
Appendix

A Proofs

A.1 Proof of Lemma 3.1

Lemma 3.1 (Equivalence of cost matrices). Any cost matrix C = (C00 C01

C10 C11
) is equivalent to a cost

matrix C ′ = ( 0 1−c
c 0 ) where c = C10−C00

C10+C01−C00−C11
as long as C10 +C01 −C00 −C11 6= 0. That is,

there are constants a, b ∈ R such thatRC(h) = aRC′(h) + b for all h.

Proof. Let a = C10 + C01 − C00 − C11 and b = P(Y = 0)C00 + P(Y = 1)C11. Then

RC(h)

= P(h(X) = 0 ∧ Y = 0)C00 + P(h(X) = 1 ∧ Y = 0)C10

+ P(h(X) = 0 ∧ Y = 1)C01 + P(h(X) = 1 ∧ Y = 1)C11

= P(h(X) = 1 ∧ Y = 0)(C10 − C00) + P(Y = 0)C00

+ P(h(X) = 0 ∧ Y = 1)(C01 − C11) + P(Y = 1)C11

= P(h(X) = 1 ∧ Y = 0)(C10 − C00) + P(h(X) = 0 ∧ Y = 1)(C01 − C11) + b

= (C10 + C01 − C00 − C11)

(
P(h(X) = 1 ∧ Y = 0)

C10 − C00

C10 + C01 − C00 − C11

+P(h(X) = 0 ∧ Y = 1)
C01 − C11

C10 + C01 − C00 − C11

)
+ b

= a(P(h(X) = 1 ∧ Y = 0)c+ P(h(X) = 0 ∧ Y = 1)(1− c)) + b

= aRC′(h) + b.

�

A.2 Proof of Lemma 4.1

Lemma 4.1 (Bayes optimal decision rule). An optimal decision rule h for a decision problem
(D, c) is given by h(x) = 1{q(x) ≥ c} where q(x) = P(X,Y )∼D(Y = 1 | X = x) is the posterior
probability of class 1 given the observation x.

This result is well-known [29] but we include a proof here for completeness.

Proof. Let h(x) = 1{q(x) ≥ c} and let h̃ : X → {0, 1} be any other decision rule. We will show
that not only is h an optimal decision rule, but in fact that if P(h(X) 6= h̃(X)∧ q(X) 6= c) > 0, then
Rc(h̃) > Rc(h); that is, h̃ is strictly suboptimal. Thus, any optimal decision rule h∗ must satisfy
h(x) = h∗(x) almost surely except where q(x) = c.

First, let’s define the conditional risk of h at x, denoted byRc(h | X = x):

Rc(h | X = x) = cP(h(X) = 1 ∧ Y = 0 | X = x) + (1− c)P(h(X) = 0 ∧ Y = 1 | X = x).

Note that one of the two terms is always zero, depending on whether h(X) is 0 or 1, since h(X) is
deterministic given X . The risk of h is the expectation of the conditional risk:

Rc(h) = EX∼Dx [Rc(h | X = x)].

We can bound the conditional risk for the optimal decision rule h:

Rc(h | x) =

{
cP(Y = 0 | X = x) q(x) ≥ c
(1− c)P(Y = 1 | X = x) q(x) < c

=

{
c(1− q(x)) q(x) ≥ c
(1− c)q(x) q(x) < c

≤ c(1− c). (3)
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Now, consider the conditional risk for the other decision rule h̃ at x. First, suppose h̃(x) = h(x); that
is, the decision rule agrees with the optimal one. Then clearlyRc(h̃ | X = x) = Rc(h | X = x) ≤
c(1− c). Next, suppose q(x) 6= c and h̃(x) 6= h(x). Then

Rc(h̃ | X = x) =

{
cP(Y = 0 | X = x) q(x) < c

(1− c)P(Y = 1 | X = x) q(x) > c

=

{
c(1− q(x)) q(x) < c

(1− c)q(x) q(x) > c

> c(1− c). (4)

Finally, suppose q(x) = c; in this case, it is clear that Rc(h̃ | X = x) = c(1 − c) regardless of
what h̃(x) is. Putting this together, we can break down the risk of h̃ by conditioning on whether
h̃(x) = h(x) or q(x) = c:

Rc(h̃) = E[Rc(h̃ | X = x)]

= E[Rc(h̃ | X = x) | h̃(X) = h(X) ∨ q(X) = c] P(h̃(X) = h(X) ∨ q(X) = c)

+ E[Rc(h̃ | X = x) | h̃(X) 6= h(X) ∧ q(X) 6= c] P(h̃(X) 6= h(X) ∧ q(X) 6= c)

(i)
>/≥ E[Rc(h̃ | X = x) | h̃(X) = h(X) ∨ q(X) = c] P(h̃(X) = h(X) ∨ q(X) = c)

+ E[c(1− c) | h̃(X) 6= h(X) ∧ q(X) 6= c] P(h̃(X) 6= h(X) ∧ q(X) 6= c)

(ii)
≥ E[Rc(h | X = x) | h̃(X) = h(X) ∨ q(X) = c] P(h̃(X) = h(X) ∨ q(X) = c)

+ E[Rc(h | X = x) | h̃(X) 6= h(X) ∧ q(X) 6= c] P(h̃(X) 6= h(X) ∧ q(X) 6= c)

= E[Rc(h | X = x)]

= Rc(h).

(i) uses (4) and (ii) uses (3). The above shows that Rc(h̃) ≥ Rc(h) for any decision rule h̃,
demonstrating that h must have the lowest risk achievable. Note that (i) is strictly greater as long as
P(h̃(X) 6= h(X) ∧ q(X) 6= c) > 0, validating the claim above that any optimal decision rule must
agree with h almost surely except when q(X) = c.

�

A.3 Proof of Theorem 4.2

Theorem 4.2 (IDT for optimal decision maker). Let ε > 0 and δ > 0. Say that there exists pc > 0
such that P(q(X) ∈ (c, c + ε]) ≥ pcε and P(q(X) ∈ [c − ε, c)) ≥ pcε. Let ĉ be chosen to be
consistent with the observed decisions as stated above, i.e. q(xi) ≥ ĉ⇔ ŷi = 1. Then |ĉ− c| ≤ ε

with probability at least 1− δ as long as the number of samples m ≥ log(2/δ)
pcε

.

Proof. Let h denote the decision maker’s decision rule. From the proof of Lemma 4.1, we know that
the optimality of h means that h(X) = 1{q(X) ≥ c} almost surely as long as q(X) 6= c.

Let E denote the event that we observe xi and xj in the sample such that q(xi) ∈ (c, c + ε] and
q(xj) ∈ [c− ε, c):

E = ∃xi q(xi) ∈ (c, c+ ε]︸ ︷︷ ︸
E1

∧ ∃xj q(xi) ∈ [c− ε, c)︸ ︷︷ ︸
E2

.

First, we will lower bound the probability of E1:

P(E1) = 1− P(∀xi q(xi) /∈ (c, c+ ε])

= 1− (P(q(X) /∈ (c, c+ ε]))
m

= 1− (1− P(q(X) ∈ (c, c+ ε]))
m

≥ 1− (1− εpc)m
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≥ 1− e−mεpc

≥ 1− e− log(2/δ)

= 1− δ/2.

Second, we will lower bound the probability of E2:

P(E2) = 1− P(∀j q(xj) /∈ [c− ε, c))
= 1− (P(q(X) /∈ [c− ε, c)))m

= 1− (1− P(q(X) ∈ [c− ε, c)))m

≥ 1− (1− εpc)m

≥ 1− e−mεpc

≥ 1− e− log(2/δ)

= 1− δ/2.

Putting the above together, we can lower bound the probability of E:

P(E) = P(E1 ∧ E2)

= 1− P(¬E1 ∨ ¬E2)

≥ 1− P(¬E1)− P(¬E2)

≥ 1− δ.

Finally, we will show that E implies |ĉ − c| ≤ ε. Suppose E occurs. Then q(xi) > c, so h(xi) =
ŷi = 1. This means that ĉ ≤ q(xi) ≤ c+ ε. Also, q(xj) < c, so h(xj) = ŷj = 0. This means that
ĉ > q(xj) ≥ c− ε. Thus

c− ε < ĉ ≤ c+ ε

|ĉ− c| ≤ ε.
So with probability at least 1− δ, |ĉ− c| ≤ ε. �

A.4 Proof of Lemma 4.5

The proof of Lemma 4.5 depends on another lemma, which will also be useful in the unknown
hypothesis class setting. This lemma bounds the conditional probability that the correct decision
Y = 1 for observations x between the decision boundaries of two optimal decision rules.
Lemma A.1. Suppose optD(H) is monotone and let hc, hc′ ∈ H be optimal decision rules for loss
parameters c and c′, respectively, where c < c′. Then for every x ∈ X , hc′(x) ≤ hc(x). Furthermore,
assuming P(hc(X) 6= hc′(X)) = P(hc(X) = 1 ∧ hc′(X) = 0) > 0,

c ≤ P(Y = 1 | hc(X) = 1 ∧ hc′(X) = 0) ≤ c′.

Proof. We can write the risk of a decision rule h for cost c as

Rc(h) = cP(h(X) = 1 ∧ Y = 0) + (1− c)P(h(X) = 0 ∧ Y = 1)

= c
[
P(Y = 0)− P(h(X) = 0 ∧ Y = 0)

]
+ (1− c)P(h(X) = 0 ∧ Y = 1)

= c
(
P(Y = 0)−

[
P(h(X) = 0)− P(h(X) = 0 ∧ Y = 1)

])
+ (1− c)P(h(X) = 0 ∧ Y = 1)

= cP(Y = 0)− cP(h(X) = 0) + cP(h(X) = 0 ∧ Y = 1)

+ P(h(X) = 0 ∧ Y = 1)− cP(h(X) = 0 ∧ y = 1)

= cP(Y = 0)− cP(h(X) = 0) + P(h(X) = 0 ∧ Y = 1). (5)

Since hc is optimal for c, we have

Rc(hc′)−Rc(hc) ≥ 0. (6)

Applying (5) to (6) gives

P(hc′(X) = 0∧Y = 1)−P(hc(X) = 0∧Y = 1)−c
[
P(hc′(X) = 0)−P(hc(X) = 0)

]
≥ 0. (7)
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Now, suppose the lemma does not hold; that is, there is some x ∈ X such that hc′(x) > hc(x). Since
optD(H) is monotone, this implies

∀x ∈ X hc(x) ≤ hc′(x). (?)

Assuming (?) we have the following two identities:
P(hc(X) = 0)− P(hc′(X) = 0) = P(hc(X) = 0) ∧ hc′(X) = 1)

P(hc(X) = 0 ∧ Y = 1)− P(hc′(X) = 0 ∧ Y = 1) = P(hc(X) = 0) ∧ hc′(X) = 1 ∧ Y = 1).

Plugging these in to (5) gives
cP(hc(X) = 0) ∧ hc′(X) = 1)− P(hc(X) = 0) ∧ hc′(X) = 1 ∧ Y = 1) ≥ 0

P(hc(X) = 0) ∧ hc′(X) = 1 ∧ Y = 1) ≤ cP(hc(X) = 0) ∧ hc′(X) = 1)

P(hc(X) = 0) ∧ hc′(X) = 1 ∧ Y = 1)

P(hc(X) = 0) ∧ hc′(X) = 1)
≤ c

P(Y = 1 | hc(X) = 0 ∧ hc′(X) = 1) ≤ c.
This is the first claim of the lemma. Now, we can apply the same set of steps toRc′(hc)−Rc′(hc′) ≥ 0
(i.e., using (5) and the above identities) to obtain

c′ ≤ P(Y = 1 | hc(X) = 0 ∧ hc′(X) = 1).

Combining these two equations implies c′ ≤ c, but we assumed that c < c′, so this is a contradiction.
Thus, (?) must be false!

Since optD(H) is monotone, the falsity of (?) implies that actually,
∀x ∈ X hc′(x) ≤ hc(x). (8)

Now, we can complete the proof by repeating the above steps using (8) instead of (?) to obtain
c ≤ P(Y = 1 | hc(X) = 1 ∧ hc′(X) = 0) ≤ c′.

�

Lemma 4.5 (Induced posterior probability). Let optD(H) be monotone and define

qH(x) , sup
(
{c ∈ [0, 1] | hc(x) = 1}∪{0}

)
and qH(x) , inf

(
{c ∈ [0, 1] | hc(x) = 0}∪{1}

)
.

Then for all x ∈ X , qH(x) = qH(x). Define the induced posterior probability of H as qH(x) ,
qH(x) = qH(x).

Proof. Fix x ∈ X . Using Lemma A.1, we have that
c < c′ ⇒ hc(x) ≥ hc′(x).

That is, hc(x) is monotone non-increasing in c. This is enough to show that qH(x) is well-defined.
Consider three cases:

1. ∀c, hc(x) = 1. In this case, qH(x) = sup{c ∈ [0, 1] | hc(x) = 1} ∪ {0} = 1 and
qH(x) = inf{c ∈ [0, 1] | hc(x) = 0} ∪ {1} = inf ∅ ∪ {1} = 1 so qH(x) = 1.

2. ∀c, hc(x) = 0. In this case, qH(x) = sup{c ∈ [0, 1] | hc(x) = 1}∪{0} = sup ∅∪{0} = 0
and qH(x) = inf{c ∈ [0, 1] | hc(x) = 0} ∪ {1} = 0 so qH(x) = 0.

3. ∃ c0, c1 such that hc0(x) = 0 and hc1(x) = 1. In this case, neither {c ∈ [0, 1] | hc(x) = 1}
nor {c ∈ [0, 1] | hc(x) = 0} is empty so we have

qH(x) = sup {c ∈ [0, 1] | hc(x) = 1}
qH(x) = inf {c ∈ [0, 1] | hc(x) = 0}.

Say qH(x) is not well-defined; that is,
sup {c ∈ [0, 1] | hc(x) = 1} 6= inf {c ∈ [0, 1] | hc(x) = 0}.

First, suppose sup {c ∈ [0, 1] | hc(x) = 1} < inf {c ∈ [0, 1] | hc(x) = 0}. Then
there exists some c for which hc(x) /∈ {0, 1}, which is impossible. So sup {c ∈ [0, 1] |
hc(x) = 1} > inf {c ∈ [0, 1] | hc(x) = 0}. However, this implies that ∃ c1 ≥ c0 such that
hc1(x) = 1 but hc0(x) = 0. Since hc(x) is nonincreasing in c, this is a contradiction. Thus
qH(x) = qH(x) = qH(x) is well-defined.
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Corollary 4.6. Let hc be any optimal decision rule inH for loss parameter c. Then for any x ∈ X ,
hc(x) = 1 if qH(x) > c and hc(x) = 0 if qH(x) < c.

Proof. Let
hc ∈ arg min

h∈H
Rc(h)

be an optimal decision rule inH for loss parameter c.

Fix any x ∈ X . If qH(x) = c, we don’t need to prove anything. If qH(x) > c, then suppose
hc(x) 6= 1, i.e. hc(x) = 0. Then

qH(x) = inf {c′ ∈ [0, 1] | hc′(x) = 0} ≤ c

since hc(x) = 0. However, this is a contradiction since we assumed qH(x) > c. Thus hc(x) = 1.

Now, if qH(x) < c, suppose hc(x) 6= 0, i.e. hc(x) = 1. Then

qH(x) = sup {c′ ∈ [0, 1] | hc′(x) = 1} ≥ c.
This is also a contradiction since we assumed qH(x) < c, so hc(x) = 0. �

A.5 Proof of Theorem 4.7

Theorem 4.7 (Known suboptimal decision maker). Let ε > 0 and δ > 0, and let optD(H) be
monotone. Say that there exists pc > 0 such that P(qH(X) ∈ (c, c+ ε]) ≥ pcε and P(qH(X) ∈ [c−
ε, c)) ≥ pcε. Let ĉ be chosen to be consistent with the observed decisions, i.e. qH(xi) ≥ ĉ⇔ ŷi = 1.
Then |ĉ− c| ≤ ε with probability at least 1− δ as long as the number of samples m ≥ log(2/δ)

pcε
.

Proof. Let h ∈ H denote the decision maker’s decision rule. From Corollary 4.6, we know that
h(x) = 1{qH(x) ≥ c} as long as qH(x) 6= c.

Let E denote the event that we observe xi and xj in the sample such that qH(xi) ∈ (c, c + ε] and
qH(xj) ∈ [c − ε, c). An analogous computation to the proof of Theorem 4.2 (Section A.3) shows
that if m ≥ log(2/δ)

pcε
, then P(E) ≥ 1− δ.

If E occurs, then h(xi) = 1 and so ĉ ≤ c+ ε. Also, h(xj) = 0 so ĉ ≥ c− ε. Thus, we have

P(|ĉ− c| ≤ ε) ≥ P(E) ≥ 1− δ.
�

A.6 Proof of Theorem 4.10

Theorem 4.10 (Unknown suboptimal decision maker). Let ε > 0 and δ > 0. Suppose we observe
decisions from a decision rule hc which is optimal for loss parameter c in hypothesis classH ∈ H.
Let hc and H be α-MD-smooth. Furthermore, assume that there exists pc > 0 such that for any
ρ ≤ ε, P(qH(X) ∈ (c, c+ ρ)) ≥ pcρ and P(qH(X) ∈ (c− ρ, c)) ≥ pcρ. Let d ≥ VCdim (∪H∈HH)
be an upper bound on the VC-dimension of the union of all the hypothesis classes in H.

Let ĥĉ ∈ arg minĥ∈ĤRĉ(ĥ) be chosen to be consistent with the observed decisions, i.e. ĥĉ(xi) = ŷi
for i = 1, . . . ,m. Then |ĉ− c| ≤ ε with probability at least 1− δ as long as the number of samples

m ≥ Õ
[(
α
ε + 1

ε2

) (d+log(1/δ)
pc

)]
.

Proof. Specifically, we will prove that P(|ĉ− c| ≤ ε) ≥ 1− δ as long as

m ≥ O
[(

α

ε
+

1

ε2

)(
d log(α/(pcε)) + log(1/δ)

pc

)]
. (9)

Throughout the proof, let hc ∈ arg minh∈HRc(h) be the true decision rule and let ĥĉ ∈
arg minĥ∈ĤRĉ(Ĥ) be the estimated decision rule, i.e. one that agrees with the decisions in the
sample of observations S.
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First, we use a standard result from PAC learning theory to upper bound the disagreement between the
estimated decision rule ĥĉ and the true decision rule hc. In particular, since this is a case of realizable
PAC learning, i.e. the true decision rule hc is in one of the hypothesis classesH ∈ H, we have that

P(hc(X) 6= ĥĉ(X)) ≤ O

(
1

α
pcε

+ 1
pcε2

)
= O

(
min

(pcε
α
, pcε

2
))

with probability at least 1 − δ over the drawn sample. This bound follows from Vapnik [40] and
Blumer et al. [41] since the set of all possible hypotheses ∪H∈HH has VC-dimension at most d,
and we observe a sample of m observations xi and decisions ŷi = hc(xi) where m satisfies (9). In
particular, denote

r = P(hc(X) 6= ĥĉ(X)) ≤ min

(
pcε

6α
,
pcε

2

36

)
. (10)

Next, we show that (10) implies that |ĉ− c| ≤ ε; since (10) holds with probability at least 1− δ, this
is enough to complete the proof of Theorem 4.10. We will prove that ĉ− c ≤ ε given (10). The proof
that c− ĉ ≤ ε is analogous. We require a technical lemma on probability theory:

Lemma A.2. Let A, B, and C be events in a probability space with P(A) > 0 and P(B) > 0. Then

|P(C | A)− P(C | B)| ≤ P(A ∧ ¬B) + P(¬A ∧B)

min(P(A),P(B))
.

Proof of Lemma A.2. To simply the proof of this lemma, we adopt the boolean algebra notation that
AB is equivalent to A ∧B and Ā is equivalent to ¬A. Then we have

|P(C | A)− P(C | B)|

=

∣∣∣∣P(AC)

P(A)
− P(BC)

P(B)

∣∣∣∣
=

∣∣∣∣P(ABC) + P(AB̄C)

P(AB) + P(AB̄)
− P(ABC) + P(ĀBC)

P(AB) + P(ĀB)

∣∣∣∣
=
|P(ABC)P(ĀB) + P(AB̄C)P(B)− P(ABC)P(AB̄)− P(ĀBC)P(A)|

P(A)P(B)

(i)
≤

max
(
P(ABC)P(ĀB) + P(AB̄C)P(B), P(ABC)P(AB̄) + P(ĀBC)P(A)

)
P(A)P(B)

= max

(
P(ABC)P(ĀB) + P(AB̄C)P(B)

P(A)P(B)
,
P(ABC)P(AB̄) + P(ĀBC)P(A)

P(A)P(B)

)
(ii)
≤ max

(
P(B)P(ĀB) + P(AB̄)P(B)

P(A)P(B)
,
P(A)P(AB̄) + P(ĀB)P(A)

P(A)P(B)

)
= max

(
P(ĀB) + P(AB̄)

P(A)
,
P(AB̄) + P(ĀB)

P(B)

)
=

P(AB̄) + P(ĀB)

min(P(A),P(B))
.

(i) uses the fact that for positive u and v, |u−v| ≤ max(u, v). (ii) uses the fact that P(E1E2) ≤ P(E1)
for any events E1 and E2. �

Essentially, Lemma A.2 says that if events A and B have high “overlap,” then the conditional
probabilities of another event C given A and B should be close. We next carefully construct two
such events with high overlap.

First, let c′ = c + ε/2 and let hc′ ∈ arg minh∈HRc′(h). Since hc and H are α-MD-smooth, we
have that

MD(hc′ , optD(Ĥ)) ≤ (1 + α|c′ − c|)MD(hc, optD(Ĥ)) (11)
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≤ (1 + αε/2)P(hc(X) 6= ĥĉ(X))

≤ (1 + αε/2)r. (12)

Since MD(h, optD(Ĥ)) = inf ĥ∈optD(Ĥ) P(h(X) 6= ĥ(X)), there must be some hypothesis ĥĉ′ ∈
arg minĥ∈ĤRĉ′(ĥ) that matches the minimum disagreement with hc′ plus a small positive number
(in case the infimum is not achieved):

P(ĥĉ′(X) 6= hc′(X)) ≤ MD(hc′ , optD(ĉ)) + r

≤ (2 + αε/2)r.

Now, let the events A, B, and C be defined as follows:

A : hc(X) = 1 ∧ hc′(X) = 0,

B : ĥĉ(X) = 1 ∧ ĥĉ′(X) = 0,

C : Y = 1.

Using Lemma A.2, we can write the bound

P(Y = 1 | B) ≤ P(Y = 1 | A) +
P(A ∧ ¬B ∨ ¬A ∧B)

min(P(A),P(B))
. (13)

We will establish bounds on each term in (13).

Upper bound on P(A ∧ ¬B ∨ ¬A ∧B) It is easy to see that

A ∧ ¬B ∨ ¬A ∧B ⇒ hc(X) 6= ĥĉ(X) ∨ hc′(X) 6= ĥĉ′(X).

Given this implication, it must be that

P(A ∧ ¬B ∨ ¬A ∧B) ≤ P(hc(X) 6= ĥĉ(X) ∨ hc′(X) 6= ĥĉ′(X))

≤ (3 + αε/2)r

≤ pcε2/12 + pcε
2/12 = pcε

2/6

where the inequalities follow from (10) and (12).

Lower bound on min(P(A),P(B)) Since hc is optimal withinH for loss parameter c, Corollary
4.6 gives that hc(x) = 1 if qH(x) > c. Similarly, hĉ(x) = 0 if qH(x) < c. Therefore,

qH(X) ∈ (c, c′) ⇒ hc(X) = 1 ∧ hĉ(X) = 0 ⇔ A.

This implication allows us to lower bound P(A):

P(A) ≥ P(qH(X) ∈ (c, c′)) = P(qH(X) ∈ (c, c+ ε/2)) ≥ pcε/2
where the final inequality is by assumption. We also need to lower bound P(B) in order to lower
bound min(P(A),P(B)):

P(B) = P(A ∧B) + P(¬A ∧B)

= P(A)− P(A ∧ ¬B) + P(¬A ∧B)

≥ P(A)−
(
P(A ∧ ¬B) + P(¬A ∧B)

)
≥ pcε/2− pcε2/6
≥ pcε/3.

We assume that ε ≤ 1 to lower bound ε ≥ ε2, but this is fine since if ε > 1 then Theorem 4.10 holds
trivially. Thus we have min(P(A),P(B)) ≥ pcε/3.

Lower bound on P(Y = 1 | B) By Lemma A.1, we have that, since P(B) > 0,

P(Y = 1 | B) = P(Y = 1 | ĥĉ(X) = 1 ∧ ĥĉ′(X) = 0) ≥ ĉ.

Upper bound on P(Y = 1 | A) Similarly, by Lemma A.1, we have that, since c′ > c and
P(A) > 0,

P(Y = 1 | A) = P(Y = 1 | hc(X) = 1 ∧ hc′(X) = 0) ≤ c′ = c+ ε/2.
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Concluding the proof Given all these bounds, we can rewrite (12) as

ĉ ≤ P(Y = 1 | B) ≤ P(Y = 1 | A) +
P(A ∧ ¬B ∨ ¬A ∧B)

min(P(A),P(B))

≤ c+ ε/2 +
pcε

2/6

pcε/3

≤ c+ ε/2 + ε/2 = c+ ε

ĉ− c ≤ ε.
This completes the proof that ĉ− c ≤ ε with probability at least 1− δ; the proof that c− ĉ ≤ ε is
analogous. �

A.7 Proof of Theorem 4.11

Theorem 4.11 (Lower bound for optimal decision maker). Fix 0 < ε < 1/4, 0 < δ ≤ 1/2, and
0 < pc ≤ 1/8ε. Then for any IDT algorithm ĉ(·), there exists a decision problem (D, c) satisfying the
conditions of Theorem 4.7 such that m < log(1/2δ)

8pcε
implies that P(|ĉ(S)− c| ≥ ε) > δ.

Proof. Consider a distribution over X ∈ X = [0, 1] where

q(x) = P(Y = 1 | X = x) = x.

Let the distribution DX over X have density pc on the interval (1/2− 2ε, 1/2 + 2ε) and let P(X =
0) = P(X = 1) = 1/2− 2pcε.

Let c1 = 1/2− ε and c2 = 1/2 + ε. Then clearly, for c ∈ {c1, c2}, the conditions of Theorem 4.2 are
satisfied:

P(q(X) ∈ [c− ε, c)) = P(q(X) ∈ (c, c+ ε]) = pcε.

By Lemma 4.1, the optimal decision rule for loss parameter c1 is hc1(x) = 1{x ≥ c1} and for c2 it
is hc2(x) = 1{x ≥ c2}.
Now suppose

m <
log(1/2δ)

8pcε

as stated in the theorem. We can bound the probability of the following event E:

P(∀xi ∈ S q(xi) ∈ {0, 1}︸ ︷︷ ︸
E

) = [P(X ∈ {0, 1})]m

= (1− 4pcε)
m

(i)
≥
(
e−8pcε

)m
= e− log(1/2δ) = 2δ.

(i) uses the fact that 1− u ≥ e−2u for u ∈ [0, 1/2]. Now, suppose E occurs. In this case, hc1(xi) =
hc2(xi) for all xi ∈ S. That is, regardless of which loss parameter c ∈ {c1, c2} is used, the
distribution of samples will be the same. Let S1 denote the random variable for a sample taken from
a decision maker using hc1 and S2 a sample taken from hc2 . Since these have the same distribution
under E, they must induce the same probabilities when the IDT algorithm ĉ is applied to them:

p1 = P(ĉ(S1) ≤ 1/2 | E) = P(ĉ(S2) ≤ 1/2 | E),

p2 = P(ĉ(S1) > 1/2 | E) = P(ĉ(S2) > 1/2 | E).

Since p1 + p2 = 1, at least one of p1, p2 ≥ 1/2. Suppose WLOG that p1 ≥ 1/2. Then

P(|ĉ(S2)− c2| ≥ ε) ≥ P(ĉ(S2) ≤ 1/2)

= P(ĉ(S2) ≤ 1/2 | E)P(E)

≥ 1/2(2δ) = δ.

Thus there is a decision problem (D, c2) for which the IDT algorithm ĉ must make an error of at least
size ε with at least probability δ. This concludes the proof. �
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Corollary 4.12 (Lack of uncertainty precludes identifiability). Fix 0 < ε < 1/4 and suppose
a decision problem (D, c) has no uncertainty. Then for any IDT algorithm ĉ(·), there is a loss
parameter c and hypothesis classH such that for any sample size m, P(|ĉ(S)− c| ≥ ε) ≥ 1/2.

Proof. Let the loss parameters c1 = 1/2− ε and c2 = 1/2 + ε be defined as in the proof of Theorem
4.11 above. By Lemma 4.1, the optimal decision rule for loss parameter c1 is hc1(x) = 1{q(x) ≥ c1}
and for c2 it is hc2(x) = 1{q(x) ≥ c2}. Since P(q(x) ∈ {0, 1}) = 1, it is clear that the decision
rules make the same decision rules almost surely, i.e. P(hc1(X) = hc2(X)) = 1. Thus, letting S1
and S2 denote samples drawn from decision rules hc1 and hc2 , respectively, as above, we have that
the distributions of S1 and S2 are indistinguishable. Thus by the same argument as above we can
show that (WLOG)

P(|ĉ(S2)− c2| ≥ ε) ≥ P(ĉ(S2) ≤ 1/2) ≥ 1/2.

�

A.8 Proof of Lemma 5.2

Definition 5.1. A decision rule h : X → {0, 1} for a distribution (X,Y ) ∼ D satisfies the group
calibration/sufficiency fairness criterion if there is a function r : X → R and threshold t ∈ R such
that h(x) = 1{r(x) ≥ t} and r satisfies Y ⊥⊥ A | r(X).

Lemma 5.2 (Equal loss parameters imply group calibration). Let h be chosen as in (2) where
`(ŷ, y, a) = ca if ŷ = 1 and y = 0, `(ŷ, y, a) = 1 − ca if ŷ = 0 and y = 1, and `(ŷ, y, a) = 0
otherwise. Then h satisfies group calibration (sufficiency) if ca = ca′ for every a, a′ ∈ A.

Conversely, if there exist a, a′ ∈ A such that ca 6= c′a and P(q(X) ∈ (ca, ca′)) > 0, then h does not
satisfy group calibration.

Proof that equal ca imply group calibration. Assume ca = ca′ = c for every a, a′ ∈ A. Then define

r(x) = q(x) + h(x). (14)

That is, r(x) is the posterior probability q(x) = P(Y = 1 | X = x) plus one if the decision rule
outputs the decision h(x) = 1. From the proof of Lemma 4.1, we know that h(x) = 1 if q(x) > c
and h(x) = 0 if q(x) < c. From this and (14) we can write

h(x) = 1{r(x) ≥ c+ 1}.

Now we need to show that Y ⊥⊥ A | r(X). Note that r(X) ∈ [0, c] ∪ [c+ 1, 2]. First, we consider
r(X) ∈ [0, c]. In this case, for any a ∈ A, we have

P(Y = 1 | A = a, r(X) = r) = P(Y = 1 | A = a, q(X) = r)

= r

= P(Y = 1 | r(X) = r).

Next, say r(X) ∈ [c+ 1, 2]. Then

P(Y = 1 | A = a, r(X) = r) = P(Y = 1 | A = a, q(X) = r − 1)

= r − 1

= P(Y = 1 | r(X) = r).

So in either case, P(Y = 1 | A = a, r(X) = r) = P(Y = 1 | r(X) = r). Thus Y ⊥⊥ A | r(X). �

Proof of inverse. Now, assume ∃ a, a′ ∈ A such that ca 6= ca′ . WLOG, suppose that ca < ca′ . Let
r : X → R be any function satisfying h(x) = 1{r(x) ≥ t}. WLOG we can also assume t = 0.
From Lemma 4.1, we know that if a(x) = a, then q(x) < ca implies h(x) = 0 and q(x) > ca
implies h(x) = 1. Also, if a(x) = a′, then q(x) < ca′ implies h(x) = 0 and q(x) > ca′ implies
h(x) = 1. Therefore,

P(Y = 1 | A = a, r(X) > 0)

= P(Y = 1 | A = a, q(X) > ca)

= P(Y = 1 | q(X) > ca)
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s0Y = 0 ox x ∼ X | Y = 0

R = 0 R = −c

a0

Ŷ = 0

a1

Ŷ = 1

s1Y = 1 ox x ∼ X | Y = 1

R = −(1− c) R = 0

a0

Ŷ = 0
a1

Ŷ = 1

Figure 4: A graphical depiction of the POMDP formulation of IDT described in Appendix B. A state
in {s0, s1} is randomly selected at each timestep and an observation is generated according to the
conditional distribution of X | Y . An action (decision) is taken and the agent receives reward equal
to the negative of the loss.

= P(Y = 1 | q(X) ∈ (ca, ca′))
P(q(X) ∈ (ca, ca′))

P(q(X) > ca)

+ P(Y = 1 | q(X) ≥ ca′)
P(q(X) ≥ ca′)
P(q(X) > ca)

(i)
< ca′

P(q(X) ∈ (ca, ca′))

P(q(X) > ca)
+ P(Y = 1 | q(X) ≥ ca′)

P(q(X) ≥ ca′)
P(q(X) > ca)

(ii)
≤ P(Y = 1 | q(X) ≥ ca′)
≤ P(Y = 1 | q(X) > ca′)

= P(Y = 1 | A = a′, q(X) > ca′)

= P(Y = 1 | A = a′, r(X) > 0).

(i) and (ii) make use of the fact that

P(Y = 1 | q(X) ∈ (ca, ca′)) = E[q(X) | q(X) ∈ (ca, ca′)]

< ca′ ≤ E[q(X) | q(X) ≥ ca′ ] = P(Y = 1 | q(X) ≥ ca′).
(i) also uses the assumption that P(q(X) ∈ (ca, ca′)) > 0.

Thus, we have that P(Y = 1 | A = a, r(X) > 0) 6= P(Y = 1 | A = a′, r(X) > 0); therefore, Y
and A are not independent given r(X), so group calibration is not satisfied. �

B POMDP Formulation of IDT

As mentioned in the main text, IDT can be seen as a special case of inverse reinforcement learning
(IRL) in a partially observable Markov decision process (POMDP) (or equivalently, belief state MDP).
Here, we present the equivalent POMDP and discuss connections to to our results.

A POMDP is a tuple consisting of seven elements. For an IDT decision problem (D, c) they are:

• The state space consists of two states, each corresponding to a value of Y , the ground
truth/correct decision. We call them s0 for Y = 0 and s1 for Y = 1.

• The action space consists of two actions, each corresponding to one of the decisions Ŷ . We
equivalently call them a0 for Ŷ = 0 and a1 for Ŷ = 1.

• The transition probabilities do not depend on the previous state or action; rather, s0 or s1 is
randomly selected based on their probabilities under the distribution D:

p(st+1 = s0 | st, at) = PX,Y∼D(Y = 0),

p(st+1 = s1 | st, at) = PX,Y∼D(Y = 1).
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q(x) = 0 . . .

E[R] = 0

E[R] = −c

a0

a1

q(x) = p . . .

E[R] = −p(1− c)

E[R] = −(1− p)c

a0

a1

q(x) = 1

E[R] = −(1− c)

E[R] = 0

a0

a1

Figure 5: A graphical depiction of the belief state MDP formulation of IDT. There is a belief state
for each posterior probability q(x) = P(Y = 1 | X = x) ∈ [0, 1]. Observing the agent at a belief
state gives a constraint on their reward function [2]. Thus, if q(X) has support on [0, 1], i.e. if there
is a significant range of uncertainty in the decision problem, then there can be arbitrarily many such
constraints, allowing the loss parameter c to be learned to arbitrary precision.

• The reward function is the negative of the loss function described in Section 3:

R(s0, a0) = 0 R(s1, a0) = −(1− c),
R(s0, a1) = −c R(s1, a1) = 0.

• The observation space includes elements for each X ∈ X . We denote by ox the POMDP
observation for x ∈ X .

• The observation probabilities are

p(ot = ox | st = sy) = P(X = x | Y = y).

• The discount factor γ is basically irrelevant to IDT, since the decisions are non-sequential.
Thus any γ will produce the same behavior.

A graphical depiction of this POMDP is shown in Figure 4. Any decision rule h : X → {0, 1}
corresponds to a policy π in this POMDP:

π(at = aŷ | ot = ox) = 1{h(x) = ŷ}.

Belief state MDP The above POMDP can be equivalently formulated as a belief state MDP. The
belief states correspond to values of the posterior probability

P(s = s1 | o = ox) = P(Y = 1 | X = x) = q(x).

A graphical depiction of this belief state reduction is shown in Figure 5.

Since the POMDP is non-sequential, these beliefs only depend on the most recent observation ox.
The expected reward for action aŷ at belief state with posterior probability q(x) is

R(q(x), a0) = P(s = s0 | q(x))R(s0, a0) + P(s = s1 | q(x))R(s1, a0) = −q(x)(1− c),
R(q(x), a1) = P(s = s0 | q(x))R(s0, a1) + P(s = s1 | q(x))R(s1, a1) = −(1− q(x))c.

Thus, observing decision a0 at a belief state q(x) indicates that

R(q(x), a0) ≥ R(q(x), a1)

−q(x)(1− c) ≥ −(1− q(x))c

c ≥ q(x).

Similarly, observing decision a1 at a belief state q(x) indicates that

R(q(x), a0) ≤ R(q(x), a1)
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−q(x)(1− c) ≤ −(1− q(x))c

c ≤ q(x).

Thus, as described in Section 4.1, IDT in this (optimal) case consists of determining the threshold on
q(x) where the action switches from a0 to a1 for observations ox.

This formulation gives some additional insight into why uncertainty is helpful for IDT. If q(x) ∈
{0, 1} always, then there are only two belief states corresponding to q(x) = 0 and q(x) = 1. Thus,
we only obtain two constraints on the value of c, i.e. 0 ≤ c ≤ 1. However, if q(X) has support on all
of [0, 1], then we there belief states corresponding to every q(x) ∈ [0, 1]. Thus we can obtain infinite
constraints on the value of c, allowing learning it to arbitrary precision as shown in Section 4.1.

C Alternative Suboptimality Model

As mentioned in Section 4.2, there are many ways to model suboptimal decision making. One
possibility is to only require that the decision rule h is close to optimal, i.e.

Rc(h) ≤ Ropt
c + ∆ where Ropt

c = inf
h∗
Rc(h∗). (15)

However, as we show in the following lemma, this assumption can preclude identifiablity of c. The
models of suboptimality we present in Sections 4.2 and 4.3, in contrast, still allow exact identifiability
of the loss parameter.
Lemma C.1 (Loss cannot always be identified for close-to-optimal decision rules). Fix 0 < ∆ ≤
1 and 0 < ε < 1/4. Then for any IDT algorithm ĉ(·), there is a decision problem (D, c) and a
decision rule h which is ∆-close to optimal as in (15) such that

P(|ĉ(S)− c| ≥ ε) ≥ 1/2,

where the sample S of any size m is observed from the decision rule h. Furthermore, the distribution
D and loss parameter c satisfy the requirements of Theorem 4.2 for when the decision maker is
optimal.

Proof. Consider a distribution over X ∈ X = [0, 1] where

q(x) = P(Y = 1 | X = x) = x.

Let the distribution DX have density ∆ on the interval (1/2 − 2ε, 1/2 + 2ε) and let P(X = 0) =
P(X = 1) = 1/2− 2∆ε.

Let c1 = 1/2− ε and c2 = 1/2 + ε. Then clearly P(q(X) ∈ [c− ε, c)) = P(q(X) ∈ (c, c+ ε]) = ε∆
for c ∈ {c1, c2}. Thus either c1 or c2 satisfies the conditions of Theorem 4.2.

Now define identical decision rules

h1(x) = h2(x) = 1{x ≥ 1/2− ε}.

From Lemma 4.1, we know that h1 is optimal for c1, so it is certainly ∆-close to optimal. We can
show that h2 is ∆-close to optimal for c2 as well:

Rc2(h2)−Rc2(x 7→ 1{x ≥ 1/2 + ε})

= E
[
`(1{X ≥ 1/2− ε}, Y )− `(1{X ≥ 1/2 + ε}, Y )

]
= E

[
`(1{X ≥ 1/2− ε}, Y )− `(1{X ≥ 1/2 + ε}, Y ) | X ∈ [1/2− ε, 1/2 + ε]

]
P(X ∈ [1/2− ε, 1/2 + ε])

≤ 2P(X ∈ [1/2− ε, 1/2 + ε])

= 4ε∆ ≤ ∆.

Since h1 and h2 are identical, we must have that for a sample S chosen according to either, at least
one of P(ĉ(S) ≥ 1/2) ≥ 1/2 or P(ĉ(S) < 1/2) ≥ 1/2. Thus for some c ∈ {c1, c2},

P(|ĉ(S)− c| ≥ ε) ≥ 1/2.

�
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D Additional Results for IDT with Suboptimal Decision Maker

D.1 Lower bound for unknown hypothesis class

We give two lower bounds for the sample complexity in the unknown hypothesis class case from
Section 4.3. First, in Theorem D.1, we show that there is an IDT problem such that m = Ω( log(1/δ)

pcε2
)

samples are required to estimate c. Second, in Theorem D.2, we show that there is an IDT problem
such that m = Ω(

√
d

pcε
) samples are required. These lower bounds do not precisely match our upper

bound of m = O( d
pcε2

+ log(1/δ)
pcε2

) from Theorem 4.10, and we leave as an open problem the exact
minimax sample complexity of IDT in the unknown hypothesis class case. However, they do show
that IDT does become harder as the VC-dimension d increases, and that in some suboptimal cases
a number of samples proportional to 1/ε2 is needed to estimate c to precision ε—more than the 1/ε
needed for an optimal decision maker.
Theorem D.1 (First lower bound for suboptimal decision maker). Fix 0 < ε ≤ 1/8, 0 < δ ≤ 1/2,
and pc ≤ 1/10. Then there is a decision problem (D, c), hypothesis class family H, and hypothesis
classH ∈ H satisfying the conditions of Theorem 4.10 with the above parameters such that

m < Ω

(
log(1/δ)

pcε2

)
implies that P(|ĉ(S)− c| ≥ ε) ≥ δ.

Proof. Specifically, let the sample size

m =
log(1/(2δ))

40pcε2
.

Defining the distribution First, we define a joint distribution D over X = (X1, X2) ∈ X = R2

and Y ∈ {0, 1}. The distribution of X has support on 2 line segments in R2 and at a point. It can be
summarized as follows:

1. DX has density 5pc
2 on the line segment from (−1, 0) to (1, 0).

P(Y = 1 | X = (x1, 0)) = 1+x1

2 .

2. DX has density 10pcx1 at points (x1, 1) on the line segment from (0, 1) to (1, 1).
P(Y = 1 | X = (x1, 1)) = 1.

3. DX has point mass P(X = (−1, 0)) = 1− 10pc.
P(Y = 1 | X = (−1, 0)) = 0.

Defining the family of hypothesis classes Now, we define a family of two hypothesis classes:

H1 , {h(x) = 1{x1 ≥ b} | b ∈ [3/8, 5/8]}
H2 , {h(x) = 1{x1 ≥ b+ 2εx2} | b ∈ [1/2, 3/4]}
H , {H1,H2}.

Let’s analyzeH1 first. The posterior probability that Y = 1 given that X1 = x1 is

P(Y = 1 | X1 = x1) =

{
1+x1

2 x1 < 0
1+9x1

2+8x1
x1 ≥ 0.

(16)

It is simple to show that this is increasing in x1; thus, the Bayes optimal decision rule based on X1

for c is

h1c(x) =

{
1{x1 ≥ 2c− 1} c ≤ 1/2

1{x1 ≥ 2c−1
9−8c} c > 1/2.

(17)

Now, let’s analyzeH2. The posterior probability that Y = 1 given that X1 − 2εX2 = b for b ≥ −2ε
is

P(Y = 1 | X1 − 2εX2 = b) =
1 + 9b+ 16ε

2 + 8b+ 16ε
. (18)
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This can also be shown to be increasing in b, so the Bayes optimal decision rule based on X1 − 2εX2

for c >= 1/2 is

h2c(x) = 1

{
x1 − 2εx2 ≥

2c− 1− 16ε+ 16cε

9− 8c

}
. (19)

For this proof, we consider two hypothesis class and loss parameter pairs: c1 = 1/2 for H1 and
c2 = 1+16ε

2+16ε forH2. These correspond to the decision rules

h1(x) = 1{x1 ≥ 0},

h2(x) = 1{x1 − 2εx2 ≥ 0} =

{
x1 ≥ 0 x2 = 0

x1 ≥ 2ε x2 = 1.

It should be clear that these decision rules agree except when x2 = 1 and x1 ∈ [0, 2ε).

Another important fact is that

c2 =
1 + 16ε

2 + 16ε
=

1

2
+

4ε

1 + 8ε
≥ 1

2
+ 2ε (20)

since ε ≤ 1/8.

We defer to the end of the proof to show that these hypotheses and distribution satisfy the conditions
of Theorem 4.10.

Deriving the lower bound Similarly to the proof of Theorem 4.11, we can bound the probability
of an event E:

P( 6 ∃xi ∈ S xi,1 ∈ [0, 2ε) ∧ xi,2 = 1︸ ︷︷ ︸
E

) = [1− P(X1 ∈ [0, 2ε) ∧X2 = 1)]
m

= (1− 20pcε
2)m

≥
(
e−40pcε

2
)m

= e− log(1/2δ) = 2δ.

Conditional on E, the distributions of samples S1 and S2 for decision rules h1 and h2 are identical:

p1 = P(ĉ(S1) ≤ 1/2 + ε | E) = P(ĉ(S2) ≤ 1/2 + ε | E),

p2 = P(ĉ(S1) > 1/2 + ε | E) = P(ĉ(S2) > 1/2 + ε | E).

Since p1 + p2 = 1, at least one of p1, p2 ≥ 1/2. Suppose WLOG that p1 ≥ 1/2. Then

P(|ĉ(S2)− c2| ≥ ε)
(i)
≥ P(ĉ(S2) ≤ 1/2 + ε)

= P(ĉ(S2) ≤ 1/2 + ε | E)P(E)

≥ 1/2(2δ) = δ.

(i) uses the fact shown earlier in (20). Thus, there is a decision problem (D, c2) for which the IDT
algorithm ĉ must make an error of at least size ε with at least probability δ. This concludes the main
proof.

Verifying the requirements of Theorem 4.10 First, we need to show that qH1(X) has density at
least pc on [c1 − ε, c1 + ε] = [1/2− ε, 1/2 + ε]. From (16) and (17), it is clear that

qH1(x) = g1(x1) =

{
1+x1

2 x1 < 0
1+9x1

2+8x1
x1 ≥ 0.

We can write the density of qH1(X) as the density of X1 multiplied by the derivative of the inverse
of g1:

p(x1)
d

dc
g−11 (c) ≥ 5pc

2

d

dc

{
2c− 1 c ≤ 1/2
2c−1
9−8c c > 1/2
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=
5pc
2

{
2 c ≤ 1/2

10
(9−8c)2 c > 1/2

≥ pc.

Next, we need to show that qH2(X) has density at least pc on [c2 − ε, c2 + ε] ⊆ [1/2, 1]]. From (18)
and (19), we know that

qH2(x) = g2(x1 − 2εx2) =
1 + 9(x1 − 2εx2) + 16ε

2 + 8(x1 − 2εx2) + 16ε
.

Using the same method as for qH1(X) and the fact that the density of X1 − 2εX2 is at least the
density of X1 (i.e., 5pc

2 ), we have that the density of qH2(X) is at least

5pc
2

d

dc
g−12 (c) =

5pc
2

d

dc

2c− 1− 16ε+ 16cε

9− 8c

=
5pc
2

10 + 16ε

(9− 8c)2

≥ 5pc
2

2

5
= pc.

The only remaining condition of Theorem 4.10 to prove is MD-smoothness. Again, considerH1 first:

MD(h1b1 ,H
2) = min

b2∈[1/2,3/4]
P
(
h1b1(X) 6= h2b2(X)

)
= min
b2∈[1/2,3/4]

5pc
2
|b1 − b2|+ 5pc

∣∣b21 − (b2 + 2ε)2
∣∣

=
5pc
2
|b1 − b1|+ 5pc

∣∣b21 − (b1 + 2ε)2
∣∣

= 20pc|ε(b1 + ε)|.
From (17), we know that b1 − b′1 ≤ 10(c1 − c′1) where b1 and b′1 are the optimal thresholds for loss
parameters c1 and c′1, respectively. So we have that

MD(h1c′1 ,H
2)−MD(h1c1 ,H

2) = 20pcε(|b′1 + ε| − |b1 + ε|)
≤ 20pcε|b′1 − b1|
≤ 200pcε|c′1 − c1|.

Thus h1 and H are α-MD-smooth with α = 200pcε.

Similarly, forH2,

MD(h2b2 ,H
1) = min

b1∈[1/2,3/4]
P
(
h1b1(X) 6= h2b2(X)

)
= min
b1∈[1/2,3/4]

5pc
2
|b1 − b2|+ 5pc

∣∣b21 − (b2 + 2ε)2
∣∣

=
5pc
2
|b2 − b2|+ 5pc

∣∣b22 − (b2 + 2ε)2
∣∣

= 20pc|ε(b2 + ε)|.
So we have that

MD(h2c′2 ,H
1)−MD(h1,H1) = 20pcε(|b′2 + ε| − |b2 + ε|)

≤ 20pcε|b′2 − b2|
≤ 200pcε|c′2 − c2|,

and thus h2 and H are also 200pcε-MD-smooth.

�

29



Theorem D.2 (Second lower bound for suboptimal decision maker). Let d ≥ 6 such that d ≡ 2
(mod 4). Let ε ∈ (0, 1

64
√
d−2 ] and pc ∈ (0, 1]. Then for any IDT algorithm ĉ(·), there is a decision

problem (D, c), hypothesis class family H, and hypothesis classH ∈ H satisfying the conditions of
Theorem 4.10 with the above parameters such that

m < Ω

(√
d

pcε

)
implies that P(|ĉ(S)− c| ≥ ε) ≥ 1

160
.

Proof. Specifically, let

m =

√
d− 2

64pcε
.

Defining the distribution Let n = d − 2 ≥ 1; n is divisible by four. First, we define a joint
distribution D over X ∈ X = Rn+1 and Y ∈ {0, 1}. Let Xj refer to the jth coordinate of the
random vector X and let xij refer to the jth coordinate of the ith sample xi. Furthermore, let X1:n

refer to the first n components of X .

The distribution of X has support on n line segments in Rn+1 and at the origin. In particular, it
has density pc/n on each line segment from (0, . . . , Xj = 1, . . . , 0, 0) to (0, . . . , Xj = 1, . . . , 0, 1),
where the density is with respect to the Lebesque measure on the line. There is additionally a point
mass of probability 1− pc at the origin. Everywhere on the support of D,

P(Y = 1 | X1:n = x1:n, Xn+1 = xn+1) = xn+1.

Defining the family of hypothesis classes Next, we define a family of hypothesis classes. Let
σ ∈ {−1, 1}n and define

fσ(x) = xn+1 − 8ε
√
nσ>x1:n.

Then we define 2n hypothesis classes, one for each value of σ:

Hσ , {h(x) = 1 {fσ(x) ≥ b} | b ∈ [1/4, 3/4]} ,
H , {Hσ | σ ∈ {0, 1}n}.

Now, we can derive the optimal decision rule in hypothesis class Hσ for loss parameter c.
Let [fσ(X)]

3/4
1/4 = max(1/4,min(3/4, fσ(X)) denote the value fσ(X) clamped to the interval

[1/4, 3/4]. Then for b ∈ (1/4, 3/4),

P
(
Y = 1 | [fσ(X)]

3/4
1/4 = b

)
= P

(
Y = 1 | Xn+1 − 8ε

√
nσ>X1:n = b

)
=

1

n

n∑
j=1

P
(
Y = 1 | Xj = 1 ∧Xn+1 = b+ 8ε

√
nσj

)
= b+ 8ε

√
n
1>σ

n
.

where 1 is the all-ones vector. Thus, the Bayes optimal decision rule based on [fσ(X)]
3/4
1/4 is

hσc (x) = 1

{
fσ(x) + 8ε

√
n
1>σ

n
≥ c
}

= 1

{
fσ(x) ≥ c− 8ε

√
n
1>σ

n

}
for c− 8ε

√
n1>σ

n ∈ (1/4, 3/4). The induced posterior probability forHσ is

qHσ (x) = fσ(x) + 8ε
√
n
1>σ

n
.

We consider one hypothesis from each hypothesis class Hσ ∈ H. Specifically, we consider the
optimal decision rule for

cσ =
1

2
+ 8ε
√
n
1>σ

n
,

30



which, as shown above is,

hσ(x) = 1

{
fσ(x) ≥ 1

2

}
. (21)

We leave until the end of the proof to show that each of these decision rules hσ for σ ∈ {−1, 1}n
satisfies the requirements of Theorem 4.10.

Deriving the lower bound Now, we are ready to derive the lower bound that there is some hσ
such that P(|ĉ(S)− c| ≥ ε) ≥ 1

80 . First, we can rewrite hσ from (21) as

hσ((0, xj = 1, 0, xn+1)) = 1{xn+1 − 8ε
√
nσj ≥ 1/2}

= 1{xn+1 ≥ 1/2 + 8ε
√
nσj}.

Thus, only decisions made on points where xn+1 ∈ [1/2− 8ε
√
n, 1/2 + 8ε

√
n] are dependent on σj .

Denote by Ej the event that there is an observed sample that depends on σj :

Ej , ∃xi ∈ S such that xij = 1 ∧ xi,n+1 ∈ [1/2− 8ε
√
n, 1/2 + 8ε

√
n].

Suppose we let σj be independently Rademacher distributed, i.e. we assign equal probability 1/2n to
each σ ∈ {−1, 1}. Then if Ej does not occur, the sample of decisions S is independent from σj , i.e.

S ⊥⊥ σj | ¬Ej .

Now let F denote the event that more than n/2 of the Ej events occur:

F , |{j ∈ 1, . . . , n | Ej}| > n/2.

We will start by proving a lower bound on P(|ĉ(S) − cσ| ≥ ε | ¬F ). If F does not occur, then at
least half of the Ej do not occur. Thus at least half of the elements of σ are independent from the
sample S. Let I be the set of indices j for which Ej does not occur; thus, σI ⊥⊥ S, and given ¬F ,
|I| ≥ n/2.

We can decompose cσ into part that depends on σI and part that depends on σIC :

cσ =
1

2
+ 8ε
√
n
1>σI
n

+ 8ε
√
n
1>σIC

n
. (22)

Note that for each j ∈ I , σj+1
2 is 1/2-Bernoulli distributed. Thus

Z =
1>σI + |I|

2
=
∑
j∈I

σj + 1

2
∼ Binom

(
|I|, 1

2

)
.

We can establish lower bounds on the tails of this given that F occurs:

P
(
Z − |I|

2
≥ t | ¬F

)
=

(
Z − |I|

2
≤ −t | ¬F

)
≥ 1

15
e−32t

2/n.

This lower bound is from Matoušek and Vondrák [42]. Plugging in t = 1
8

√
n, we obtain

P
(
Z − |I|

2
≥ 1

8

√
n | ¬F

)
=

(
Z − |I|

2
≤ −1

8

√
n | ¬F

)
≥ 1

20

P
(
1>σI ≥

1

4

√
n | ¬F

)
=

(
1>σI ≤ −

1

4

√
n | ¬F

)
≥ 1

20
. (23)

Given S, σIC is completely known (since Ej occurs for each j ∈ IC , revealing σj). So plugging
(23) into (22) gives

P
(
cσ − 1

2
− 8ε
√
n
1>σIC

n
≥ 2ε | ¬F,S

)
= P

(
cσ − 1

2
− 8ε
√
n
1>σIC

n
≤ −2ε | ¬F,S

)
≥ 1

20

P (cσ − cσIC ≥ 2ε | ¬F,S) = P (cσ − cσIC ≤ −2ε | ¬F,S) ≥ 1

20
.
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That is, there is at least probability 1/20 that cσ is more than 2ε above and below cσIC , given ¬F and
the observed sample S.

This is enough to show that P(|ĉ(S)− cσ| ≥ ε | ¬F,S) ≥ 1
40 . First, observe that

P(ĉ(S) ≥ cσIC | ¬F,S) + P(ĉ(S) < cσIC | ¬F,S) = 1,

so one of these probabilities must be at least 1/2. Say WLOG that it is the first. Then

P(|ĉ(S)− cσ| ≥ ε | ¬F,S)

≥ P(cσ − cσIC ≤ −2ε ∧ ĉ(S) ≥ cσIC | ¬F,S)

(i)
= P(cσ − cσIC ≤ −2ε | ¬F,S)P(ĉ(S) ≥ cσIC | ¬F,S)

≥
(

1

20

)(
1

2

)
=

1

40
.

Here, (i) makes use of the fact that S ⊥⊥ σI | ¬F . Given this, we can finally derive the lower bound
on the unconditional probability that P(|ĉ(S)− cσ| ≥ ε):

P(|ĉ(S)− cσ| ≥ ε)
= P(|ĉ(S)− cσ| ≥ ε | F )P(F ) + P(|ĉ(S)− cσ| ≥ ε | ¬F )P(¬F )

≥ P(|ĉ(S)− cσ| ≥ ε | ¬F )P(¬F )

≥ P(¬F )

40
. (24)

So we need to derive a lower bound on P(¬F ). We can do so by noting that in order for F to occur,
there must be at least n/2 samples xi with xi,n+1 ∈ [1/2− 8ε

√
n, 1/2 + 8ε

√
n]. The probability of

this event for a particular sample is

P
(
Xn+1 ∈ [1/2− 8ε

√
n, 1/2 + 8ε

√
n]
)

= 16pcε
√
n.

So at least n/2 of the m samples must have the event with probability 16pcε
√
n occur for F to occur.

Let GE(p,m, r) denote the probability of at least r successes of probability p in m independent trials.
Then there is the following fact from probability theory [43]:

GE(p,m, (1 + γ)mp) ≤ e−γ
2mp/3.

Then

P(F ) ≤ GE(16pcε
√
n,m, n/2)

= GE
(

16pcε
√
n,

√
n

64pcε
, 2

( √
n

64pcε

)(
16pcε

√
n
))

≤ e−n/12 ≤ 3/4

as long as n ≥ 4 as assumed. Thus P(¬F ) > 1/4. So putting this together with (24), we have

P(|ĉ(S)− cσ| ≥ ε) ≥ 1

160
.

This equation is given with respect to the uniform distribution over σ. But there also must be a
particular σ and thus corresponding hσ ∈ Hσ which has the same tails on ĉ(S)−c. Thus we conclude
the proof.

Verifying the requirements of Theorem 4.10 Now we show that the distribution and hypothesis
class family satisfy the conditions of Theorem 4.10. First, note that all h ∈ H ∈ H are thresholds on
linear functions of the observation x. Thus, ∪H∈HH is a subset of the halfspaces in Rn+1 and so it
has VC-dimension at most n+ 2 = d.

Next, it is clear that for ρ ≤ ε,

P(qHσ (X) ∈ (c, c+ ρ]) = P
(
fσ(X) + 8ε

√
n
1>σ

n
∈ (c, c+ ρ]

)
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=

n∑
j=1

P
(
Xj = 1 ∧Xn+1 − 8ε

√
nσj + 8ε

√
n
1>σ

n
∈ (c, c+ ρ]

)

=

n∑
j=1

pcρ

n
= pcρ.

A similar result can be shown for P(qHσ (X) ∈ [c− ρ, c)).

Finally, we need to show that MD-smoothness holds. Take any hσ and anyHσ̃ . Then the disagreement
between hσ and a hypothesis inHσ̃ with threshold b is

P(hσ(X) 6= hσ̃b (X) =
pc
n

n∑
j=1

∣∣∣∣12 + 8ε
√
nσj − b− 8ε

√
nσ̃j

∣∣∣∣
=
pc
n

n∑
j=1

∣∣∣∣(1

2
+ 8ε
√
n(σj − σ̃j)

)
− b
∣∣∣∣ .

This is minimized when b is the median of
(
1
2 + 8ε

√
n(σj − σ̃j)

)
for j = 1, . . . , n. Thus b ∈

[ 12 − 8ε
√
n, 12 + 8ε

√
n]; since ε ≤ 1

64
√
n

, this implies b ∈ [3/8, 5/8]. Suppose now we let c′ ∈
[cσ − 1/8, cσ + 1/8]. Then we can let b′ = b+ (c′ − cσ) and

MD(hσc′ ,Hσ̃) ≤ P
(
hσc′(X) 6= hσ̃b′(X)

)
= P

(
hσ(X) 6= hσ̃b (X)

)
= MD(hσ,Hσ̃).

Thus for |c′ − cσ| ≤ 1/8, hσ and H are 0-MD-smooth. If |c′ − cσ| > 1/8, then we have

MD(hσc′ , h
σ̃) ≤ 1 <

8

MD(hσ,Hσ̃)
|c′ − cσ|MD(hσ,Hσ̃).

Thus overall hσ and H are α-MD-smooth with

α = max
σ̃ 6=σ

8

MD(hσ,Hσ̃)
.

�

Bibliographic note: we establish dependence on the VC dimension d in Theorem D.2 using a
technique similar to that used by Ehrenfeucht et al. [44].

D.2 Necessity of MD-smoothness

The lower bounds given in Section D.1 do not depend on the α parameter from the MD-smoothness
assumption made in Theorem 4.3; thus, one may wonder if this assumption is necessary. In the
following lemma, we show that it is necessary in some cases by giving an example of an IDT problem
where a lack of MD-smoothness precludes identifiability of the loss parameter.

Lemma D.3 (No MD-smoothness can prevent identifiablity). Let ε ∈ (0, 1/10). Then for any
IDT algorithm ĉ(·), there is a decision problem (D, c), hypothesis class family H, and hypothesis
classH ∈ H satisfying the conditions of Theorem 4.10 except for MD-smoothness such that

P(|ĉ(S)− c| ≥ ε) ≥ 1

2

for a sample S of any size m.

Proof. Defining the distribution First, we define a distribution D over X ∈ X = R2 and
Y ∈ {0, 1}. DX has density 1/2 on two squares [−1, 0] × [−1, 0] and [0, 1] × [0, 1], and the
distribution of Y | X is defined as follows:

P(Y = 1 | X = x =

{
2
3 + 2

15x1 + 8
15x2 x ∈ [−1, 0]× [−1, 0]

1
3 + 8

15x1 + 2
15x2 x ∈ [0, 1]× [0, 1].
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Figure 6: A visualization of the distribution and decision rules used in Lemma D.3 to show that a lack
of MD-smoothness can prevent identifiability of the loss parameter c. On the left, the distribution
over X = (X1, X2) and Y is shown; X has constant density on unit squares in the first and third
quadrants, and P(Y = 1 | X) varies as shown with the heatmap. We consider two decision rules h1
and h2 which are optimal thresholds of X1 and X2, respectively, for loss parameters c1 = 2/5 and
c2 = 3/5, respectively. Since c1 6= c2 but P(h1(X) = h2(X)) = 1, it is impossible to identify c
reliably. This is because the distribution and decision rules are not MD-smooth, since shifting either
decision rule slightly causes a jump in minimum disagreement with the other hypothesis class from 0
to a positive value.

Defining the family of hypothesis classes We consider the two hypothesis classes which are
thresholds on one component of the observation x:

H1 = {h(x) = 1{x1 ≥ b} | b ∈ [−1, 1]},
H2 = {h(x) = 1{x2 ≥ b} | b ∈ [−1, 1]}.

That is, H = {H1,H2}. The conditional probabilities for Y = 1 given just one of the observation
components are

qH1(x) = P(Y = 1 | X1 = x1) =
2

5
+

2

15
x1 +

2

5
x11{x1 ≥ 0},

qH2(x) = P(Y = 1 | X2 = x2) =
3

5
+

2

15
x2 +

2

5
x21{x2 ≤ 0}.

(25)

We consider the optimal decision rules for c1 = 2/5 and c2 = 3/5 inH1 andH2, respectively, which
from the above can be calculated as

h1(x) = 1{x1 ≥ 0},
h2(x) = 1{x2 ≥ 0}.

The distribution and decision rules are visualized in Figure 6.

Lack of identifiability Note that since X only has support where sgn(X1) = sgn(X2), the above
decision rules are indistinguishable. Thus, we use the same techniques from Corollary 4.12 and
Lemma C.1 to show that for at least one of c ∈ {c1, c2}

P(|ĉ(S)− c| ≥ 1/2(c2 − c1) = 1/10 ≥ ε) ≥ 1/2.

Hypothesis classes are not MD-smooth Although this is not required for the proof of the lemma,
we will demonstrate that the defined hypothesis classes are not α-MD-smooth for any α. By way
of contradiction, assume that there is some α such that h1 and H are MD-smooth. Then for any
c′1 ∈ [0, 1],

MD(hc′1 ,H2) ≤ (1 + α|c′1 − c1|)MD(h1,H2) = 0.

Here, MD(h1,H2) since P(h1(X) 6= h2(X)) = 0, i.e. h1 and h2 do not disagree at all. However,
there are clearly values of c′1 such that MD(hc′1 ,H2) > 0, so we have a contradiction.

Verifying the other requirements of Theorem 4.10 Clearly, the family of hypothesis classes
defined above have finite VC-dimension.

The densities of qH1
(X) and qH2

(X) can be calculated as the density of X1 or X2 multiplied by
the derivative of the inverse of the posterior probability functions. The densities of X1 and X2 are
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both 1/2 on the interval [−1, 1], and the derivative of the inverse of the equations in (25) is at least
15/8. So the distribution satisfies the requirements of Theorem 4.10 other than MD-smoothness with
pc ≥ 15/16.

�

E Feature Subset Hypothesis Class Family

In this section, we work through the application of Theorem 4.10 to a practical example. Theorem
4.10 concerns the case of IDT when the decision maker could be restricting themselves to any
suboptimal hypothesis class H ∈ H for some family of hypothesis classes H. In this example, we
consider Hfeat as defined in (1) and repeated here:

Hfeat , {HS | S ⊆ {1, . . . , n}} where HS ,
{
h(x) = f(xS) | f : R|S| → {0, 1}

}
. (1)

This family can model decision makers that have bounded computational capacity and may only be
able to reason based on a few features of the data. An application of structural risk minimization [45]
from learning theory shows that the sample complexity of IDT in this case may scale only linearly in
the number of features considered and logarithmically in the total feature count:

Lemma E.1. Let a decision maker use a hypothesis classHS ∈ Hfeat as defined in (1) which consists
of decision rules depending only on the subset of the features in S. Let s = |S| be the number of
such features; neither s nor S is known. Suppose X = Rd, i.e. d is the total number of features. Let
assumptions on ε, δ, α, and pc be as in Theorem 4.10.

Let ĥĉ ∈ arg minĥ∈HŜ
Rĉ(ĥ) be chosen to be consistent with the observed decisions, i.e. ĥĉ(xi) = ŷi,

and such that |Ŝ| is as small as possible. Then |ĉ− c| ≤ ε with probability at least 1− δ as long as
the number of samples m satisfies

m ≥ O
[(

α

ε
+

1

ε2

)(
s log d+ log(1/δ)

pc

)]
.

Proof. We prove Lemma E.1 by bounding the VC-dimension of the union of all optimal decision
rules in allHS ∈ Hfeat where |S| ≤ s. An optimal decision rule for loss parameter c inHS is given
by the Bayes optimal classifier:

hSc (x) = 1{P(Y = 1 | XS = xs) ≥ c}.

Now consider a set of observations x1, . . . , xd ∈ X . We will show that for d > 1 + 2s log2(n+ 1),
this set cannot be shattered by d. To see why, note that decision rules in any particular class HS
threshold the posterior probability P(Y = 1 | XS = xs). Thus, each hypothesis class can only
produce d + 1 distinct labelings of the set of observations. The number of hypothesis classes HS
with |S| ≤ s is

s∑
k=0

(
n
s

)
≤

s∑
k=0

nk ≤ (n+ 1)s.

So the number of distinct labelings assigned by hypotheses in H to the observations must be at most
(d+ 1)(n+ 1)s < 2d if d > 1 + 2s log2(n+ 1). Thus this set cannot be shattered, so

VCdim
(
∪|S|≤sHS

)
≤ 1 + 2s log2(n+ 1) = O(s log n).

Applying Theorem 4.10 with d = O(s log n) completes the proof. �

The following lemma states conditions under which α-MD-smoothness holds for Hfeat.

Lemma E.2. Let Hfeat andHS be defined as in (1). Let h ∈ HS . Suppose that there is a ζ > 0 such
that for any Ŝ ⊆ {1, . . . , n}, one of the following holds: either (a) P(Y = 1 | X = xS) = P(Y =
1 | X = xŜ) for all x ∈ Rd, or (b) MD(h,HŜ) ≥ ζ. Furthermore, suppose that the distribution
of qHS (X) is absolutely continuous with respect to the Lebesque measure and that its density is
bounded above by M <∞. Then h and Hfeat are α-MD-smooth with α = M/ζ.
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Since α-MD-smoothness is a sufficient condition for identification of the loss function parameter
c, Lemma E.2 gives conditions under which IDT can be performed. The main requirement is that
considering different subsets of the features either gives identical decision rules (case (a)) or decision
rules which disagree by some minimum amount (case (b)). If decision rules using a different subset
of the features can be arbitrarily close to the true one, it may not be possible to apply IDT.

Proof. Consider any Ŝ ⊆ {1, . . . , n}. If (a) holds for Ŝ, then hSc (x) = hŜc (x) for any c ∈ [0, 1] and
x ∈ X . Thus

MD(hSc′ ,HŜ) = 0 ≤ (1 + α|c′ − c|)MD(hSc ,HŜ) = 0

so α-MD-smoothness holds in this case for any α.

If (b) holds, then let ĥ ∈ arg minĥ∈HŜ
P(h(X) 6= ĥ(X)). Let c′ ∈ [0, 1]; without loss of generality,

we may assume that c′ > c. Denote qS(x) = P(Y = 1 | XS = xs). Then

MD(hSc′ ,HŜ)

≤ P(hSc′(X) 6= ĥ(X))

= P
(
qS(X) < c′ ∧ ĥ(X) = 1)

)
+ P

(
qS(X) > c′ ∧ ĥ(X) = 0)

)
≤ P

(
qS(X) ∈ [c, c′) ∧ ĥ(X) = 1

)
+ P

(
qS(X) < c ∧ ĥ(X) = 1

)
+ P

(
qS(X) > c ∧ ĥ(X) = 0)

)
= P

(
qS(X) ∈ [c, c′) ∧ ĥ(X) = 1

)
+ MD(h,HŜ)

≤M(c′ − c) + MD(h,HŜ)

≤
[
1 +

M

ζ
(c′ − c)

]
MD(h,HŜ).

So h and H satisfy α-MD-smoothness with α = M/ζ. �

F Surrogate Loss Functions

Here, we explore using IDT when the decision maker minimizes a surrogate loss instead of the true
loss. So far, as formulated in Section 3, we have assumed that the decision maker chooses a decision
rule h which minimizes the expected loss E[`c(h(X), Y )], where the loss function is defined as

`c(ŷ, y) =


0 ŷ = y

c ŷ = 1 ∧ y = 0

1− c ŷ = 0 ∧ y = 1

=

{
c1{ŷ = 1} y = 0

(1− c)1{ŷ = 0} y = 1.
(26)

However, this loss function is not convex or continuous, so it is difficult to optimize. Thus, we might
expect the decision maker to choose their decision rule using a surrogate loss which is convex. In
particular, suppose that the decision rule h(·) is calculated by thresholding a function f : X → R:

h(x) = 1{f(x) ≥ 0}.
Then, we can replace the indicator functions in (26) with a surrogate loss V : R→ R:

˜̀
c(w, y) =

{
c V (w) y = 0

(1− c)V (−w) y = 1.
(27)

Say that the decision maker minimizes this loss ˜̀
c instead of the true loss `:

f∗ ∈ arg min
f

E[˜̀c(f(X), Y )]. (28)

The following lemma shows that, for reasonable surrogate losses, if the decision maker is optimal
then minimizing the surrogate loss is equivalent to minimizing the true loss. The proof is adapted
from Section 4.2 of Rosasco et al. [46]; they show that the hinge loss, squared loss, and logistic loss
all satisfy the necessary conditions.
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Lemma F.1. Suppose V : R→ R is convex and that it is strictly increasing in a neighborhood of
0. Let f∗ be chosen as in (28), and let h(x) = 1{f∗(x) ≥ 0}. Then h ∈ arg minh E[`c(h(X), Y )];
that is, the threshold of f∗ is an optimal decision rule for the true cost function.

Proof. We prove the lemma by contradiction; assume that h is not an optimal decision rule for the
true loss function. Then by Lemma 4.1,

P(h(X) 6= 1{q(X) ≥ c} ∧ q(X) 6= c) > 0.

This implies that either

P(h(X) = 0 ∧ q(X) > c) > 0 or P(h(X) = 1 ∧ q(X) < c) > 0,

or equivalently,

P(f∗(X) < 0 ∧ q(X) > c) > 0 or P(f∗(X) ≥ 0 ∧ q(X) < c) > 0. (29)

Without loss of generality, assume the former. Define

f̃(x) =

{
0 f∗(x) < 0 ∧ q(x) > c

f∗(x) otherwise.

Consider any x which satisfies f∗(x) < 0 and q(x) > c. We can write

E
[
˜̀
c(f
∗(X), Y )− ˜̀

c(f̃(X), Y ) | X = x
]

= P(Y = 0 | X = x) c
(
V (f∗(x))− V (f̃(x))

)
+ P(Y = 1 | X = x) (1− c)

(
V (−f∗(x))− V (−f̃(x))

)
= (1− q(x)) c (V (f∗(x))− V (0)) + q(x) (1− c) (V (−f∗(x))− V (0))

= ˜̀
c(f
∗(x) | x)− ˜̀

c(0 | x),

where we define
˜̀
c(w | x) = (1− q(x)) c V (w) + q(x) (1− c)V (−w).

˜̀
c(w | x) satisfies two properties:

1. It is convex in w, since it is a sum of two convex functions.

2. It is strictly decreasing in w in a neighborhood of 0. To see why, note that we assumed
q(x) > c, so

(1− q(x)) c < (1− c) c < q(x) (1− c).
Thus, since the weight on V (−w) is greater than the weight on V (w), and V (w) is strictly
increasing about 0, ˜̀

c(w | x) must be strictly decreasing about 0.

Together, these properties imply that
˜̀
c(f
∗(x) | x)− ˜̀

c(0 | x) > 0

since we assumed that f∗(x) < 0. Thus we have that

E
[
˜̀
c(f
∗(X), Y )− ˜̀

c(f̃(X), Y ) | X = x
]
> 0 (30)

for any x where f∗(x) < 0 and q(x) > c.

Now, we analyze the difference in expect loss for f∗ and f̃ . Since these agree on all points except
when f∗(x) < 0 and q(x) > c, we have that

E[˜̀(f∗(X), Y )]− E[˜̀(f̃(X), Y )]

= E
[
˜̀(f∗(X), Y )− ˜̀(f̃(X), Y )

∣∣∣ f∗(X) < 0 ∧ q(X) > c
]
P
(
f∗(X) < 0 ∧ q(X) > c

)
(i)
> 0. (31)

Here, (i) is due to the combination of (30), which implies the first term is positive, and the first case
of (29), which implies the second term is positive.

(31) implies that f̃ has lower expected surrogate loss than f∗. However, we assumed that f∗
minimized the expected surrogate loss; thus we have a contradiction. �
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Setting True loss Surrogate loss
IDT for optimal decision maker (Theorem 4.2) 3 3
IDT for suboptimal decision maker (Theorems 4.7 and 4.10) 3 7
No identifiability for decisions without uncertainty (Corollary 4.12) 3 3

Table 1: An overview of which of our results apply in the setting when the decision maker is
minimizing a surrogate loss rather than the true loss.

Lemma F.1 means that all the results for an optimal decision maker (e.g., Theorem 4.2) apply
immediately to a decision maker minimizing a reasonable surrogate loss. In the case of decision
problems without uncertainty, the decision rule will encounter zero loss and thus must be optimal,
so Lemma F.1 also applies in this case for an optimal or suboptimal decision maker (e.g., Corollary
4.12). In the case of a suboptimal decision maker facing uncertainty, different loss functions may
lead to different decision rules, so we cannot extend the results in that case to surrogate losses. Table
1 summarizes which results hold equivalently for decision makers minimizing an expected surrogate
loss.

G Further Comparison to Prior Work

In this section, we compare two prior papers on preference learning to our results. Mindermann
et al. [20] and Bıyık et al. [21] both propose methods for active preference learning, i.e. querying
a person to learn their preferences. In each method, queries are prioritized which minimize the
uncertainty of the person. The authors argue that such queries are easier to answer and thus lead
to more effective preference learning. At first, these results may seem to contradict our findings
that uncertain decisions make preference learning easier. However, we argue that their results are
not in conflict with ours. Decisions with more uncertainty are probably more difficult for people to
make, and those close to the decision boundary are probably the most difficult. However, our results
show that it is necessary to observe such decisions in order to recover the person’s preferences. If we
cannot observe decisions made arbitrarily close to the person’s decision boundary, we cannot exactly
characterize the loss function they are optimizing. Thus, combining the results of Mindermann et al.
[20] and Bıyık et al. [21] with ours suggests that there is a tradeoff between the ease of the decision
problem for the human and the identifiability of their preferences. That is, uncertainty may make the
human’s decision problem more difficult but our problem of identifying preferences easier.
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