
Supplementary Material

A On Planning in Prefix Value Trees
In a prefix value (PV) tree, the values of nodes are drawn from the set of integers, with positive values representing wins for the
maximizing player (henceforth, Max) and the rest indicating wins for the minimizing player (Min). For the sake of simplicity,590

we disallow draws. Let m(v) represent the minimax value of a node v. We grow the subtree rooted at v as follows:

• Let V = {v1, v2, . . . , vb} represent the set of children of v, corresponding to action choices A = {a1, a2, . . . , ab}.
• Pick an ai 2 A uniformly at random — this is designated to be the optimal action choice at v.
• Assign m(vi) = m(v). If Max is on move at v, then m(vj) = m(v) � k, 8j 6= i. If Min is on move v, then m(vj) =
m(v) + k, 8j 6= i.595

Here, k is a constant that represents the cost incurred by the player on move for taking a sub-optimal action. The depth of the
tree is controlled by the parameter dmax and a uniform branching factor of b is assumed.

The PV tree model, is an attractive object of study as despite its relative simplicity, it captures a very rich class of games.
However, it has one major drawback: a simple 1-ply lookahead search, using the average outcome of random playout trajectories
as a heuristic, achieves very high decision accuracies. We now explore this phenomenon a little deeper.600

Without loss of generality, we restrict our attention to trees where Max is on move at the root node n. Moreover, we require
that m(n) = 1 and that n has exactly one optimal child — this ensures that our search algorithm is faced with a non-trivial
decision at the root node. While we focus on the case where b = 2 in what follows, extending our results to higher branching
factors is straightforward. We denote the left and right children of n by l and r respectively and assume that l is the optimal
move. Define Sd(v) to be the sum of the minimax values of the leaf nodes in the subtree of depth d rooted at node v.605

Proposition 1. Sd(l)� Sd(r) = 2d for all d � 0.

Proof. We proceed by induction on d. For the base case, S0(l) � S0(r) = 1 � 0 = 20 by definition. Assume the claim holds
for d = t, t � 0, where t is a Max level. Then, St+1(l) � St+1(r) = (St(l) + (St(l) � k)) � (St(r) + (St(r) � k)) =
2(St(l)� St(r)) = 2 · 2d = 2d+1. A symmetric argument can be made for the case where t is a Min level.610

Define P (v) to be the average outcome of random playouts performed from the node v. If the subtree rooted
at v has uniform depth d, then E [P (v)] = Sd(v)/2d. An immediate consequence of Proposition 1 is that
E [P (l)] � E [P (r)] = (Sd(l) � Sd(r))/2d = 1, for any depth d, i.e., in the limit, the estimated utility of the optimal
move l at the root will always be greater than that of r. In other words, the decision accuracy of a 1-ply lookahead search
informed by random playouts approaches 100% with increasing number of playouts, independent of the depth of the tree. It is615

straightforward to extend this result to the case even when k is a random variable, drawn uniformly at random from some set
{1, . . . , kmax}.

B On the Distribution of Leaf Node Values in Critical Win-Loss Games
In this section, we analyze the density of +1 nodes in critical win-loss game as a function of its depth (d), branching factor (b)620

and critical rate (�). We limit ourselves to the case where b is uniform, b � 2 and 0 < � 1.
Without loss of generality, we assume that the root is a maximizing choice node (i.e., has a minimax value of +1). Then, the

expected number of its +1 children is:
1 + (1� �) · (b� 1) = b+ � � b�

We denote the expected density of these +1 children (among the possible b children) by k, where:

k =
b+ � � b�

b
= 1� � +

�

b
(3)

We note that by a symmetric argument, this expression also captures the density of the �1 children of a minimizing choice
node.

Now consider a critical win-loss game instance rooted at a maximizing choice node. Let fn denote the +1 density at depth
n in this tree. We will calculate a closed-form expression for fn. When n is even (i.e., Max is on move), we have the following
recursive relationship due to equation (3):

fn+1 = fn ·
⇣
1� � +

�

b

⌘

Substituting 2d for n, we have:

f2d+1 = f2d · k (4)

When n is odd (i.e., Min is on move), the choice nodes have value �1. Once again using equation (3), we derive the following
recursive equation for �1 nodes:

1� fn+1 = (1� fn) ·
⇣
1� � +

�

b

⌘

fn+1 = 1� (1� fn)
⇣
1� � +

�

b

⌘

fn+1 = fn · k + 1� k

Substituting 2d+ 1 for n, we have:

f2d+2 = f2d+1 · k + 1� k (5)

From equations (4) and (5), we have:

f2d+2 = f2d · k2 + (1� k)

By induction, we can then derive the following non-recurrent formula for f2d:

f2d = f0 · (k2)d + (1� k) · 1� (k2)d+1

1� k2

where f0 = 1. Simplifying, we have:

f2d = k2d +
1� k2d+2

1 + k

If we now allow d ! 1, we have:

lim
d!1

f2d =
1� k

1� k2
=

1

1 + k
=

1

2� � + �
b

(6)

and:

lim
d!1

f2d+1 = lim
d!1

f2d · k =
k

1 + k
=

1� � + �
b

2� � + �
b

(7)

625

C Deriving Bounds on Pathological Behavior
We provide a proof of Theorem 1 from Section 4, which is restated below.
Theorem 1. In a critical win-loss game with � = 1.0, UCT with a search budget of N nodes will exhibit lookahead pathology
for choices of the exploration parameter c �

q
N3

2 logN , even with access to a perfect heuristic. 630

Proof. The proof consists of two parts. First, we argue that with an appropriately chosen value for the exploration constant c,
UCT will build a balanced search tree in a breadth-first fashion. Then, we show that such a tree building strategy will cause
UCT’s decision accuracy to devolve to random guessing with increased search effort. Consider a node p with b children. Let a1
and a2 denote two of these children such that n(a1) < n(a2). Our aim is to find a value for the exploration parameter c such
that the UCB1 formula will prioritize visiting a1 over a2, regardless of the difference in their (bounded) utility estimates. This 635

amounts to UCT building a search tree in a breadth-first fashion.

Without loss of generality, assume p is a maximizing node. For UCT to visit a1 before a2 on the next iteration, we must have:

Q(a1) + c

s
log n(p)

n(a1)
> Q(a2) + c

s
log n(p)

n(a2)

Rearranging terms, this is equivalent to the condition:

c >
Q(a2)�Q(a1)

p
log n(p)

⇣q
1

n(a1)
�
q

1
n(a2)

⌘ (8)

We will now bound the right-hand side of equation 8 in terms of our search budget N . Firstly, since the heuristic estimates
of nodes are bounded by [0, 1], we know that Q(a) 2 [0, 1] for any node a. We can therefore bound the numerator of equation
(8) from above as:

Q(a2)�Q(a1) 1 (9)

Now we turn our attention to the denominator D of equation (8). We have:

D =
p
log n(p)

 s
1

n(a1)
�

s
1

n(a2)

!

=
p
log n(p)

"
n(a2)� n(a1)p

n(a1)n(a2)(
p
n(a1) +

p
n(a2))

#

�
p
log n(p)

"
1p

n(a1)n(a2)(
p
n(a1) +

p
n(a2))

#
since n(a2) > n(a1)

�
p
log n(p)

"
1

n(a1)+n(a2)
2 (

p
n(a1) +

p
n(a2))

#
by the AM-GM inequality

�
p
log n(p)

"
1

n(a1)+n(a2)
2

p
2(n(a1) + n(a2))

#
since

p
x+

p
y

p
2(x+ y)

�
p
log n(p)

"
1

n(p)
2

p
2 · n(p)

#
since n(a1) + n(a2) n(p)

=

s
2 log n(p)

n(p)3

�
r

2 logN

N3

Combining this bound with equation (9), we conclude that:

Q(a2)�Q(a1)
p
log n(p)

⇣q
1

n(a1)
�
q

1
n(a2)

⌘

s
N3

2 logN

Thus, choosing a value for the exploration constant c that is larger than this quantity, as per equation (8), will force UCT to
build a search tree in a breadth-first fashion.

640

We now conclude by arguing why such a node expansion strategy will lead to lookahead pathology. Without loss of generality,
consider a game tree rooted at a minimizing choice node p (i.e., a minimizing node with minimax value �1). Let s⇤ denote an
optimal child of p and let s denote a sub-optimal child. This means that s⇤ is a maximizing forced node and s is a maximizing
choice node. The density of winning nodes from the maximizing perspective at depth 2d from s is then given by equation
(1). Since s⇤ is a forced node, we cannot directly use equations (1) or (2). However, we observe that all the children of s⇤645

are minimizing choice nodes, and thus, the density of winning moves from the minimizing perspective at depth 2d from s⇤ is
given by f2d�1. We can use the negamax transformation to recast this as the density of winning nodes from the maximizing
perspective at depth 2d from s⇤: this is given by 1 � f2d�1. For large values of d, we know from equations (6) and (7) that
f2d + f2d�1 = 1, or f2d = 1� f2d�1. In other words, the density of +1 leaf nodes at depth 2d in the subtrees rooted at s⇤ and
s approach the same value, for sufficiently large d. Since the average of the utilities of these leaves at level 2d will dominate the650

average of all the leaves in the respective subtrees, we conclude that in large enough search trees, UCT’s estimate of Q(s⇤) will
approach its estimate of Q(s). In other words, the algorithm will not be able to tell apart optimal and sub-optimal moves as it
builds deeper trees, even though we have access to the true minimax value of each node in this setting, leading to the emergence
of pathological behavior.

D Game Engine Settings 655

We collected our Chess data using the Stockfish 13 engine, with the following configuration:

"Debug Log File": "",
"Contempt": "24",
"Threads": "1", 660

"Hash": "16",
"Clear Hash Ponder": "false",
"MultiPV": "1",
"Skill Level": "20",
"Move Overhead": "10", 665

"Slow Mover": "100",
"nodestime": "0",
"UCI_Chess960": "false",
"UCI_AnalyseMode": "false",
"UCI_LimitStrength": "false", 670

"UCI_Elo": "1350",
"UCI_ShowWDL": "false",
"SyzygyPath": "",
"SyzygyProbeDepth": "1",
"Syzygy50MoveRule": "true", 675

"SyzygyProbeLimit": "7",
"Use NNUE": "false",
"EvalFile": "nn-62ef826d1a6d.nnue"

We collected our Othello data using the Edax 4.4 engine1 with the default settings. Edax is freely available online under a GNU 680

GPL v3.0 license.

1https://github.com/abulmo/edax-reversi

E Critical Rates in Othello

Figure 6: Histograms of empirical critical rates (�̃) for Othello positions sampled p = 10 (top row) and p = 36 (bottom row)
plies deep into the game. We sample the positions using both light playouts (left column) and heavy playouts (right column).

F Impact of Maximum Tree Depth on Pathology

Figure 7: Measuring pathological behavior in UCT on critical win-loss games of depth 200 with � = 1.0. The pair of plots
on the left correspond to using a heuristic constructed from histograms of Stockfish evaluations of Chess positions sampled at
depth 10, using both light and heavy playouts. The pair of plots on the right correspond to using a heuristic constructed from
histograms of Edax evaluations of Othello positions sampled at depth 10, using both light and heavy playouts. Each colored
line corresponds to an instantiation of UCT with a different exploration constant. The x-axis is plotted on a log-scale. We note
the continued persistence of lookahead pathology.

Figure 8: Measuring pathological behavior in UCT on critical win-loss games of depth 2000 with � = 1.0. The pair of plots
on the left correspond to using a heuristic constructed from histograms of Stockfish evaluations of Chess positions sampled at
depth 10, using both light and heavy playouts. The pair of plots on the right correspond to using a heuristic constructed from
histograms of Edax evaluations of Othello positions sampled at depth 10, using both light and heavy playouts. Each colored
line corresponds to an instantiation of UCT with a different exploration constant. The x-axis is plotted on a log-scale. We note
the continued persistence of lookahead pathology.

G Impact of Low Critical Rate on Pathology

Figure 9: Measuring pathological behavior in UCT on critical win-loss games of depth 50 with � = 0.5. The pair of plots
on the left correspond to using a heuristic constructed from histograms of Stockfish evaluations of Chess positions sampled at
depth 10, using both light and heavy playouts. The pair of plots on the right correspond to using a heuristic constructed from
histograms of Edax evaluations of Othello positions sampled at depth 10, using both light and heavy playouts. Each colored
line corresponds to an instantiation of UCT with a different exploration constant. The x-axis is plotted on a log-scale. We note
the near complete absence of lookahead pathology in this low � regime.

H Investigating Pathology with Othello-Derived Heuristics685

Figure 10: Measuring pathological behavior in UCT on critical win-loss games of depth 50 with � = 0.9 (left) and � = 1
(right). The heuristic to guide UCT is constructed from histograms of Edax evaluations of Othello positions sampled at depth
10, using both light and heavy playouts. Each colored line corresponds to an instantiation of UCT with a different exploration
constant. The x-axis is plotted on a log-scale. We note that aside from some minor exceptions, pathological behavior generally
persists even when the heuristic is sourced from a different domain.

I Investigating Pathology when Using True Node Utilities

Figure 11: Measuring pathological behavior in UCT on critical win-loss games of depth 109 with � = 0.9 (left) and � = 1
(right). We do not use a heuristic to guide UCT in this instance, instead relying on the true utility of each node. Each colored
line corresponds to an instantiation of UCT with a different exploration constant. The x-axis is plotted on a log-scale. We note
that lookahead pathology arises in the high-exploration regime even with access to the true game-theoretic values of nodes.

J Investigating Pathology in Alpha-Beta Search

Figure 12: Measuring pathological behavior in alpha-beta search on critical win-loss games. The heuristic to guide the search
constructed from histograms of Stockfish evaluations of Chess positions sampled at depth 10, using both light and heavy
playouts. The x-axis indicates the depth of the search tree. Each colored line corresponds to a different choice of �. We note
that pathology occurs in a wide range of parameterizations, but is most pronounced for larger branching factors and larger
values of �.

