Appendix

A Proofs

A.1 Proof of Lemma[3.1]

Lemma 3.1 (Equivalence of cost matrices). Any cost matrix C' = ( g‘fg g‘ﬁ ) is equivalent to a cost

. I (01—c _ C10—Coo _ _ i
matrix C' = () '5¢) where ¢ = Core =, aslong as Cr0+ Co1 — Coo — C11 # 0. That is,

there are constants a,b € R such that Rc(h) = aRc¢v(h) + b for all h.

PI’OOf: Leta = ClO + 001 - COO - 011 and b = ]P(Y = O)CO() + P(Y = 1)011. Then

Rc(h)
( (X) = )000+P(h(X):1/\Y=0)010
(h(X — 1)Co1 + P(A(X) = LAY = 1)C1s
( (X) = O)(Clo — Coo) + ]P’( = O)CQO
(h(X) OAY = 1)(Cor — Cur) +B(Y = 1)Chy
P(h(X) = 1 AY = 0)(Cho — Coo) + P(A(X) = 0AY = 1)(Co1 — Ch1) +b

Cio — Coo
Cio + Co1 — Coo — C11

= (C10 + Co1 — Coo — C11) (P(h(X) =1AY =0)

Co1 — Ci1
P(h(X) = Y =1 b
HR((X) =0 )010+Co1—000—011>+

=aP(h(X)=1AY =0)c+Ph(X)=0AY =1)(1—-¢))+b
= CL'RCI(h)-i-b.

A.2 Proof of Lemma[4.1]

Lemma 4.1 (Bayes optimal decision rule). An optimal decision rule h for a decision problem
(D, c) is given by h(zx) = 1{q(x) > c} where q(x) = P(x y)~p(Y = 1| X = x) is the posterior
probability of class 1 given the observation z.

This result is well-known [29] but we include a proof here for completeness.

Proof. Let h(z) = 1{q(z) > ¢} and let h : X — {0, 1} be any other decision rule. We will show
that not only is & an optimal decision rule, but in fact that if P(h(X) # h(X) A q(X) # ¢) > 0, then
Re(h) > Re(h); that is, h is strictly suboptimal. Thus, any optimal decision rule h* must satisfy
h(x) = h*(z) almost surely except where g(x) = c.

First, let’s define the conditional risk of h at x, denoted by R.(h | X = x):
Re(h| X =2)=cP(h(X)=1AY =0|X=2)+(1-c)P(h(X)=0AY =1| X =2x).

Note that one of the two terms is always zero, depending on whether 2 (X) is 0 or 1, since h(X) is
deterministic given X. The risk of & is the expectation of the conditional risk:

Re(h) =Ex~p,[Re(h | X = 2)].
We can bound the conditional risk for the optimal decision rule h:
[ PY=0]X =x) q(z) >c
Re(h|z) = {(10)1@(3/1)(@ g(z) < ¢

{C(l—q q(x) > ¢
(1—c)q( q(z) <c

<c(1-c). (3)
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Now, consider the conditional risk for the other decision rule  at x. First, suppose ﬁ(m) = h(x); that
is, the decision rule agrees with the optimal one. Then clearly R.(h | X = 2) = Rc(h | X =z) <
¢(1 — ¢). Next, suppose ¢(z) # c and h(z) # h(x). Then
= PY=0|X=ux) q(z) <c
Re(h| X =2) =
(h] X =) {(1_C)P(yz1|xzx) g(z) > c
_ {0(1 —q(x)) qlz) <c
(1 —c)g(z) qlz) >c
> c(l—c). “)
Finally, suppose ¢(x) = c; in this case, it is clear that R, (h | X = ) = ¢(1 — ¢) regardless of
what h( ) is. Putting this together, we can break down the risk of h by conditioning on whether

h(x) = h(x) or q(z) = c:
Re(h) = E[R(h | X = 2]
— E[R(h | X =) | H(X) = h(X) V ¢(X) = ] B(h(X) = h(X) V ¢(X) = ¢)
+E[R.(h | X = 2) | h(X) # h(X) A g(X) # d B(R(X) # h(X) A q(X) # )

> BIR.(h | X = ) | A(X) = h(X) V q(X) = ] B(i(
FEle(1— o) | F(X) # h(X) A q(X) £ d BO(X) £ h(X) A g(X) # )

2 ER.(h] X =) | h(X) = h(X) Vg q
FE[R.(h | X =) | h(X) # h(X) Aq(X) # o P({(X) # h(X) A q(X) # )

— E[R(h| X = 2)

= R.(h).

(i) uses and (ii) uses . The above shows that Rc(ﬁ) > R.(h) for any decision rule h,
demonstrating that h must have the lowest risk achievable. Note that (i) is strictly greater as long as

P(h(X) # h(X) A q(X) # ¢) > 0, validating the claim above that any optimal decision rule must
agree with h almost surely except when ¢(X) = c.

A.3 Proof of Theorem

Theorem 4.2 (IDT for optimal decision maker). Let ¢ > 0 and § > 0. Say that there exists p. > 0
such that P(q(X) € (¢,c + €]) > pee and P(¢(X) € [c — €,¢)) > pee. Let ¢ be chosen to be
consistent with the observed decisions as stated above, i.e. q(x;) > ¢ < §; = 1. Then |¢ — ¢| < ¢
with probability at least 1 — 0 as long as the number of samples m > logp(#.

Proof. Let h denote the decision maker’s decision rule. From the proof of Lemma 4.1} we know that
the optimality of A means that h(X) = 1{q(X) > ¢} almost surely as long as ¢(X) # c.

Let E denote the event that we observe x; and x; in the sample such that g(z;) € (c,c + €| and
q(z;) € [e =€)

E = Hz;q(z;)€(c,e+€) A Tzjgla;) €lc—¢€0).

B E,

First, we will lower bound the probability of F’:

P(E) = 1 — P(Va, q(z) ¢ (c,c +])
=1-(P(q(X) & (c.,c+ €)™
=1-(1-PgX) € (c,e+e)™
>1—(1—ep)™
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> 1 — e mepe
> 1 — e l08(2/9)
=1-4/2.
Second, we will lower bound the probability of Es:
P(E;) =1—-P(Vj q(z;) ¢ [c —€,0))
=1-(P(g(X) ¢[c—e€c)"

=1-(1-Pg(X)€[c—ec)"
>1—(1—ep)™

Z 1 e_mepc

> 1— eflog(2/5)

=1-4/2.

Putting the above together, we can lower bound the probability of E:
P(E) = P(Ey A E)

=1—P(~E1 V ~E,)

>1—P(—E;) — P(=E»)

>1-4.
Finally, we will show that E implies |¢ — ¢| < e. Suppose E occurs. Then ¢(z;) > ¢, so h(z;) =
9; = 1. This means that ¢ < ¢(x;) < ¢+ €. Also, g(z;) < ¢, so h(z;) = g; = 0. This means that
¢ > q(z;) > ¢ —e. Thus

c—e<c<c+e

|¢ —¢| <e.

So with probability at least 1 — 4,

A.4 Proof of Lemma[d.3]

The proof of Lemma [£.5] depends on another lemma, which will also be useful in the unknown
hypothesis class setting. This lemma bounds the conditional probability that the correct decision
Y =1 for observations = between the decision boundaries of two optimal decision rules.

Lemma A.1. Suppose opt(H) is monotone and let he, h. € H be optimal decision rules for loss
parameters ¢ and ¢, respectively, where ¢ < c'. Then for every x € X, he(x) < he(x). Furthermore,
assuming P(he(X) # he (X)) =P(he(X) = 1A he (X) =0) >

C<P(Y =1 ho(X)=1Aho(X)=0)< ¢

Proof. We can write the risk of a decision rule A for cost ¢ as
Re(h) =cP(h(X)=1AY =0)+ (1 —c)P((X)=0AY =1)
=c[P(Y =0)—P(h(X)=0AY =0)] + (1 —c)P(R(X) =0AY =1)
- c(]P’(Y =0) — [P(h(X) =0) = P(h(X) =0AY = 1)]) L (1—)P(h(X)=0AY =1)

= cP(Y = 0) — cP(h(X) = 0) + cP(h(X) =0AY = 1)
FP((X)=0AY =1) — cP(A(X) =0Ay = 1)
=cP(Y =0) — cP(W(X) =0) + P(W(X) =0AY = 1). (5)

Since h, is optimal for ¢, we have
Re(he) — Re(he) > 0. (6)
Applying (3] to () gives

P(ho(X) = 0AY = 1)—P(h.(X) = 0AY = 1)—c [P(hc,(X) = 0)—P(ho(X) = 0)} > 0. (7)
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Now, suppose the lemma does not hold; that is, there is some = € X such that h (z) > h.(z). Since
opty (#) is monotone, this implies

Ve e X he(x) < he(x). (%)

Assuming (¥) we have the following two identities:
B(he(X) = 0) — P(ho (X) = 0) = B(he(X) = 0
Pho(X)=0AY =1) =P(he(X)=0AY =1) =P(h(X) =0)
Plugging these in to (3) gives
cPhe(X)=0)Ahe(X)=1) =P(he(X) =0)Aho(X)=1AY =1) >0
Phe(X)=0)Ahao(X)=1AY =1) < cP(h.(X) =
Pho(X)=0)Aho(X)=1AY =1)
P(ho(X) = 0) A hor(X) = 1)
PY=1|h(X)=0Aho(X)=1)<ec
This is the first claim of the lemma. Now, we can apply the same set of steps to R/ (he) =R (her) > 0
(i.e., using @ and the above identities) to obtain

d<PY =1|h(X)=0Aho(X)=1).
Combining these two equations implies ¢’ < ¢, but we assumed that ¢ < ¢/, so this is a contradiction.
Thus, () must be false!
Since opty, (1) is monotone, the falsity of (E) implies that actually,
Ve e X he(x) < he(x). (8)

Now, we can complete the proof by repeating the above steps using (8) instead of () to obtain
c<PY =1]h(X)=1Aha(X)=0) <.

|
Lemma 4.5 (Induced posterior probability). Let opty,(H) be monotone and define
Tu(@) 2 sup ({c € [0,1] | hew) = JU{0}) and g, (@) = inf ({e € [0.1] | he(a) = 0}JU{1}).

Then for all x € X, Gy (x) = q,,(x). Define the induced posterior probability of H as qx(x) =
T () = ¢, (2).

Proof. Fix x € X. Using Lemma[A.T] we have that

c<d = he(x) > he(x).
That is, h.(z) is monotone non-increasing in c. This is enough to show that g3 () is well-defined.
Consider three cases:

1. ¥Ye,he(xz) = 1. In this case, gy (z) = sup{c € [0,1] | he(z) = 1} U{0} = 1 and
4,,(x) = inf{c € [0,1] [ he(z) = 0} U{1} = inf DU {1} = 1so gu(z) = 1.

2. Ve, he(x) = 0. Inthis case, G5, (x) = sup{c € [0,1] | he(z) = 1}U{0} = sup PU{0} =0
and QH(J:) =inf{c € [0,1] | he(z) =0} U {1} = 0so gx(z) =0.

3. Jeo, 1 such that he, () = 0 and h,, (x) = 1. In this case, neither {c € [0,1] | h.(z) = 1}

nor {c € [0,1] | he(z) = 0} is empty so we have

Gy () = sup {c € [0,1] [ he(x) = 1}

4,,(x) = inf {c € [0,1] | he(z) = 0}.
Say g3 (z) is not well-defined; that is,

sup{c € [0,1] | he(z) =1} #inf {c € [0,1] | he(z) = 0}.

First, suppose sup {c € [0,1] | he(x) = 1} < inf{c € [0,1] | he(z) = 0}. Then
there exists some ¢ for which h.(x) ¢ {0,1}, which is impossible. So sup {c € [0,1] |
he(z) =1} > inf {c € [0,1] | h.(z) = 0}. However, this implies that 3 ¢; > ¢ such that
he, () = 1 but he, (2) = 0. Since h.(z) is nonincreasing in ¢, this is a contradiction. Thus
an(x) =Gy () = g, () is well-defined.
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Corollary 4.6. Let h. be any optimal decision rule in ‘H for loss parameter c. Then for any x € X,
he(z) = 1ifqu(z) > cand he(x) = 0if gu(x) < c.

Proof. Let
he € argminR.(h)
heH

be an optimal decision rule in H for loss parameter c.

Fix any z € X. If gy (x) = ¢, we don’t need to prove anything. If g (x) > ¢, then suppose
he(z) # 1,1.e. he(z) = 0. Then

4,,(x) = inf { €10,1] | hes(z) =0} < ¢
since h.(z) = 0. However, this is a contradiction since we assumed g3 (x) > c. Thus h.(z) = 1.
Now, if g3, (z) < ¢, suppose h.(x) # 0, i.e. he(x) = 1. Then

Gy (z) =sup{c €[0,1] | he(z) =1} > c.

This is also a contradiction since we assumed g3 (z) < ¢, so h.(z) = 0. ]

A.5 Proof of Theorem 4.7

Theorem 4.7 (Known suboptimal decision maker). Ler € > 0 and § > 0, and let opt(H) be
monotone. Say that there exists p. > 0 such that P(g3(X) € (¢,c+ €]) > pee and P(gy(X) € [c —
€,¢)) > pee. Let ¢ be chosen to be consistent with the observed decisions, i.e. gy (x;) > ¢ < §; = 1.

Then |¢ — ¢| < € with probability at least 1 — § as long as the number of samples m > logﬁ%.

Proof. Let h € H denote the decision maker’s decision rule. From Corollary {.6] we know that
h(z) = 1{gu(x) > c} as long as g (x) # c.

Let E denote the event that we observe z; and x; in the sample such that gy (z;) € (¢,c + €] and
qn(x;) € [c — € ¢). An analogous computation to the proof of Theorem 4.2 (Section [A.3) shows
that if m > 1252/%) then P(E) > 1 — 4.

If E occurs, then h(x;) = 1 and so ¢ < ¢+ €. Also, h(z;) = 0so &> ¢ — e. Thus, we have
P(lé—c|<e)>P(E)>1-4.

A.6 Proof of Theorem

Theorem 4.10 (Unknown suboptimal decision maker). Let € > 0 and § > 0. Suppose we observe
decisions from a decision rule h. which is optimal for loss parameter c in hypothesis class H € H.
Let h, and H be a-MD-smooth. Furthermore, assume that there exists p. > 0 such that for any
p <€ Plgu(X) € (¢,c+ p)) = pep and P(qn(X) € (c — p,c)) = pep. Let d > VCdim (UnenH)
be an upper bound on the VC-dimension of the union of all the hypothesis classes in H.

Let h; € arg ming, Rc(fz) be chosen to be consistent with the observed decisions, i.e. ilp(xz) =0
Sfori=1,...,m. Then |¢ — c| < € with probability at least 1 — § as long as the number of samples

m>0 {(% + 6%) (d-Hog(l/é)):I'

Pc

Proof. Specifically, we will prove that P(|¢ — ¢| <€) > 1 — § as long as

m>0 [(a N 1) (dlog(a/(pce)) +10g(1/5))] . ©)

€ 62 Pc

Throughout the proof, let h, € argmin,c4 Rc(h) be the true decision rule and let he €

arg min;, _,; Ra(H) be the estimated decision rule, i.e. one that agrees with the decisions in the
sample of observations S.
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First, we use a standard result from PAC learning theory to upper bound the disagreement between the

estimated decision rule fz@ and the true decision rule h.. In particular, since this is a case of realizable
PAC learning, i.e. the true decision rule h, is in one of the hypothesis classes H € H, we have that

P(ho(X) # he(X)) <O <a+11> _0 (mm (pj,pc?))

Pe€?

with probability at least 1 — § over the drawn sample. This bound follows from Vapnik [40] and
Blumer et al. [41] since the set of all possible hypotheses Uy cmH has VC-dimension at most d,
and we observe a sample of m observations x; and decisions ; = h.(z;) where m satisfies @]) In
particular, denote

R 2
r=P(he(X) # ho(X)) < min (lg;pgg ) (10)

Next, we show that (10) implies that |¢ — ¢| < ¢; since (10) holds with probablhty at least 1 — 4, this
is enough to complete the proof of Theorem“ [4.10] We W111 prove that ¢ — ¢ < e given (10). The proof
that ¢ — ¢ < € is analogous. We require a technical lemma on probability theory:

Lemma A.2. Let A, B, and C be events in a probability space with P(A) > 0 and P(B) > 0. Then

P(AA-B)+P(—~AAB)

PCTA) =PC ] B)l = == By piB))

Proof of LemmalA.2] To simply the proof of this lemma, we adopt the boolean algebra notation that
AB is equivalent to A A B and A is equivalent to = A. Then we have

IP(C'| A) —P(C| B)|

P(AC) P(BC)
B ‘ B(A)  P(B) ’
P(ABC) + IP(ABC’) P(ABC) + P(ABC)
‘ P(AB) +P(AB) P(AB) +P(AB)
_ [P(ABC)P(AB) + P(ABC)P(B) — P(ABC)P(AB) — P(ABC)P(A)|
- P(A)P(B)
(1}» (ABC)P(AB) + P(ABC)P(B), P(ABC)P(AB) + IP’(ABC)IP’(A))
P(A)P(B)
<IP’ (ABCO)P ) +P(ABC)P(B) P(ABC)P(AB) + P(ABC)P(A))
(A)P(B) ’ P(A)P(B)

@ (]P’ AB + IE”(AB) (B) P(A)P(AB) + P(AB)P(A))

_ P(AB) + P(AB)
~ min(P(A),P(B))

(i) uses the fact that for positive u and v, |u—v| < max(u, v). (ii) uses the fact that P(F1 Fy) < P(E7)
for any events E; and F. ([

Essentially, Lemma says that if events A and B have high “overlap,” then the conditional
probabilities of another event C' given A and B should be close. We next carefully construct two
such events with high overlap.

First, let ¢ = ¢+ ¢/2 and let ho € argming 4 Re(h). Since h. and H are a-MD-smooth, we
have that

MD (he, 0pty(H)) < (1 + |’ — ¢|)MD(he, opty () (11)

20



(1 + ae/2)P(he(X) # hao(X))
(14 ae/2)r. (12)

Since MD(h, optp(H)) = nfy,con ) P(h(X) # h(X)), there must be some hypothesis he €

<
<

argmin; . Res (h) that matches the minimum disagreement with h. plus a small positive number
(in case the infimum is not achieved):

P(her(X) # her (X)) < MD(her, 0ptp (€)) + 7
< (2+ ae/2)r.
Now, let the events A, B, and C' be defined as follows:

A: he(X)=1ANhs(X) =0,
B: he(X)=1Aha(X)=0,
cC: Y=1
Using Lemma[A-2] we can write the bound
AN=BV-ANADB)

IP’(Y:1|B)§IP’(Y:1|A)+]P( (13)

min(P(A),P(B))
We will establish bounds on each term in (I3).
Upper bound on P(A A =BV —-AA B) ltis easy to see that
AN-BV-ANB = ho(X)#hs(X)Vhe(X)# he(X).
Given this implication, it must be that
P(AN=BV =ANB) <P(he(X) # he(X) V he (X) # har (X))
< (34 ae/2)r
< pe€? /12 + pe€® /12 = pee® /6
where the inequalities follow from (I0) and (12).

Lower bound on min(PP(A),P(B)) Since h. is optimal within H for loss parameter ¢, Corollary
4.6 gives that ho(x) = 1if gy (x) > c. Similarly, he(z) = 0 if ¢y (x) < c. Therefore,

(X)) €(e,d) = h(X)=1Ahs(X)=0 & A
This implication allows us to lower bound P(A):
P(A) > Plgn(X) € (¢, ) = P(gu(X) € (c;c +€/2)) > pee/2

where the final inequality is by assumption. We also need to lower bound P(B) in order to lower
bound min(P(A),P(B)):

P(B) =P(AAB)+P(—~AAB)
=P(A) —P(AAN-B) +P(—AAB)
> P(A) — (IP’(A A=B) + P(~A A B))

> pe€/2 — pee” /6
> pc€/3.

We assume that ¢ < 1 to lower bound € > €2, but this is fine since if € > 1 then Theorem holds
trivially. Thus we have min(IP(A),P(B)) > p.¢/3.

Lower boundon P(Y = 1| B) By Lemmal|A.1] we have that, since P(B) > 0,
P(Y=1|B)=P(Y =1|hs(X)=1Ahs(X)=0)>¢

Upper bound on P(Y = 1 | A) Similarly, by Lemma[A.1] we have that, since ¢ > ¢ and
P(A) > 0,

P(Y =1]A)=P(Y =1|he(X)=1Ahe(X)=0)< ¢ =c+e¢/2.
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Concluding the proof Given all these bounds, we can rewrite (12) as

P(AA-BV-AA B)
min(P(A), P(B))

E<P(Y=1|B)<P(Y =1|A)+

pe€e?/6
pe€/3

<c+e/2+e/2=c+e
¢—c<e.

<c+e€/2+

This completes the proof that ¢ — ¢ < e with probability at least 1 — d; the proof that ¢ — ¢ < e is
analogous. ]

A.7 Proof of Theorem4.11

Theorem 4.11 (Lower bound for optimal decision maker). Fix 0 < ¢ < 1/4, 0 < § < 1/2, and
0 < pe < 1Yse. Then for any IDT algorithm ¢é(-), there exists a decision problem (D, c) satisfying the

conditions ofTheoremsuch that m < % implies that P(|¢(S) — ¢| > €) > 6.

Proof. Consider a distribution over X € X = [0, 1] where
gz)=PY =1|X =2) ==
Let the distribution Dx over X have density p. on the interval (/2 — 2¢, 1/2 + 2¢) and let P(X =
0)=P(X =1)=12—2p.e.
Letc; = 1/2 — e and ¢o = 1/2 + €. Then clearly, for ¢ € {c1, ¢2}, the conditions of Theorem [4.2]are
satisfied:
P(g(X) € [c—€,¢)) = P(q(X) € (¢,c + €]) = pee.
By Lemmal4.1] the optimal decision rule for loss parameter c; is A, (z) = 1{z > ¢;} and for ¢y it
is he, () = 1{z > 2}
Now suppose
log(1
_ log(1/29)
8pc€
as stated in the theorem. We can bound the probability of the following event E:
P(Vz; €S q(z;) € {0,1}) = [P(X € {0,1})]"

E

( _4pc)

()"

—e —log(1/25) _ — 9.

vz

(i) uses the fact that 1 — u > e~2“ for u € [0, 1/2]. Now, suppose F occurs. In this case, k., (z;) =
he,(x;) for all x; € S. That is, regardless of which loss parameter ¢ € {c1,cq} is used, the
distribution of samples will be the same. Let S; denote the random variable for a sample taken from
a decision maker using h., and Sy a sample taken from h.,. Since these have the same distribution
under F, they must induce the same probabilities when the IDT algorithm ¢ is applied to them:

P = P(E(S1) < 12 | E) = P((S2) < 1/2| E),
pa =P(E(S1) > Y2 | E) =P(&(S2) > 1/2 | E).
Since p; + p2 = 1, at least one of py, py > 1/2. Suppose WLOG that p; > 1/2. Then
P(|é(S2) — 2l =€) 2 IEJ’( (S2) < 1/2)
P(e(S2) <12 | E)P(E)

> 1/2(20) = 0.
Thus there is a decision problem (D, ¢2) for which the IDT algorithm ¢ must make an error of at least
size € with at least probability §. This concludes the proof. ]
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Corollary 4.12 (Lack of uncertainty precludes identifiability). Fix 0 < ¢ < 1/4 and suppose
a decision problem (D, c) has no uncertainty. Then for any IDT algorithm ¢(-), there is a loss
parameter ¢ and hypothesis class H such that for any sample size m, P(|¢(S) —c| > €) > 1/2.

Proof. Let the loss parameters ¢; = 1/2 — € and ¢o = 1/2 + € be defined as in the proof of Theorem
M.11)above. By Lemma[d.1] the optimal decision rule for loss parameter ¢; is h., () = 1{g(z) > ¢1}
and for cg it is he, (z) = 1{q(x) > c2}. Since P(q(z) € {0,1}) = 1, it is clear that the decision
rules make the same decision rules almost surely, i.e. P(h¢, (X) = h¢, (X)) = 1. Thus, letting S;
and S, denote samples drawn from decision rules h., and h.,, respectively, as above, we have that
the distributions of &1 and S, are indistinguishable. Thus by the same argument as above we can
show that (WLOG)
P(|é(S2) — 2] > €) > P(é(S2) < 12) > 1/a.

A.8 Proof of Lemmal[5.2]

Definition 5.1. A decision rule h : X — {0, 1} for a distribution (X,Y) ~ D satisfies the group
calibration/sufficiency fairness criterion if there is a function v : X — R and threshold t € R such
that h(z) = 1{r(x) > t} and r satisfies Y 1L A | r(X).

Lemma 5.2 (Equal loss parameters imply group calibration). Let h be chosen as in where
Uy,y,a) =co ifg=landy =0, {(§,y,a) =1 —c, if g =0andy = 1, and £(g,y,a) = 0
otherwise. Then h satisfies group calibration (sufficiency) if ¢, = cq+ for every a,a’ € A.

Conversely, if there exist a,a’ € A such that ¢, # ¢}, and P(q(X) € (cq,cqr)) > 0, then h does not
satisfy group calibration.

Proof that equal c, imply group calibration. Assume ¢, = ¢, = c forevery a,a’ € A. Then define

r(z) = q(x) + h(z). (14)
That is, r(z) is the posterior probability ¢(x) = P(Y = 1 | X = x) plus one if the decision rule
outputs the decision h(z) = 1. From the proof of Lemma4.1] we know that h(z) = 1 if ¢(z) > ¢
and h(z) = 0 if ¢(z) < c. From this and we can write
h(z) = 1{r(z) > c+ 1}.
Now we need to show that Y Ll A | »(X). Note that r(X) € [0, c] U [c + 1, 2]. First, we consider
r(X) € [0, c|. In this case, for any a € A, we have
PY=1|A=ar(X)=r)=PY =1|A=a,q(X)=r1)
=r
=PY =1|r(X)=r).
Next, say r(X) € [c+ 1,2]. Then
PY=1|A=ar(X)=r)=PY =1|A=0a,q(X)=7r—-1)
=r—1
=PY =1|rX)=r).
Soineithercase, P(Y =1 | A=qa,7(X)=r)=P(Y =1|r(X)=r). ThusY 1L A|r(X). N

Proof of inverse. Now, assume Ja,a’ € A such that ¢, # c4/. WLOG, suppose that ¢, < cq/. Let
r : X — R be any function satisfying h(z) = 1{r(xz) > t}. WLOG we can also assume ¢ = 0.
From Lemma [4.1] we know that if a(z) = a, then ¢(z) < ¢, implies h(z) = 0 and g(z) > ¢,
implies h(z) = 1. Also, if a(z) = o/, then ¢(x) < ¢,/ implies h(z) = 0 and g(z) > ¢, implies
h(x) = 1. Therefore,
PY=1]|A=a,r(X)>0)
=PY=1|A=a,q(X) > c,)
=P = 1]4(X0) > )
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Figure 4: A graphical depiction of the POMDP formulation of IDT described in Appendix [B} A state
in {s°, s'} is randomly selected at each timestep and an observation is generated according to the
conditional distribution of X | Y. An action (decision) is taken and the agent receives reward equal
to the negative of the loss.

=PY =1|q(X) € (ca,Ca’) il

+PY =1]q(X) 2 caﬁé((?) icc;
0 P(q(X) € (cascar)) B - ) > o)
fca/ P(q(X) > ca) +PY =1]¢(X) > a)IEDq(X) Ca)
LB =1]4(X) 2 cu)
<PY =1[g(X)>ca)

(i) and (ii) make use of the fact that
P(Y = 1]¢(X) € (ca; car)) = E[g(X) [ ¢(X) € (ca, car)]
<cw <E[g(X) | ¢(X) Z car] =P(Y = 1]¢(X) > car).
(i) also uses the assumption that P(¢(X) € (cq,cq)) > 0.

Thus, we have that P(Y = 1| A =a,r7(X) > 0) #P(Y =1| A =d/,7(X) > 0); therefore, Y’
and A are not independent given r(X), so group calibration is not satisfied. |

B POMDP Formulation of IDT

As mentioned in the main text, IDT can be seen as a special case of inverse reinforcement learning
(IRL) in a partially observable Markov decision process (POMDP) (or equivalently, belief state MDP).
Here, we present the equivalent POMDP and discuss connections to to our results.

A POMDP is a tuple consisting of seven elements. For an IDT decision problem (D, ¢) they are:

* The state space consists of two states, each corresponding to a value of Y, the ground
truth/correct decision. We call them s° for Y = 0 and s' for Y = 1.

* The action space consists of two actions, each corresponding to one of the decisions Y. We
equivalently call them a° for Y = 0 and a! for Y = 1.

» The transition probabilities do not depend on the previous state or action; rather, s° or s' is
randomly selected based on their probabilities under the distribution D:

p(sip1 =" | si,a1) = Pxy~p(Y =0),

p(sty1 = 8" | se,a) = Pxy~p(Y =1).
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Figure 5: A graphical depiction of the belief state MDP formulation of IDT. There is a belief state
for each posterior probability ¢(z) = P(Y = 1| X = z) € [0, 1]. Observing the agent at a belief
state gives a constraint on their reward function [2]. Thus, if ¢(X) has support on [0, 1], i.e. if there
is a significant range of uncertainty in the decision problem, then there can be arbitrarily many such
constraints, allowing the loss parameter c to be learned to arbitrary precision.

* The reward function is the negative of the loss function described in Section [3}
R(Sov aO) =0 R(Sla aO) = _(1 - C)v
R(s%,a') = —c R(s',a') = 0.

* The observation space includes elements for each X € X. We denote by o the POMDP
observation for x € X.

* The observation probabilities are
plop=0"|ss=8Y)=P(X =z |Y =y).

* The discount factor +y is basically irrelevant to IDT, since the decisions are non-sequential.
Thus any ~ will produce the same behavior.

A graphical depiction of this POMDP is shown in Figure 4} Any decision rule h : X — {0, 1}
corresponds to a policy 7 in this POMDP:

m(a; = a? | 0y = 0%) = 1{h(z) = §}.
Belief state MDP  The above POMDP can be equivalently formulated as a belief state MDP. The
belief states correspond to values of the posterior probability
Ps=s'lo=0")=PY =1| X =2x) = q(z).
A graphical depiction of this belief state reduction is shown in Figure[5]

Since the POMDP is non-sequential, these beliefs only depend on the most recent observation o”.
The expected reward for action a¥ at belief state with posterior probability ¢(z) is

R(q(x),a%) = P(s = 5" | q(2))R(s°,a’) + P(s = s' | q(x))R(s*,a") = —q(z)(1 — ¢),
R(q(z),a') =P(s = s° | g(2))R(s°,a') + P(s = s | q(2))R(s",a') = —(1 = q())e.

Thus, observing decision a° at a belief state ¢(z) indicates that

R(q(x),a°) > R(q(z),a")
—q(@)(1 —¢) = =(1 - q(x))c
c>q(x).

Similarly, observing decision a® at a belief state ¢(z) indicates that

R(q(z),a") < R(q(z),a")
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—q(z)(1 —¢) < =(1—g(z))c
¢ < q(x).

Thus, as described in Section IDT in this (optimal) case consists of determining the threshold on
q(x) where the action switches from a” to a' for observations o®.

This formulation gives some additional insight into why uncertainty is helpful for IDT. If ¢(z) €
{0, 1} always, then there are only two belief states corresponding to ¢(z) = 0 and ¢(z) = 1. Thus,
we only obtain two constraints on the value of ¢, i.e. 0 < ¢ < 1. However, if ¢(X) has support on all
of [0, 1], then we there belief states corresponding to every ¢(z) € [0, 1]. Thus we can obtain infinite
constraints on the value of ¢, allowing learning it to arbitrary precision as shown in Section @.1]

C Alternative Suboptimality Model
As mentioned in Section .2} there are many ways to model suboptimal decision making. One
possibility is to only require that the decision rule h is close to optimal, i.e.

Re(h) <RP'+A  where RP = i}ILl*f Re(h*). (15)
However, as we show in the following lemma, this assumption can preclude identifiablity of c. The

models of suboptimality we present in Sections[4.2]and[4.3] in contrast, still allow exact identifiability
of the loss parameter.

Lemma C.1 (Loss cannot always be identified for close-to-optimal decision rules). Fix(0 < A <
1and 0 < € < 1/4. Then for any IDT algorithm &(-), there is a decision problem (D, c) and a
decision rule h which is A-close to optimal as in such that

P(|&(S) —cl =€) 2 1/2,
where the sample S of any size m is observed from the decision rule h. Furthermore, the distribution
D and loss parameter c satisfy the requirements of Theorem for when the decision maker is
optimal.
Proof. Consider a distribution over X € X = [0, 1] where
gz)=PY =1|X =2) ==z

Let the distribution Dx have density A on the interval (1/2 — 2¢,1/2 + 2¢) and let P(X = 0) =
P(X =1)=1/2—2Ae.

Letc; = /2 — eand cg = 1/2 + €. Then clearly P(¢(X) € [c —€,¢)) =P(¢(X) € (¢,c+¢]) = €A
for ¢ € {¢1, ca}. Thus either ¢; or ¢y satisfies the conditions of Theorem 4.2

Now define identical decision rules
hi(z) = ho(z) = 1{z > /2 — €}.

From Lemma[d.1] we know that h; is optimal for ¢, so it is certainly A-close to optimal. We can
show that hy is A-close to optimal for ¢ as well:

Rey(h2) = Rey(z = H{a = 12+ €})
- ]E[E(IL{X >1/— €}, Y) — (1{X > 12+ e},Y)}
=E[(1{X > 12— e}, Y) —LU{X 2 12+ e}, Y) | X € [1f2— e+ |B(X € [1/2— €, 1/2+])

<2P(X € [Y2—¢€,1/2+€])
= 4eA\ < A.

Since hy and hs are identical, we must have that for a sample S chosen according to either, at least
one of P(é(S) > 1/2) > 1/2 or P(é(S) < 1/2) > 1/2. Thus for some ¢ € {c1,¢a},

P((S) — ¢ > €) > 1/2.
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D Additional Results for IDT with Suboptimal Decision Maker

D.1 Lower bound for unknown hypothesis class

We give two lower bounds for the sample complexity in the unknown hypothesis class case from
Section 4.3| First, in Theorem L we show that there is an IDT problem such that m = Q( loi(l/ J) )
samples are required to estimate c. Second, in Theorem[D.2] we show that there is an IDT problem
such that m = Q( f) samples are required. These lower bounds do not precisely match our upper

bound of m = O( loi(l/ J) ) from Theorem and we leave as an open problem the exact
minimax sample complexny of IDT in the unknown hypothesis class case. However, they do show
that IDT does become harder as the VC-dimension d increases, and that in some suboptimal cases
a number of samples proportional to 1/¢? is needed to estimate ¢ to precision e—more than the 1/e
needed for an optimal decision maker.

Theorem D.1 (First lower bound for suboptimal decision maker). Fix0 < e <1/8 0< 4§ <1/2,
and p. < 1/10. Then there is a decision problem (D, ¢), hypothesis class family H, and hypothesis
class H € H satisfying the conditions of Theoremd.10\with the above parameters such that

<Q <loi(1/6)> implies that  P(|¢(S) —¢| > €) > 4.

Proof. Specifically, let the sample size

 log(1/(29))
40p.e?

Defining the distribution  First, we define a joint distribution D over X = (X1, X,) € X = R?
and Y € {0, 1}. The distribution of X has support on 2 line segments in R? and at a point. It can be
summarized as follows:

1. Dx has density 22¢ on the line segment from (—1,0) to (1,0).

PY =1|X = (21,0)) = 21,

2. Dx has density 10p.x; at points (x1, 1) on the line segment from (0, 1) to (1, 1).
PY =1|X = (1,1)) = L.

3. Dx has point mass P(X = (—1,0)) = 1 — 10p..
P(Y=1|X=(-1,0)) =0.
Defining the family of hypothesis classes Now, we define a family of two hypothesis classes:
HY 2 {h(z) = 1{z1 > b} | b€ [3/8,5/8]}
H2 2 {h(z) = 1{z, > b+ 2exs} | be [1/2,3/4]}

H £ {H', H?}.
Let’s analyze H' first. The posterior probability that Y = 1 given that X; = x; is
1+xq
— 1 <0
PY=1|X1=121) = 2 16
( | X1 1) {éigii I (16)
It is simple to show that this is increasing in xz1; thus, the Bayes optimal decision rule based on X
for cis
1{z1 > 2c—1} c<1/2
hl(x) = 17
() {]1{3:1 > gc_;i c>1/2. an
Now, let’s analyze H2. The posterior probability that Y = 1 given that X; — 2eX, = b for b > —2¢
is
14 9b+ 16€
PY=1|X;—2Xo=b)=———— 18
(¥ =1]X = 2eX =b) = o g 16e (1%
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This can also be shown to be increasing in b, so the Bayes optimal decision rule based on X; — 2e X»
forc >=1/21is

19)

2c¢ — 1 — 16¢€ + 16¢ce
hi(x):]l{xl—Qeng 9 8e }

For this proof, we consider two hypothesis class and loss parameter pairs: ¢; = 1/2 for #* and

co = ;Egz for H2. These correspond to the decision rules

hl(z) = 1{z; > 0},
il Z 0 T — 0

h%(z) = 1{x; — 2exy > 0} = {Sﬂl S 9 oy =1

It should be clear that these decision rules agree except when x2 = 1 and z; € [0, 2¢).

Another important fact is that

1+16e 1 4 1
- — = 49 20
2 5 16 2 T 1rse—2 € (20)

since € < 1/8.

We defer to the end of the proof to show that these hypotheses and distribution satisfy the conditions
of Theorem

Deriving the lower bound Similarly to the proof of Theorem we can bound the probability
of an event E:

]P)(/sz esS Ti1 € [0, 26) A Ti2 = 1) = [1 — ]P)(Xl S [0726) A Xy = 1)]m

E

(1 —20p.e*)™

()

~log(1/26) _ 9.

Y

Conditional on F, the distributions of samples S; and Ss for decision rules h! and A? are identical:
p1=B@E(S1) < Yot e | E) = Pe(S2) < /2 + € | E),
p2 =P(é(S1) > Y2+¢€| E) =P(é(Ss) > Y2+ ¢ | E).

Since p1 + po = 1, at least one of py, pa > 1/2. Suppose WLOG that p; > 1/2. Then

P(|e(S2) — 2| Z ) > IP’( (So) <12 +¢)
P(é(S2) < 1/2+ €| E)P(E)
2 1/2(26) = 4.

(i) uses the fact shown earlier in (20). Thus, there is a decision problem (D, ¢;) for which the IDT
algorithm ¢ must make an error of at least size e with at least probability §. This concludes the main
proof.

Verifying the requirements of Theorem First, we need to show that ¢3: (X ) has density at
least p. on [c; — €, ¢1 + €] = [1/2 — €,1/2 + €]. From (16)) and (17), it is clear that

142z

e xr1 <0
qw(l‘) = 91(1‘1) = 1f9

3+s0; 21 2 0.

We can write the density of g1 (X) as the density of X7 multiplied by the derivative of the inverse
of g1:

d _, 5pe d [2¢—1 c<1/2
= >
ple)goon () = 5o { c>1/2

980
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_ Bpe |2 c<1/2
sy c>1/2

Next, we need to show that g5;2 (X) has density at least p. on [co — €, ¢c2 + €] € [1/2, 1]]. From
and (19), we know that

1+ 9(zy — 2exs) + 16€
Q2 (Qj) = gg(l’l — 26552) = 24+ 8(([;1 — 26.’172) + 165

Using the same method as for ¢z1(X) and the fact that the density of X; — 2eX is at least the
density of X (i.e., 22), we have that the density of g2 (X) is at least

2
5pe d B 5pci207 1 — 16€ + 16¢ce

a
2 3% 9= q@ 9—8c
_ 5pc 10 + 16¢
2 (9-8¢)?
dp¢ 2
> - = De.
=Ty 5 Pe
The only remaining condition of Theorem to prove is MD-smoothness. Again, consider ! first:
MD(h} , H?) = in  P(hi (X)#h2 (X
(P, ) b2e[1H1/12r}3/4] ( by (X)) 7# hipy ( ))
—  min P b1 — ba| + 5pe |bT — (b2 + 2¢)|
ba€[1/2,3/4] 2
5
= 225 [bu = bl + 5pe [ — (b +2¢)?|

= 20p.|e(by + €)].

From (17), we know that b; — b} < 10(c; — ¢} ) where b; and b} are the optimal thresholds for loss
parameters ¢; and ¢}, respectively. So we have that

MD(h}:’lvH2) - MD(hil7H2) = 20pc€(|b/1 + 6| - |b1 + 6‘)
< 20pce|by — b1
< 200p.€|c) — e

Thus h' and H are a-MD-smooth with av = 200p.e.
Similarly, for H2,

MD(hZ  HY) = i P(hl (X)#£ K2 (X
(i, 1Y) = _min, P (i, (X) # 0, (X))
= min %wl—b2|+5pc|b§—(b2+2e)2|
bief1/2,3/4] 2

5pe
_ ’23 lby — ba| + 5pe [b3 — (ba + 2€)?]

= 20pcle(ba +€)|.

So we have that
MD(h%,, H') = MD(h', H') = 20pee(|bh + €| — [b2 + €])
< 20p.€[by — by
< 200pcecy — cal,

and thus 22 and H are also 200p.e-MD-smooth.
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Theorem D.2 (Second lower bound for suboptimal decision maker). Let d > 6 such that d = 2
(mod 4). Let € € (0, ﬁ] and p. € (0, 1]. Then for any IDT algorithm &(-), there is a decision

problem (D, ¢), hypothesis class family H, and hypothesis class H € H satisfying the conditions of
Theoremd.10\with the above parameters such that

m < Q (f) implies that P(|é(S) —c| > €) > —.
€

Proof. Specifically, let

64pee

Defining the distribution Letn = d — 2 > 1; n is divisible by four. First, we define a joint
distribution D over X € X = R"*! and Y € {0,1}. Let X; refer to the jth coordinate of the
random vector X and let z;; refer to the jth coordinate of the ¢th sample x;. Furthermore, let X;.,,
refer to the first n components of X.

The distribution of X has support on n line segments in R”*! and at the origin. In particular, it
has density p./n on each line segment from (0,...,X; =1,...,0,0)to (0,...,X; =1,...,0,1),
where the density is with respect to the Lebesque measure on the line. There is additionally a point
mass of probability 1 — p. at the origin. Everywhere on the support of D,

P(Y =1 | Xl:n = xl:nanJrl = xn+1) = Tn+41-

Defining the family of hypothesis classes Next, we define a family of hypothesis classes. Let
o € {—1,1}" and define

fo(x) = Tnp1 — 8ev/no T Tip.
Then we define 2™ hypothesis classes, one for each value of ¢:
H7 £ {h(x) = 1{f"(x) > b} | b e [1/4,3/4]},
H £ {H | o€ {0,1}"}.
Now, we can derive the optimal decision rule in hypothesis class H? for loss parameter c.

Let [f"(X)]??j = max(1/4, min(3/4, f7(X)) denote the value f?(X) clamped to the interval

[1/4,3/4]. Then for b € (1/4,3/4),

Py =111/ (X)) =0)

P(Y =1|Xp1 —8ev/no’ Xi.y = b)

n
%Z]P’(Y: 1| X; =1AXnq1 = b+ 8ey/no;)
j=1

1T
— b+ 8ey/n—2.
n

where 1 is the all-ones vector. Thus, the Bayes optimal decision rule based on [f (X )]i’?i is

170
(o) = 1{ 1) + 8ot %z cf
1wz e-sevit 2}
for ¢ — 86\/HITT" € (1/4,3/4). The induced posterior probability for H? is
(&) = 17 (2) + 8oy,

We consider one hypothesis from each hypothesis class H° € H. Specifically, we consider the
optimal decision rule for

1 17
= +8ev/n—2,
2 n
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which, as shown above is,
1
h (@) = l{f“(x) > 2}. @)
We leave until the end of the proof to show that each of these decision rules h,, for o € {—1,1}"
satisfies the requirements of Theorem {.10]

Deriving the lower bound Now, we are ready to derive the lower bound that there is some h”
such that P(|¢(S) — ¢| > €) > g5. First, we can rewrite h° from as

he((0,2; = 1,0,2p41)) = L{@p11 — 8eyv/no; > 1/2}

= {1 > 1/2 4 8ev/noj}.

Thus, only decisions made on points where z,, 1 € [1/2 — 8¢y/n, 1/2 + 8ey/n] are dependent on 0.
Denote by FE; the event that there is an observed sample that depends on o ;:

Ej £ dx; € S such that Ty = 1N Tin+1 € [1/2 — 86\/5, 1/2 + 86\/5]

Suppose we let o; be independently Rademacher distributed, i.e. we assign equal probability 1/2™ to
each o € {—1,1}. Then if E; does not occur, the sample of decisions S is independent from ¢, i.e.
S AL oj | —Ej.

Now let F' denote the event that more than n/2 of the E; events occur:

F 2 |{jel,...,n|E;} >n/2

We will start by proving a lower bound on P(|é(S) — ¢?| > e | =F). If F does not occur, then at
least half of the F/; do not occur. Thus at least half of the elements of o are independent from the
sample S. Let I be the set of indices j for which E; does not occur; thus, o7 1L &, and given —F),
[I| > n/2.

We can decompose ¢ into part that depends on oy and part that depends on o c:

]_TO']C’

1T
9L | 8ev/n . 22)
n n

1
CU:§+8€\/’E

0’j+1

Note that for each j € I, 5

17 I 41 1
Z(U;FH;JJ;NBinom(|[|’2>_
J

is 1/2-Bernoulli distributed. Thus

We can establish lower bounds on the tails of this given that F' occurs:

I I 1 .
P Z—uzthF = Z—ug—t|—|F > 827/,
2 2 15

This lower bound is from Matousek and Vondrak [42]. Plugging in ¢ = % n, we obtain

| _ 1 |1 1 1
PlZ-—=>= -Fl=(Z-2<—= -F) >
( 2 —8\/5| 2 - 8\/5| — 20
- 1 T 1 1
P(1 afzzﬁhF =(1 alg—i\/mﬁF 220. (23)

Given S, o;c is completely known (since E; occurs for each j € I¢, revealing o). So plugging

(23) into (22) gives
1
P (CU — 5 - 86\/ﬁ

1TJIC ].TO'IC

1 1
>26|—|F,S):]P)(CU—2—8€\/7; <—26|—|F,8)>

n n 20
1
P(c” — %1€ > 2e | ~F,8) =P (¢ — %1 < =2¢ | =F,S) > 20
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That is, there is at least probability 1/20 that ¢” is more than 2e above and below ¢?:¢, given —F' and
the observed sample S.

This is enough to show that P(|¢(S) — ¢7| > € | =F,S) > 15. First, observe that
P(&(S) > 7@ | =F,S) + P(&(S) < ¢71¢ | =F,S) =1,
so one of these probabilities must be at least 1/2. Say WLOG that it is the first. Then
P(&(S) — 7| > ¢ | ~F, S)
>P(c? — 71 < =2e AE(S) > %1€ | -F,S)

(2 P(CU — ¢%1C S —%¢ | ﬁF78) P(é(S) Z c’Ic ‘ ﬁFy S)

1 1 1
>(—=)(2)=—=.
—\20 2 40
Here, (i) makes use of the fact that S 1l oy | —F. Given this, we can finally derive the lower bound

on the unconditional probability that P(|¢(S) — ¢7| > e):
P(|&(S) = 7| =€)

=P([e(S) — 7| = e | F)P(F) +P(|&(S) — ¢ > € | ~F)P(=F)
> P(|e(S) — 7 > €| ~F)P(=F)
> PCH) (24)

So we need to derive a lower bound on P(—F"). We can do so by noting that in order for F' to occur,
there must be at least n/2 samples x; with ; ,11 € [1/2 — 8¢y/n, 1/2 + 8e4/n]. The probability of
this event for a particular sample is

P(Xn+1 € [1/2 — 8ev/m,1/2 + 86\/5}) = 16peev/n.

So at least n/2 of the m samples must have the event with probability 16p.e+/n occur for F to occur.
Let GE(p, m, r) denote the probability of at least  successes of probability p in m independent trials.
Then there is the following fact from probability theory [43]:

GE(p,m, (1 +7)mp) < e~ 7" ™#/3,
Then
P(F) < GE(16p.ev/n, m,n/2)

=GE <16pce\/ﬁ7\/ﬁ 2( vn ) (16pce\/ﬁ)>

64p.e’” \ 64p.e€

< e—n/12 < 3/4

as long as n > 4 as assumed. Thus P(—F') > 1/4. So putting this together with , we have
1
P(le(S) —c| > €) > —.
(16(8) = "1 2 ) 2 1o

This equation is given with respect to the uniform distribution over o. But there also must be a
particular o and thus corresponding h? € H° which has the same tails on é(S) — ¢. Thus we conclude
the proof.

Verifying the requirements of Theorem 4.10| Now we show that the distribution and hypothesis
class family satisfy the conditions of Theo First, note that all h € ‘H € H are thresholds on
linear functions of the observation x. Thus, Uy is a subset of the halfspaces in R™*! and so it
has VC-dimension at most n + 2 = d.

Next, it is clear that for p < e,

170
P(gye (X) € (c,c+p]) =P (f"(X) —&—86\/57 € (c,c—i—p])
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1T
i =1AXp41 — 8ev/no; + 86\/ﬁ—a € (c,c+ p])
n

Il M: i M:

= DPcp-

A similar result can be shown for ]P’(qya (X) € [c—p,c)).

Finally, we need to show that MD-smoothness holds. Take any /1 and any 7. Then the disagreement
between h? and a hypothesis in H? with threshold b is

B(h7(X) # b (X) = f;Z

j=1
De n
i

This is minimized when b is the median of (% + 8¢y/n(c; —&;)) forj = 1,...,n. Thus b €

[ — 8ey/n, 5 + 8ey/n]; since € < ﬁ, this implies b € [3/8,5/8]. Suppose now we let ¢’ €

[¢” —1/8,¢” +1/8]. Then we canlet )’ = b+ (¢’ — ¢?) and

MD(hg, 1) < P(he(X) # b (X)) = P(R7(X) # h{ (X)) = MD(h", H).
Thus for |/ — ¢7] < 1/8, h? and H are 0-MD-smooth. If |¢' — ¢?| > 1/8, then we have

8
< MD(he, H#?)

Thus overall A° and H are o-MD-smooth with

1
2—|—86fa]—b 8e\/nd;

( + 8ey/n(o; ))—b’.

MD(h%,,h%) < | — 7 [MD(h7, HF).

8
o = max

G#o MD(}LU HU)
|

Bibliographic note: we establish dependence on the VC dimension d in Theorem using a
technique similar to that used by Ehrenfeucht et al. [44].

D.2 Necessity of MD-smoothness

The lower bounds given in Section[D.T]do not depend on the « parameter from the MD-smoothness
assumption made in Theorem 4.3} thus, one may wonder if this assumption is necessary. In the
following lemma, we show that it is necessary in some cases by giving an example of an IDT problem
where a lack of MD-smoothness precludes identifiability of the loss parameter.

Lemma D.3 (No MD-smoothness can prevent identifiablity). Let ¢ € (0,1/10). Then for any
IDT algorithm &(-), there is a decision problem (D, ¢), hypothesis class family H, and hypothesis
class H € H satisfying the conditions of Theoremd.10|except for MD-smoothness such that

. 1
JEOREEDES

for a sample S of any size m.

Proof. Defining the distribution  First, we define a distribution D over X € X = R? and
Y € {0,1}. Dx has density /2 on two squares [—1,0] x [—1,0] and [0,1] x [0, 1], and the
distribution of Y | X is defined as follows:

%Jrl%ler%zg xz € [-1,0] x [-1,0]

PY=1|X=z=
( | v {§+fg}x1+125x2 € [0,1] x [0,1].
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Figure 6: A visualization of the distribution and decision rules used in Lemma to show that a lack
of MD-smoothness can prevent identifiability of the loss parameter c. On the left, the distribution
over X = (X1, X32) and Y is shown; X has constant density on unit squares in the first and third
quadrants, and P(Y = 1 | X)) varies as shown with the heatmap. We consider two decision rules h;
and ho which are optimal thresholds of X; and Xo, respectively, for loss parameters ¢; = 2/5 and
co = 3/5, respectively. Since ¢; # co but P(hy(X) = ho(X)) = 1, it is impossible to identify ¢
reliably. This is because the distribution and decision rules are not MD-smooth, since shifting either
decision rule slightly causes a jump in minimum disagreement with the other hypothesis class from 0
to a positive value.

Defining the family of hypothesis classes = We consider the two hypothesis classes which are
thresholds on one component of the observation x:

Hi = {h(z) = H{z, 2 b} | b€ [-1,1]},
Hy = {h(z) = 1{zp > b} | b e [-1,1]}.

That is, H = {#1, H2}. The conditional probabilities for Y = 1 given just one of the observation
components are

2 2 2
q?—ll(‘r) =Py =1 | Xi=x1) = 5 + Bxl + 51'11{1'1 > 0}7
(25)
3 2 2
q?—lz(aj) = IP)(YV =1 | Xo = $2) = 5 + Bl‘g + 51'21{1‘2 < 0}

We consider the optimal decision rules for ¢; = 2/5 and co = 3/5 in H; and Ho, respectively, which
from the above can be calculated as

hl(ac) = ]l{m1 Z 0},
hg(ﬂj) = ]l{ajg Z 0}

The distribution and decision rules are visualized in Figure[6]

Lack of identifiability = Note that since X only has support where sgn(X;) = sgn(Xs), the above
decision rules are indistinguishable. Thus, we use the same techniques from Corollary [4.12] and
Lemma C.1|to show that for at least one of ¢ € {c1, 2}

P(|&(S) — ¢| > 12(ca — c1) = 10 > €) > 1.

Hypothesis classes are not MD-smooth  Although this is not required for the proof of the lemma,
we will demonstrate that the defined hypothesis classes are not a-MD-smooth for any . By way
of contradiction, assume that there is some « such that h; and H are MD-smooth. Then for any
cy €10,1],

MD(hcll,Hg) S (1 + Q‘Cll - Cl|)1\/ﬂ)(h17 HQ) =0.

Here, MD(hy, H2) since P(h1(X) # ha(X)) = 0, i.e. hy and hs do not disagree at all. However,
there are clearly values of ¢} such that MD(h,; ,Hz2) > 0, so we have a contradiction.

Verifying the other requirements of Theorem [d.10] Clearly, the family of hypothesis classes
defined above have finite VC-dimension.

The densities of g3;, (X) and g4, (X) can be calculated as the density of X; or Xs multiplied by
the derivative of the inverse of the posterior probability functions. The densities of X; and X5 are
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both 1/2 on the interval [—1, 1], and the derivative of the inverse of the equations in (25) is at least
15/8. So the distribution satisfies the requirements of Theorem other than MD-smoothness with
DPec Z 15/ 16.

E Feature Subset Hypothesis Class Family

In this section, we work through the application of Theorem i.10]to a practical example. Theorem
M.10| concerns the case of IDT when the decision maker could be restricting themselves to any
suboptimal hypothesis class H € H for some family of hypothesis classes H. In this example, we
consider Hi.,; as defined in (II]) and repeated here:

Hiew 2 {Hs | S C{1,...,n}} where Hg2 {h(x) = f(zs) | f: RIS = {0,1}}. @

This family can model decision makers that have bounded computational capacity and may only be
able to reason based on a few features of the data. An application of structural risk minimization [435]]
from learning theory shows that the sample complexity of IDT in this case may scale only linearly in
the number of features considered and logarithmically in the total feature count:

Lemma E.1. Let a decision maker use a hypothesis class Hg € Hy.q as defined in (I) which consists
of decision rules depending only on the subset of the features in S. Let s = |S| be the number of
such features; neither s nor S is known. Suppose X = R%, i.e. d is the total number of features. Let
assumptions on €, 0, o, and p. be as in Theorem {10}

Leth; € argming, o, Rc(fz) be chosen to be consistent with the observed decisions, i.e. izc(xl) = s
S

and such that |S| is as small as possible. Then |¢ — ¢| < e with probability at least 1 — § as long as
the number of samples m satisfies

zo(ge3) (letmun)]

Proof. We prove Lemma [E.T| by bounding the VC-dimension of the union of all optimal decision
rules in all Hg € Hyey where | S| < s. An optimal decision rule for loss parameter ¢ in Hg is given
by the Bayes optimal classifier:

R (z) = 1{P(Y = 1| X5 = ;) > c}.

Now consider a set of observations z1, ..., z4 € X. We will show that for d > 1 4 2slog,(n + 1),
this set cannot be shattered by d. To see why, note that decision rules in any particular class Hg
threshold the posterior probability P(Y = 1 | Xg = x). Thus, each hypothesis class can only
produce d + 1 distinct labelings of the set of observations. The number of hypothesis classes H g
with |S] < sis

S n S . N
Z<s> <y nF <41y
k=0 k=0
So the number of distinct labelings assigned by hypotheses in H to the observations must be at most
(d+1)(n+1)* <24if d > 1 + 2slogy(n + 1). Thus this set cannot be shattered, so

VCdim (Ujsj<sHs) < 14 2slogy(n+1) = O(slogn).
Applying Theorem with d = O(slogn) completes the proof. |

The following lemma states conditions under which a-MD-smoothness holds for Hiyey;.

Lemma E.2. Let Hy,, and Hs be defined as in . Let h € Hg. Suppose that there is a ¢ > 0 such
that for any S C {1,...,n}, one of the following holds: either (a) P(Y =1 | X = zg) = P(Y =
1| X =uxg) forallx € RY or (b) MD(h,Hg) > (. Furthermore, suppose that the distribution

of qu 5 (X) is absolutely continuous with respect to the Lebesque measure and that its density is
bounded above by M < co. Then h and Hy,o are oa-MD-smooth with oo = M /(.
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Since a-MD-smoothness is a sufficient condition for identification of the loss function parameter
¢, LemmalE.2] gives conditions under which IDT can be performed. The main requirement is that
considering different subsets of the features either gives identical decision rules (case (a)) or decision
rules which disagree by some minimum amount (case (b)). If decision rules using a different subset
of the features can be arbitrarily close to the true one, it may not be possible to apply IDT.

Proof. Consider any S C {1,...,n}. If (a) holds for S, then hS (z) = hf(x) for any ¢ € [0, 1] and
x € X. Thus

MD(h5,Hg) =0 < (1 +ald —¢|)MD(hS,Hg) =0
so a-MD-smoothness holds in this case for any a.
If (b) holds, then let h € arg ming, g P(h(X) # h(X)). Let ¢ € [0, 1]; without loss of generality,
we may assume that ¢’ > ¢. Denote qs(z) = P(Y = 1| Xg = x,). Then

MD(h5, Hg)
< P(h(X) # h(X))
= P(gs(X) < ¢ AR(X) =1)) + P(qs(X) > ¢ A R(X) =0))

< IP’(qS(X) € le,d) AR(X) = 1) n IP’(qS(X) < enR(X) = 1) n P(qs(X) > e AR(X) = 0))
- ]P’(qs(X) € le.d) AR(X) = 1) +MD(h, Hg)
< M(c' —c¢) +MD(h,Hg)

M
< [1 + ?(c/ — c)} MD(h, Hz).
So h and H satisfy a-MD-smoothness with o« = M /(. ]

F Surrogate Loss Functions

Here, we explore using IDT when the decision maker minimizes a surrogate loss instead of the true
loss. So far, as formulated in Section [3] we have assumed that the decision maker chooses a decision
rule h which minimizes the expected loss E[¢.(h(X), Y)], where the loss function is defined as

0 9=y
C(P,y) =S ¢ g=1Ay=0
1-c y=0Ay=1
cl{y =1} y=0
= . (26)
{(10)1{y0} y =1

However, this loss function is not convex or continuous, so it is difficult to optimize. Thus, we might

expect the decision maker to choose their decision rule using a surrogate loss which is convex. In

particular, suppose that the decision rule h(-) is calculated by thresholding a function f : X — R:
h(z) = 1{f(z) = 0}.

Then, we can replace the indicator functions in (26) with a surrogate loss V : R — R:

~ cV(w) y=0
lo(w,y) = 27
wo =" )oY @n
Say that the decision maker minimizes this loss 0. instead of the true loss ¢:
f* € argmin E[l.(f(X),Y)]. (28)
f

The following lemma shows that, for reasonable surrogate losses, if the decision maker is optimal
then minimizing the surrogate loss is equivalent to minimizing the true loss. The proof is adapted
from Section 4.2 of Rosasco et al. [46]]; they show that the hinge loss, squared loss, and logistic loss
all satisfy the necessary conditions.
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Lemma F.1. Suppose V : R — R is convex and that it is strictly increasing in a neighborhood of
0. Let f* be chosen as in ([28), and let h(z) = 1{f*(z) > 0}. Then h € arg min,, E[¢.(h(X),Y)];
that is, the threshold of * is an optimal decision rule for the true cost function.

Proof. We prove the lemma by contradiction; assume that h is not an optimal decision rule for the
true loss function. Then by Lemma[d.T]

P(h(X) # 1{g(X) > ¢} Aq(X) # ¢) > 0.
This implies that either
Ph(X)=0Aqg(X)>c)>0 or PR(X)=1Aq(X)<c)>0,

or equivalently,

P(f*(X) <0Ag(X)>c)>0 or P(f*(X)>0Aqg(X) <c)>0. (29)
Without loss of generality, assume the former. Define
= . 0 f(x) <0Aqg(z)>c
flw) = {f*(x) otherwise.

Consider any = which satisfies f*(z) < 0 and g(z) > c¢. We can write
E[l(f(X),¥) = L(F(X),Y) | X = 2]

=P =0 X =a)c (V(f*@) = V(/@)) +P = 1] X =2) (1= 0) (V(~f*(@) = V(~[(@)))
=1 —q(@)) e (V(f*(x)) = V(0)) +q(x) (1 —¢) (V(=f"(x)) = V(0))
= Le(f*(2) | 2) = £(0 | 2),
where we define _
le(w | 2) = (1 = g(2)) cV(w) + ¢(z) (1 — ) V(-w).
le(w | z) satisfies two properties:

1. Itis convex in w, since it is a sum of two convex functions.

2. It is strictly decreasing in w in a neighborhood of 0. To see why, note that we assumed
q(z) > ¢, so
(1 —g(z))e<(l=c)e<qglr)(1 -0
Thus, since the weight on V(—w) is greater than the weight on V' (w), and V' (w) is strictly
increasing about 0, ¢.(w | ) must be strictly decreasing about 0.
Together, these properties imply that
le(f*(@) | @) = L0 | 2) > 0
since we assumed that f*(z) < 0. Thus we have that
E[2(*(X),Y) = L(f(X),Y) | X = 2] >0 (30)
for any  where f*(x) < 0 and ¢(x) > c.

Now, we analyze the difference in expect loss for f* and f . Since these agree on all points except
when f*(z) < 0 and g(z) > ¢, we have that

E[0(f*(X).Y)] — E[0(f(X),Y)]
= E[i(f(X),Y) = AF(X),Y) | £(X) < 0na(X) > | P(#7(X) < 0na(X) > )

(Z>) 0. 31

Here, (i) is due to the combination of @, which implies the first term is positive, and the first case
of (29), which implies the second term is positive.

|| implies that f has lower expected surrogate loss than f*. However, we assumed that f*
minimized the expected surrogate loss; thus we have a contradiction. |
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Setting | Trueloss Surrogate loss

IDT for optimal decision maker (Theorem 4.2) v v

IDT for suboptimal decision maker (Theorems and 4.10) v X
No identifiability for decisions without uncertainty (Corollary |4.12)) v v

Table 1: An overview of which of our results apply in the setting when the decision maker is
minimizing a surrogate loss rather than the true loss.

Lemma [FI] means that all the results for an optimal decision maker (e.g., Theorem [{.2)) apply
immediately to a decision maker minimizing a reasonable surrogate loss. In the case of decision
problems without uncertainty, the decision rule will encounter zero loss and thus must be optimal,
so Lemma [F.1|also applies in this case for an optimal or suboptimal decision maker (e.g., Corollary
|.12)). In the case of a suboptimal decision maker facing uncertainty, different loss functions may
lead to different decision rules, so we cannot extend the results in that case to surrogate losses. Table
summarizes which results hold equivalently for decision makers minimizing an expected surrogate
loss.

G Further Comparison to Prior Work

In this section, we compare two prior papers on preference learning to our results. Mindermann
et al. [20] and Biyik et al. [21] both propose methods for active preference learning, i.e. querying
a person to learn their preferences. In each method, queries are prioritized which minimize the
uncertainty of the person. The authors argue that such queries are easier to answer and thus lead
to more effective preference learning. At first, these results may seem to contradict our findings
that uncertain decisions make preference learning easier. However, we argue that their results are
not in conflict with ours. Decisions with more uncertainty are probably more difficult for people to
make, and those close to the decision boundary are probably the most difficult. However, our results
show that it is necessary to observe such decisions in order to recover the person’s preferences. If we
cannot observe decisions made arbitrarily close to the person’s decision boundary, we cannot exactly
characterize the loss function they are optimizing. Thus, combining the results of Mindermann et al.
[20] and Biyik et al. [21] with ours suggests that there is a tradeoff between the ease of the decision
problem for the human and the identifiability of their preferences. That is, uncertainty may make the
human’s decision problem more difficult but our problem of identifying preferences easier.
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