure 4: Qualitative results in the multi-step incremental object detection. We provide the predictions of different methods after
incremental learning on the dataset sequence (VOC → KITTI → Watercolor → Comic → Kitchen → Parasites).

in incremental object detection with both domain shift and category
differences.

To address this issue, we propose Entropy-Guided Selection
(EGS), which utilizes the entropy of the distribution of bounding
box positions to measure the model’s localization confidence. To
unify with the classification score, we normalize the entropy to [0, 1]
and then select the top-𝑘 nodes with the highest confidence based on
the element-wise product of the classification score and the normal-
ized entropy. In Fig. 2, we visualize the highest-scoring bounding
boxes selected by different strategies. Nodes selected solely based on
classification exhibit high classification confidence but low position
entropy, and fail to denote objects correctly. While EGS balances
both classification and localization, resulting in nodes that can more
accurately identify objects, with a minor loss in classification confi-
dence.

E SENSITIVE ANALYSIS FOR
HYPERPARAMETERS

In this section, we conduct sensitivity analysis on 𝜆, 𝑛𝑞 , and 𝑘 in two
typical incremental object detection scenarios, (Kitchen → KITTI)

and (Comic → Parasites). The trends of mAP changes with different
hyperparameters on both old and new tasks are illustrated in Fig. 3.

𝜆. This parameter balances the learning of new and old knowl-
edge, and Fig. 3a presents the experimental results of different values.
The larger 𝜆, the model pays more attention to learning the current
task, and vice versa.

𝑛𝑞 . The number of queries, 𝑛𝑞 , is a critical parameter to main-
tain the previous knowledge. As shown in Fig. 3b, a smaller 𝑛𝑞
prevents the student from comprehensively retaining old task-related
knowledge, while a larger one can hinder learning new tasks.

𝑘. On the other hand, the results of different 𝑘 are reported in
Fig. 3c. The impact of 𝑘 is similar to 𝑛𝑞 , but very large values of 𝑘
lead to significant conflicts in learning new and old tasks, impairing
performance in both tasks.

F MORE QUALITATIVE RESULTS
Here we present qualitative results for multi-step incremental object
detection, where the dataset sequence is (VOC → KITTI → Wa-
tercolor → Comic → Kitchen → Parasites). Comparative methods
include vanilla finetuning, LwF [3], Faster ILOD [4], SID [5], and
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ERD [2]. After completing all incremental steps, we validate models
on all datasets, and the qualitative results are provided in Fig. 4.
It can be observed that even in such a complex scenario, our PD
consistently preserves the memory of old tasks, while the compara-
tive methods exhibit more significant forgetting (misidentifying the
background as an object or incorrectly classifying objects).
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