
Appendix

A More Details for NODEFORMER

A.1 Differentiable Sampling-based Message Passing on Latent Structures

We provide more details concerning the differentiable sampling-based message passing through our
kernelized Gumbel-Softmax operator, as complementary to the content of Sec. 3.1. As illustrated in
Sec. 3.1, the l-th layer’s feature propagation is defined over the l-th layer’s latent graph composed of
the sampled edges e

(l)
uv ⇠ Cat(⇡u)(l). For each layer, we sample K times for each node, i.e., there

will be K sampled neighbored nodes for each node u. We assume Ẽ
(l) = {e

(l)
uv} as the set of sampled

edges in the latent graph of the l-th layer. Then the updating rule for node embeddings at the l-th
layer based on the latent graph can be written as

z(l+1)
u

=
1

K

X

v,e
(l)
uv2Ẽ(l)

vu =
1

K

X

v

I[e(l)
uv

2 Ẽ
(l)]vu. (14)

The above equation introduces dis-continuity due to the sampling process that disables the end-to-end
differentiable training. We thus adopt Gumbel-Softmax as a reparameterization trick to approximate
the discrete sampled results via continuous relaxation:

z(l+1)
u

⇡
1

K

KX

k=1

NX

v=1

exp((q>
u
ku + gkv)/⌧)

P
N

w=1 exp((q>
u
kw + gkw)/⌧)

· vu, gkw ⇠ Gumbel(0, 1). (15)

The temperature ⌧ controls the closeness to hard discrete samples [23]. If ⌧ is close to zero, then the
Gumbel-Softmax term exp((q>

u ku+gkv)/⌧)PN
w=1 exp((q>

u kw+gkw)/⌧)
for any v converges to a one-hot vector:

exp((q>
u
kv + gkv)/⌧)

P
N

w=1 exp((q>
u
kw + gkw)/⌧)

=

⇢
1, if v satisfies q>

u
kv + gkv > q>

u
kv0 + gkv08v

0
6= v,

0, otherwise.

(16)
The Eqn. 15 requires O(N2) for computing the embeddings for N nodes in one layer. To reduce
the complexity to O(N), we resort to the kernel approximation idea, following similar reasoning as
Eqn. 3 and 5:

z(l+1)
u

⇡
1

K

KX

k=1

NX

v=1

exp((q>
u
ku + gkv)/⌧)

P
N

w=1 exp((q>
u
kw + gkw)/⌧)

· vu

=
1

K

KX

k=1

NX

v=1

exp((q>
u
ku + gkv)/⌧)

P
N

w=1 exp((q>
u
kw + gkw)/⌧)

· vu

=
1

K

KX

k=1

NX

v=1

(qu/
p

⌧ ,kv/
p

⌧)egkv/⌧

P
N

w=1 (qu/
p

⌧ ,kw/
p

⌧)egkw/⌧
· vv

⇡
1

K

KX

k=1

NX

v=1

�(qu/
p

⌧)>
�(kv/

p
⌧)egkv/⌧

P
N

w=1 �(qu/
p

⌧)>�(kw/
p

⌧)egkw/⌧
· vv

=
1

K

KX

k=1

�(qu/
p

⌧)> P
N

v=1 e
gkv/⌧

�(kv/
p

⌧) · v>
v

�(qu/
p

⌧)> P
N

w=1 egkw/⌧�(kw/
p

⌧)
.

(17)

The above result yields the one-layer updating rule for NODEFORMER’s feed-forwarding w.r.t. each
node u. In terms of practical implementation, we adopt matrix multiplications for computing the node
embeddings for all the nodes in the next layer, for which we present the details in the next subsection.

A.2 Model Implementation from the Matrix View

In practice, the implementation of NODEFORMER is based on matrix operations that simultanenously
update all the nodes in one layer. We present the feed-forward process of NODEFORMER from a

16

samples [22]. Following similar reasoning as Eqn. 3 and 5, we can yield

z(l+1)
u

⇡

NX

v=1

�(qu/
p

⌧)>
�(kv/

p
⌧)egv/⌧

P
N

w=1 �(qu/
p

⌧)>�(kw/
p

⌧)egw/⌧
·vv =

�(qu/
p

⌧)> P
N

v=1 e
gv/⌧

�(kv/
p

⌧) · vv

�(qu/
p

⌧)> P
N

w=1 egw/⌧�(kw/
p

⌧)
.

(7)
Eqn. 7 achieves message passing over a sampled latent graph (where we only sample once for each
node) and still guarantees linear complexity as Eqn. 5. In practice, we can sample K times (e.g.,
K = 5) for each node and take an average of the aggregated results (see Alg. 1).

3.2 Well-posedness of the Kernelized Gumbel-Softmax Operator

One reasonable concern for Eqn. 7 is whether the RF approximation for kernel functions maintains the
well-posedness of Gumbel approximation for the target discrete variables. As a justification for the
new message-passing function, we next answer two theoretical questions: 1) How is the approximation
capability of RF for the original dot-then-exponentiate operation with Gumbel variables in Eqn. 6? 2)
Does Eqn. 7 still guarantee a continuous relaxation of the categorical distributions? We formulate the
results as follows and defer proofs to Appendix A.
Theorem 1 (Approximation Error for Softmax-Kernel). Assume kquk2 and kkvk2 are bounded by r,
then with probability at least 1 � ✏, the gap � =

���(qu/
p

⌧)>
�(kv/

p
⌧) � (qu/

p
⌧ ,kv/

p
⌧)

��),

where � is defined by Eqn. 4, will be bounded by O

✓q
exp(6r/⌧)

m✏

◆
.

We can see that the error bound of RF for approximating original softmax-kernel function depends
on both the dimension of feature map � and temperature ⌧ . Notably, the error bound is independent
of node number N , which implies that the approximation ability is insensitive to dataset sizes.

The second question is non-trivial since Eqn. 7 involves randomness of Gumbel variables
and random transformation in �, which cannot be decoupled apart. We define cuv =

�(qu/
p

⌧)>
�(kv/

p
⌧)egv/⌧

PN
w=1 �(qu/

p
⌧)>�(kw/

p
⌧)egw/⌧ as the result from the kernelized Gumbel-Softmax and cu =

{cuv}
N
v=1 denotes the sampled edge vector for node u. We can arrive at the result as follows.

Theorem 2 (Property of Kernelized Gumbel-Softmax Random Variables). Suppose m is sufficiently
large, we have the convergence property for the kernelized Gumbel-Softmax operator

lim
⌧!0

P(cuv > cuv0 , 8v
0
6= v) =

exp(q>
u
kv)

P
N

w=1 exp(q>
u
kw)

, lim
⌧!0

P(cuv = 1) =
exp(q>

u
kv)

P
N

w=1 exp(q>
u
kw)

.

It shows that when i) the dimension of feature map is large enough and ii) the temperature goes
to zero, the distribution from which latent structures are sampled would converge to the original
categorical distribution.

Algorithm 1: Scalable All-Pair Message Passing on Latent
Graphs with Linear Complexity (O(N) or O(N + E))
Input: Node features Z(0) = X, input adjacency A.

1 for l = 0 . . . , L � 1 do
2 Q(l) � W (l)

Q Z(l), K(l) � W (l)
K Z(l), V(l) � W (l)

V Z(l);
3 for k = 1, 2, . . . , K do
4 Gk = {egku/�}N

u=1, gku � Gumbel(0, 1);
5 G̃k = Gk.unsqueeze(1).repeat(1, m);
6 K̃(l)

k = G̃k � �(K(l)/
�

�), Q̃(l)
k = G̃k � �(Q(l)/

�
�);

7 U(l)
k � (K̃(l)

k)�V(l), O(l)
k � (K̃(l)

k)�1N�1;

8 Z(l+1) � 1
K

�K
k=1

Q̃
(l)
k U

(l)
k

Q̃
(l)
k O

(l)
k

; % average K samples

9 Z(l+1) � Z(l+1) + �(b(l)) · AZ(l+1); % add relational bias

Output: Predict node labels Ŷ = MLP({Z(l)}L
l=0).

Remark. The two theorems
imply a trade-off between RF
approximation and Gumbel-
Softmax approximation w.r.t.
the choice of ⌧ . A large ⌧ would
help to reduce the burden on
kernel dimension m, and namely,
small ⌧ would require a very
large m to guarantee enough RF
approximation precision. On
the other hand, if ⌧ is too large,
the weight on each edge will
converge to 1

N
, i.e., the model

nearly degrades to mean pooling,
while a small ⌧ would endow
the kernelized Gumbel-Softmax
with better approximation to the
categorical distribution. Empirical studies on this are presented in Appendix D.

5

Figure 5: Alg. 1 presents the details for NODEFORMER’s feed-forward process from a matrix
view that is practically used in our implementation. The figure illustrates the layer-wise node
representation updating based on the kernelized Gumbel-Softmax operator, which reduces the
algorithmic complexity from quadratic to O(N) via avoiding explicit computation of the all-pair
similarities. � in Alg. 1 denotes element-wise product. �̃(·) in the figure represents the random
feature map with Gumbel noise whose details are shown by the blue part of Alg. 1.

matrix view in Fig. 5 where Alg. 1 depicts how node embeddings are updated in each layer through our
introduced kernelized Gumbel-Softmax message passing in Sec. 3.1. The right sub-figure illustrates
the one layer’s updating which only requires O(N) complexity by avoiding the cumbersome all-pair
similarity matrix.

B Proof for Technical Results

B.1 Proof for Theorem 1

To prove our theorem, we first introduce the following lemma given by the Lemma 2 in [6].
Proposition 1. Denote a softmax kernel as SM(x,y) = exp(x>y). The Positive Random Fea-
tures defined by Eqn. 4 for softmax-kernel estimation, i.e., cSMm(x,y) = 1

m

P
m

i=1[exp(w>
i
x �

kxk2

2) exp(w>
i
y �

kyk2

2)], has the mean and variance over w ⇠ N (0, Id) as

Ew(cSMm(x,y)) =SM(x,y) = exp(x>y),

Vw(cSMm(x,y)) =
1

m
exp(kx + yk

2)SM2(x,y)

(1 � exp(�kx + yk
2)).

(18)

The lemma shows that the Positive Random Features can achieve unbiased approximation for the
softmax kernel with a quantified variance.

Back to our main theorem, suppose the L2-norms of qu and kv are bounded by r, we can derive the
probability using the Chebyshev’s inequality:

P(� 

r
exp(6r/⌧)

m✏
) � 1 �

Vw(dSMm(qu/
p

⌧ ,kv/
p

⌧))

exp(6r/⌧)/m✏
(19)

where � =
���dSMm(qu/

p
⌧ ,kv/

p
⌧) � SM(qu/

p
⌧ ,kv/

p
⌧)

��� denotes the deviation of the kernel
approximation. Using the result in Lemma 1, we can further obtain that the RHS of Eqn. 19 is no
greater than

1 � ✏ exp(k
qu + kv

p
⌧

k
2 + 2

q>
u
kv

⌧
� 6

r

⌧
). (20)

Since k
qu+kvp

⌧
k
2


4r

⌧
and 2q>

u kv

⌧


2r

⌧
, we can achieve the stated result:

P(� 

r
exp(6r/⌧)

m✏
) � 1 � ✏. (21)

17

B.2 Proof for Theorem 2

Before entering the proof for the theorem, we first introduce two basic technical lemmas. While
such results are already mentioned in previous studies [16, 23], their proofs will be useful for
the subsequent reasoning. Therefore, we restate the proofs as building blocks for the following
presentation.
Proposition 2. Given real numbers xi, xj 2 R and ui, uj i.i.d. sampled from uniform distribution
within (0, 1). With Gumbel perturbation defined as g(u) = � log(� log(u)), we have the probability

P (xi + g(ui) > xj + g(uj)) =
1

1 + exp (�(xi � xj))
.

Proof. Due to g(u) = � log(� log(u)), the inequality of interests xi + g(ui) > xj + g(uj) can be
rearranged as

e
xi�xj >

log(ui)

log(uj)
. (22)

Since log(uj) < 0, Eqn. 22 can be written as

uj < u
e

xj�xi

i
. (23)

As ui, uj are i.i.d. sampled from a uniform distribution, the probability when the above formula can
be calculated via:

Z 1

0

Z
u

e
xj�xi

i

0
dujdui =

Z 1

0
u

e
xj�xi

i
dui

=
1

1 + exp(�(xi � xj))
.

(24)

Thus, we conclude the proof with

P (xi + g(ui) > xj + g(uj)) =
1

1 + exp (�(xi � xj))
. (25)

Proposition 3. Let X ⇠ Gumbel(↵, ⌧) (i.e. Xk = exp((log ↵k+gk)/⌧)Pn
i=1 exp((log ↵i+gi)/⌧)) with location parameters

↵ 2 (0, 1)n and temperature ⌧ 2 (0, 1), then:

• P (Xk > Xi, 8i 6= k) = ↵kPn
i=1 ↵i

,

• P (lim⌧!0 Xk = 1) = ↵kPn
i=1 ↵i

.

Proof. This result can be similarly proved as Lemma 2. The event of interests Xk > Xi, 8i 6= k is
equivalent to

log ↵k � log(� log uk) > log ↵1 � log(� log u1),

log ↵k � log(� log uk) > log ↵2 � log(� log u2),

...

log ↵k � log(� log uk) > log ↵n � log(� log un).

(26)

Since all the above inequalities are independent given uk, we can rearrange the first inequality as

u1 < u
↵1/↵k

k
 1. (27)

Since u1 ⇠ U [0, 1], the probability for the first inequality in Eqn. 26 being true would be u
↵1/↵k

k
.

Thus, the probability for Eqn. 26 being true can be calculated via

u
↵1/↵k

k
u

↵2/↵k

k
...g

↵n/↵k

k
= g

(↵1+↵2+...+↵n)/↵k

k
= g

(1/↵k)�1
k

. (28)

For simplicity, we assume
P

n

i=1 ↵i = 1. Then for any gk 2 [0, 1], we obtain

P (Xk > Xi, 8i 6= k) =

Z 1

0
g
(1/↵k)�1
k

dgk

=
↵kP
n

i=1 ↵i

,

(29)

18

and arrive at the result for the first bullet point. For the second bullet point, when ⌧ ! 0, we have

lim
⌧!0

exp((log ↵i + gi)/⌧)

exp((log ↵j + gj)/⌧)

= lim
⌧!0

exp((log ↵i + gi � log ↵j � gj)/⌧)

=

⇢
1, if ↵i > ↵j

0, otherwise.

(30)

Such a fact indicates that the output of a Concrete distribution with ⌧ ! 0 will be a one-hot vector
(Xarg maxi ↵i = 1). This yields the conclusion that

P (lim
⌧!0

Xk = 1) = P (Xk > Xi, 8i 6= k) =
↵kP
n

i=1 ↵i

. (31)

Now we turn to the proof of our theorem. We are to prove that the kernelized form in Eqn. 7 has the
same property as the original Gumbel-Softmax in the limit sense (when ⌧ goes to zero). We recall
that we have defined qu = W

(l)
Q

z(l)
u , ku = W

(l)
K

z(l)
u and vu = W

(l)
V

z(l)
u for simplicity.

First, by definition we have

�(
qu
p

⌧
)>

�(
kv
p

⌧
)e

gv
⌧

=
1

m
exp(�

||
qup

⌧
||

2 + ||
kvp

⌧
||

2

2
)

mX

i=1

exp(!>
i

(
qu
p

⌧
+

kv
p

⌧
) +

gv

⌧
).

(32)

The property holds that for 8w 6= v, we have lim⌧!0
�(qup

⌧
)>

�(kvp
⌧
)e

gv
⌧

�(qup
⌧
)>�(kwp

⌧
)e

gw
⌧

equals to 1 or 0, i.e. the

output of the kernelized Gumbel-Softmax is still a one-hot vector when ⌧ ! 0. Let

Yv =
�(qup

⌧
)>

�(kvp
⌧
)e

gv
⌧

P
N

w=1 �(qup
⌧
)>�(kwp

⌧
)e

gw
⌧

. (33)

Here Yv is defined in the same way as cuv in Section 3.2. We thus have P (lim⌧!0 Yv = 1) =
P (Yv > Yv0 , 8v

0
6= v).

To compute P (Yv > Yv0 , 8v
0
6= v), for simplicity, let us consider the probability P (Yv > Yv0) =

P (�(qup
⌧
)>

�(kvp
⌧
)e

gv
⌧ > �(qup

⌧
)>

�(kv0p
⌧
)e

gv0
⌧). To keep notation clean, we define

�v = �(
qu
p

⌧
)>

�(
kv
p

⌧
), �v0 = �(

qu
p

⌧
)>

�(
kv0
p

⌧
). (34)

Then the above-mentioned probability can be rewritten as P (log �v + gv

⌧
> log �v0 + gv0

⌧
), where

�v and �v0 are two i.i.d. random variables.

From Lemma 1, we have E(�v) = exp(q>
u
kv/⌧) = ↵

1
⌧
v , E(�v0) = exp(q>

u
kv0/⌧) = ↵

1
⌧
v0 , where

↵v and ↵v0 are two constant values. Then using Lemma 2, we have

P (log ↵
1/⌧

v
+

gv

⌧
> log ↵

1/⌧

v0 +
gv0

⌧
)

=P (log ↵v + gv > log ↵v0 + gv0)

=
1

1 + exp(log ↵v0 � log ↵v)

=
↵v0

↵v + ↵v0
.

(35)

According to the Chebyshev’s inequality, we have P (|�v � ↵
1
⌧
v |  ✏v) � 1 �

�
2
v

✏2v
. Here �

2
v

=

Vw(dSMm(qup
⌧
,

kjp
⌧
)), which can given by Lemma 1.

19

Due to the convexity of logarithmic function, we have

| log �v �
1
⌧

log ↵v|

|�v � ↵
1
⌧
v |


1

↵
1
⌧
v � ✏v

, (36)

and subsequently,

| log �v �
1

⌧
log ↵v| 

|�v � ↵
1
⌧
v |

↵
1
⌧
v � ✏v


✏v

↵
1
⌧
v � ✏v

.

(37)

Therefore we have P (| log �v �
1
⌧

log ↵v| 
✏v

↵

1
⌧
v �✏v

) � P (|�v � ↵
1
⌧
v |  ✏v). Based on this, we can

derive the result:

P (| log �v �
1

⌧
log ↵v| 

✏v

↵
1
⌧
v � ✏v

) � 1 �
�

2
v

✏2
v

. (38)

Since �v and �v0 are two i.i.d. random variables, we have

P (| log �v �
1

⌧
log ↵v| 

✏v

↵
1
⌧
v � ✏v

,

| log �v0 �
1

⌧
log ↵v0 | 

✏v0

↵
1
⌧
v0 � ✏v0

) � (1 �
�

2
v

✏2
v

)(1 �
�

2
v0

✏2
v0

).
(39)

For simplicity, we denote ✏ = ✏v

↵

1
⌧
v �✏v

+ ✏v0

↵

1
⌧
v0 �✏v0

and P✏ = (1 �
�

2
v

✏2v
)(1 �

�
2
v0

✏2
v0

). We therefore have

P (| log �v �
1

⌧
log ↵v| + | log �v0 �

1

⌧
log ↵v0 |  ✏) � P✏. (40)

Using the triangular inequality, we can yield

|(log �v �
1

⌧
log ↵v) � (log �v0 �

1

⌧
log ↵v0)|

 | log �v �
1

⌧
log ↵v| + | log �v0 �

1

⌧
log ↵v0 |.

(41)

Combining Eqn. 40 and 41, we have

P (|(log �v �
1

⌧
log ↵v) � (log �v0 �

1

⌧
log ↵v0)|  ✏) � P✏. (42)

Let c = log �v � log �v0 , so that E(c) = 1
⌧
(log ↵v � log ↵v0). From Eqn. 42, we can obtain

P (c � E(c) � ✏) � P✏. (43)

According to Lemma 2, the probability P (E(c) � ✏ �
gv0 �gv

⌧
) can be written as

P (log ↵v � log ↵v0 � ⌧✏ � gv0 � gv)

=
1

1 + exp(log ↵v0 � log ↵v + ⌧✏)

=
1

1 + ↵v0
↵v

e⌧✏
.

(44)

Since c, gv, gv0 are generated independently, combining Eqn. 43 and 44, we can yield

P (c �
gv0 � gv

⌧
) �

P✏

1 + ↵v0
↵v

e⌧✏
. (45)

Similarly, from Eq. 42 we have P (c  E(c) + ✏) � P✏ and subsequently,

P (
gv0 � gv

⌧
� E(c) + ✏) = 1 � P (c + ✏ �

gv0 � gv

⌧
)

= 1 �
1

1 + ↵v0
↵v

e�⌧✏
.

(46)

20

Thus we have P (c 
gv0 �gv

⌧
) � P✏(1 �

1
1+

↵v0
↵v

e�⌧✏
) and also

P (c �
gv0 � gv

⌧
)  1 � P✏(1 �

1

1 + ↵v0
↵v

e�⌧✏
). (47)

Combining Eqn. 45 and 47, we conclude that

P✏

1 + ↵v0
↵v

e⌧✏
 P (c �

gv0 � gv

⌧
)  1 � P✏(1 �

1

1 + ↵v0
↵v

e�⌧✏
). (48)

Based on this we consider the limitation for two sides and thus obtain

lim
P✏!1

lim
⌧!0

P (c �
gv0 � gv

⌧
) =

1

1 + ↵v0
↵v

=
↵v

↵v + ↵v0
. (49)

Then with similar reasoning as Lemma 3, we have

lim
P✏!1

lim
⌧!0

P (Yv = 1)

= lim
P✏!1

lim
⌧!0

P (Yv > Yv0 , 8v
0
6= v) = ↵v/(

NX

w=1

↵w).
(50)

Recall that

P✏ = (1 �
�

2
v

✏2
v

)(1 �
�

2
v0

✏2
v0

)

�
2 = Vw(dSM

+

m
(x,y))

=
1

m
exp(�

kxk
2 + kyk

2

2
)

mX

i=1

exp(w>
i

(x + y)),

(51)

where x = qup
⌧
,y =

kv,v0p
⌧

. Therefore, P✏ is dependent of the precision ✏v, ✏v0 , the random feature
dimension m, and the temperature ⌧ . If m is sufficiently large, � would converge to zero and P✏ goes
to 1. In such a case, Eqn. 50 holds once ⌧ tends to zero. We thus conclude the proof.

B.3 Proof for Proposition 1

According to our definitions in Section 5, we have

DKL(q�(Ã|X,A)kp(Ã|Y,X,A))

=

Z

A⇤
q�(Ã|X,A) log

q�(Ã|X,A)

p(Ã|Y,X,A)
dÃ

=

Z

A⇤
q�(Ã|X,A) log

q�(Ã|X,A)p✓(Y|X,A)

p(Ã,Y|X,A)
dÃ

=

Z

A⇤
q�(Ã|X,A) log

q�(Ã|X,A)p✓(Y|X,A)

p(Ã,Y|X,A)
dÃ

=

Z

A⇤
q�(Ã|X,A) log

q�(Ã|X,A)p✓(Y|X,A)

p(Y|Ã,X,A)p(Ã|X,A)
dÃ

= � E
q�(Ã|X,A)[log p(Y|Ã,X,A)] + log p✓(Y|X,A) + DKL(q�(Ã|X,A)kp(Ã|X,A))

= � ELBO(✓,�) + log p✓(Y|X,A)

(52)

Since we assume q� can exploit arbitrary distributions over Ã, we know that when the ELBO is
optimized to the optimum, DKL(q�(Ã|X,A)kp(Ã|Y,X,A)) = 0 holds. Otherwise, there exists
�

⇤
6= � such that ELBO(✓,�⇤) > ELBO(✓,�). Pushing further, when the optimum is achieved,

log p✓(Y|X,A) would equal to ELBO and namely is maximized.

21

C Implementation Details

We present implementation details in our experiments for reproducibility. For more concrete details
concerning architectures and hyper-parameter settings for NODEFORMER, one can directly refer to our
public repository https://github.com/qitianwu/NodeFormer. We next present descriptions
for baseline models’ implementation. For baseline models MLP, GCN, GAT, MixHop and JKnet, we
use the implementation provided by [21]3. For DropEdge and two structure learning baseline models
(LDS and IDGL), we also refer to their implementation provided by the original papers [28, 11, 4].
Concretely, we use GCN as the backbone for them.

C.1 Details for Node Classification Experiments in Sec. 4.1

Architectures. For experiments on the datasets Cora, Citeseer, Deezer and Actor, the baseline
models (GCN, GAT, MixHop, JKNet) are implemented with the following settings:

• Two GNN layers with hidden size 32 by default (unless otherwise mentioned). GAT uses 8 attention
heads followed by its original setting.

• The activation function is ReLU (except GAT using ELU).

The architecture of our NODEFORMER is specified as follows:

• Two message-passing layers with hidden size 32. We also consider multi-head designs for our
all-pair attentive message passing, and for each head we use independent parameterization. The
results for different heads are combined in an average manner in each layer.

• The activation function is ELU that is only used for input MLP, and we do not use any activation
for the feature propagation layers. In terms of relational bias, we specify � as sigmoid function and
consider 2-order adjacency to strengthen the observed links of the input graph.

Training Details. In each epoch, we feed the whole data into the model, calculate the loss and
conduct gradient descent accordingly. Concretely, we use BCE-Loss for two-class classification and
NLL-Loss for multi-class classification, the Adam optimizer is used for gradient-based optimization.
The training procedure will repeat the above process until a given budget of 1000 epochs. Finally, we
report the test accuracy achieved by the epoch that gives the highest accuracy on validation dataset.

Hyperparameters. For each model, we use grid search on validation set for hyper-parameter
setting. The learning rate is searched within {0.01, 0.001, 0.0001, 0.00001}, weight decay within
{0.05, 0.005, 0.0005, 0.00005}, and dropout probability within {0.0, 0.5}. The hyper-parameters for
NODEFORMER is provided in our public codes. The hyperparameters for baseline models are set as
follows (we use the same notation as the original papers).

• For GCN and GAT, the learning rate is 0.01, and weight decay is set to 0.05. No dropout is used.

• For MixHop, the hyperparameters are the same as above, except that we further use grid search for
hidden channels within {8, 16, 32, 64, 128}. We adopt 2 hops for all the four datasets.

• For JKNet, GCN is used as the backbone. Learning rate is set to 0.01 for Deezer and 0.001 for all
the other three datasets. We concatenate the features in the final stage for Deezer, while we use
max-pooling for the three other datasets. The hidden size is set as default, except for Deezer as 64.

• For DropEdge, the hidden size is chosen from {32, 64, 96, 128, 160}, the learning rate is within
{0.01, 0.001, 0.0001}, and the dropedge rate is chosen from {0.3, 0.4, 0.5}.

• For LDS, the sampling time S = 16, the patience window size ⇢ = 6, the hidden size 2 {8, 16,
32, 64}, the inner learning rate � 2 {1e-4, 1e-3, 1e-2, 1e-1}, and the number of updates used to
compute the truncated hypergradient ⌧ 2 {5, 10, 15}.

• For IDGL, we use its original version without anchor approximation on Cora, Citeseer and
Actor. For Deezer, even using anchor approximation, it would also suffer from out-of-memory.
Besides, we set: ✏ = 0.01, hidden size 2 {16, 64, 96, 128}, � 2 {0.5, 0.6, 0.7, 0.8}, ⌘ 2 {0, 0.1,
0.2}, ↵ 2 {0, 0.1, 0.2}, � 2 {0, 0.1}, � 2 {0.1, 0.2}, m 2 {6, 9, 12}.

3https://github.com/CUAI/Non-Homophily-Benchmarks.

22

https://github.com/qitianwu/NodeFormer

C.2 Details for Node Classification on Larger Graphs in Sec. 4.2

Architectures. For experiments on the two large datasets (OGB-Proteins and Amazon2M), the
baseline models are implemented with the following settings:

• Three GNN layers with hidden size 64.
• The activation function is ReLU (except GAT using ELU).

The architecture of our NODEFORMER is specified as follows:

• Three message-passing layers with hidden size 64. The head number is set as 1.
• The activation function is ELU that is used for all the layers. In terms of relational bias, we specify

� as identity function and consider 1-order adjacency to strengthen the observed links of the input
graph.

Training Details. In each epoch, we use random mini-batch partition to split the whole set of nodes
and feed each mini-batch of nodes into the model for all-pair propagation, as we mentioned in
Section 4.1. Similarly, we use BCE-Loss for two-class classification and NLL-Loss for multi-class
classification, the Adam optimizer is used for gradient-based optimization. The training procedure
will repeat the above process until a given budget of 1000 epochs. The evaluation on testing data is
conducted on CPU which enables full-batch feature propagation. Finally, we report the test accuracy
achieved by the epoch that gives the highest accuracy on validation dataset.

C.3 Details for Graph-Enhanced Experiments in Sec. 4.3

Architectures. The architectures of baselines (GCN, GAT, LDS and IDGL) and NODEFORMER
model are the same as the transductive setting, except that we use grid search to adaptively tune the
hidden size. Besides, we also adopt BatchNorm for baseline models.

Training Details. The input data have no graph structures in this setting. As mentioned in Section 4.3,
we use k-NN for artificially constructing a graph to enable message passing. The training procedure
is the same as the transductive setting.

Hyperparameters. The hyperparameters for baseline models are listed as follows.

• For GCN, the learning rate is 0.01 and the weight decay is 5e-4 on both datasets. The size of hidden
channel is set to 64. Dropout is not used during training.

• For GAT, the learning rate is 0.001 and the weight decay is 5e-3 on both datasets. The size of
hidden channel is 32 on Mini-ImageNet and 64 on 20News. No dropout is used during training.
The number of attention heads is 8.

• For LDS, its hyperparameters are determined by grid search in the same manner as in the transduc-
tive setting.

• For IDGL, we use its anchor-based version that can scale to these two datasets. Besides, on 20News,
we set: hidden size=64, learning rate=0.01 � = 0.7, ⌘ = 0.1, ↵ = 0.1, � = 0, � = 0.1, ✏ = 0.01,
m = 12. On Mini-ImageNet, we set: hidden size=96, learning rate=0.01 � = 0.8, ⌘ = 0.2,
↵ = 0, � = 0, � = 0.1, ✏ = 0.01, m = 12.

D Dataset Information

We present detailed information for our used datasets concerning the data collection, preprocessing
and statistic information. Table 5 provides an overview of the datasets we used in the experiment.

D.1 Dataset Information

Node Classification Datasets. For experiments on transductive node classification, we evaluate
our model on two homophilous datasets Cora and Citeseer [33], and other two non-homophilous
datasets Actor [26] and Deezer [29]. The first two are citation network datasets that contain sparse
bag-of-words feature vectors for each document and a list of citation links between documents.
The citation links are treated as (undirected) edges and each document has a class label. Deezer
is a social network of users on Deezer from European countries, where edges represent mutual
follower relationships. The node features are based on artists liked by each user and nodes are labeled

23

Table 5: Information for experiment datasets.
Dataset Context Property # Task # Nodes # Edges # Node Feat # Class
Cora Citation network homophilous 1 2,708 5,429 1,433 7
Citeseer Citation network homophilous 1 3,327 4,732 3,703 6
Deezer Social network non-homophilous 1 28,281 92,752 31,241 2
Actor Actors in movies non-homophilous 1 7,600 29,926 931 5
OGB-Proteins Protein interaction multi-task classification 112 132,534 39,561,252 8 2
Amazon2M Product co-occurrence long-range dependence 1 2,449,029 61,859,140 100 47
Mini-ImageNet Image classification no graph/k-NN graph 1 18,000 0 128 30
20News-Groups Text classification no graph/k-NN graph 1 9,607 0 236 10

with reported gender. Actor is a graph representing actor co-occurrence in Wikipedia pages. Each
node corresponds to an actor, and the edge between two nodes denotes co-occurrence on the same
Wikipedia page. Node features correspond to some keywords in the Wikipedia pages and the nodes
are classified into five categories w.r.t. words of actor’s Wikipedia. These four datasets are relatively
small with thousands of instances and edges (Deezer is the largest one with nearly 20K nodes).

To evaluate NODEFORMER’s scalability, we further consider two large datasets: OGB-Proteins [15]
and Amazon2M [5]. These two datasets have million-level nodes and edges and require the model
for scalable training. The OGB-Proteins dataset is an undirected, and typed (according to species)
graph in which nodes represent proteins and edges indicate different types of biologically meaningful
associations between proteins. All edges come with 8-dimensional features, where each dimension
represents the approximate confidence of a single association type and takes on values between 0
and 1. The proteins come from 8 species and our task is to predict the presence of 112 protein
functions in a multi-label binary classification setup respectively. Amazon2M is extracted from
Amazon Co-Purchasing network [24], where each node represents a product, and the graph link
represents whether two products are purchased together, the node features are generated by extracting
bag-of-word features from the product descriptions. The top-level categories are used as labels for
the products.

Graph-enhanced Application Datasets. We evaluate our model on two datasets without graph
structure: 20News-Groups [25] and Mini-ImageNet [37]. The 20News dataset is a collection of
approximately 20,000 newsgroup documents (nodes), partitioned (nearly) evenly across 20 different
newsgroups. We take 10 classes from 20 newsgroups and use words (TFIDF) with a frequency of
more than 5% as features. The Mini-ImageNet dataset consists of 84⇥84 RGB images from 100
different classes with 600 samples per class. For our experiment use, we choose 30 classes from the
dataset, each with 600 images (nodes) that have 128 features extracted by CNN.

D.2 Dataset Preprocessing

All the datasets we used in the experiment are directly collected from the source, except
Mini-ImageNet, whose features are extracted by ourselves. Following the setting of [31], we com-
pute node embeddings via a CNN model with 4 convolutional layers followed by a fully-connected
layer resulting in a 128 dimensional embedding. Finally, the 128 dimensional outputs are treated as
the features of the nodes (images) for subsequent GNN-based downstream task.

E More Experiment Results

We present extra ablation study results on the four transductive datasets for NODEFORMER w/ and
w/o relational bias and edge-level regularization. Fig. 6 studies the impact of the temperature ⌧ and
the dimension of feature map m on Cora. Furthermore, we visualize the attention maps of two model
layers and compare with original input graphs of Cora, Citeseer, Deezer and Actor in Fig. 7.

Table 6: Ablation study results on transductive datasets, where “rb” denotes relational bias and “reg”
represents edge-level regularization.

Dataset NODEFORMER NODEFORMER w/o reg NODEFORMER w/o rb

Cora 88.69 ± 0.46 81.98 ± 0.46 88.06 ± 0.59
Citeseer 76.33 ± 0.59 70.60 ± 1.20 74.12 ± 0.64
Deezer 71.24 ± 0.32 71.22 ± 0.32 71.10 ± 0.36
Actor 35.31 ± 1.29 35.15 ± 1.32 34.60 ± 1.32

24

Figure 6: Impact of the temperature ⌧ and the dimension of random feature map m on Cora.

CoYa Ci[eZeeY DeeaeY Ac[oY

In
W\

[G
Ya

Wh
La

`e
Y 1

La
`e

Y 2

Figure 7: Visualization for input graph structures and latent graph structures (given by two layers of
NODEFORMER) with colors reflecting the weights.

25

F Current Limitations, Outlooks and Potential Impacts

Current Limitations. In the present work, we focus on node classification for experiments, though
NODEFORMER can be used as a flexible (graph) encoder for other graph-related problems such as
graph classification, link prediction, etc. Beyond testing accuracy, social aspects like robustness and
explainability can also be considered as the target for future works on top of NODEFORMER.

Potential Impact. Besides facilitating better node representations via message passing, graph
structure learning also plays as key components in many other perpendicular problems in graph
learning community, like explainability [47], knowledge transfer and distillation [45], adversarial
robustness [50], training acceleration [34], handling feature extrapolation [40] and cold-start users in
recommendation [41]. NODEFORMER can serve as a plug-in scalable structure learning encoder for
uncovering underlying dependence, identifying novel structures and purifying noisy data in practical
systems. Another promising direction is to leverage our kernelized Gumbel-Softmax operator as a
plug-in module for designing efficient and expressive Transformers on graph data where the large
graph size plays a critical performance bottleneck.

26

	Introduction
	Related Works
	NodeFormer: A Transformer Graph Network at Scale
	Efficient Learning Discrete Structures
	Well-posedness of the Kernelized Gumbel-Softmax Operator
	Input Structures as Relational Bias
	Learning Objective

	Evaluation
	Experiments on Transductive Node Classification
	Experiments on Larger Graph Datasets
	Experiments on Graph-Enhanced Applications
	Further Discussions

	Why NodeFormer Improves Downstream Prediction?
	Conclusion
	More Details for NodeFormer
	Differentiable Sampling-based Message Passing on Latent Structures
	Model Implementation from the Matrix View

	Proof for Technical Results
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Proposition 1

	Implementation Details
	Details for Node Classification Experiments in Sec. 4.1
	Details for Node Classification on Larger Graphs in Sec. 4.2
	Details for Graph-Enhanced Experiments in Sec. 4.3

	Dataset Information
	Dataset Information
	Dataset Preprocessing

	More Experiment Results
	Current Limitations, Outlooks and Potential Impacts

