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A MORE EXPERIMENTAL SETUP DETAILS

Training parameters. For training stages, we used SGD optimizer with learning rate 0.1, mo-
mentum 0.9 and weight decay 5 × 10−4 to train our models and all baselines with the step decay
learning rate strategy. We trained all the models with 120 epochs with one NVIDIA GeForce RTX
4090 GPU, and the learning rate will decrease to 0.01 and 0.001 at epochs 60 and 110, respectively.
We set the batch size as 256 for CIFAR-10 and 128 for TinyImageNet, respectively. For adversarial
setting (PGD) on CIFAR-10, we set the maximum perturbations ϵ as 0.03, the step sizes α as 0.0075
and the attack step T as 10. Besides, on TinyImageNet, we set ϵ as 0.015, α as 0.00375 and T as 4.

Evaluation. We employ a variety of adversarial attacks to assess the performance of our proposed
methods as well as compare our methods with state-of-the-art baselines: clean evaluation (NAT),
white-box attacks, like Fast Gradient Sign Method (FGSM) Goodfellow et al. (2015), Momentum
Iterative Method (MIM) Dong et al. (2018), Basic Iterative Method (BIM) Kurakin et al. (2018),
Projected Gradient Descent (PGD) Madry et al. (2018), Carlini & Wanger Attack (C&W) Carlini
& Wagner (2017), DeepFool Attack (DeepFool) Moosavi-Dezfooli et al. (2016), AutoAttack (Au-
toAttack) Croce & Hein (2020), Expectation over Transformation PGD (EoT-PGD) Athalye et al.
(2018), adaptive PGD (APGD) Croce & Hein (2020) and SparseFool Attack (SparseFool) Modas
et al. (2019); blakc-box attacks, such as OnePixel Attack (OnePixel) Su et al. (2019), Square Attack
(Square) Andriushchenko et al. (2020), Pixel Attack (Pixel) Pomponi et al. (2022) and DI2-FGSM
Attack (DI2-FGSM) Xie et al. (2019). For those that require setting the parameter of the attack
strength, we uniformly set the attack strength to 0.02 for the CIFAR-10 dataset as well as 0.01 for
the TinyImageNet dataset. Furthermore, we set the attack step size as 0.005 for CIFAR-10 and
0.0025 for TinyImageNet. The attack iterations of MIM, BIN and PGD are set to be 10. Due to
the space limit, for a large number of other parameters of all the attacks, we follow the default set-
ting in the TorchAttacks package Kim (2020), a PyTorch library that provides adversarial attacks to
generate adversarial examples.

B ABLATION STUDY EXPERIMENTAL RESULTS

In this appendix section, we show the results about comprehensive ablation studies: inference
method, the functions of two regularizer losses, the embedding dimension of the learnable em-
bedding input for hypernetworks, and the number of sub-models in the ensemble.

Table 4: Inference method ablation experimental results of our proposed RED and PS-RED on
CIFAR-10. “AVG” means the traditional average inference strategy. Better results for every training
method are highlighted in BOLD.

Dataset Method Inference NAT FGSM MIM PGD AutoAttack

CIFAR-10

RED
AVG 91.52 57.05 32.40 28.97 22.63

RSI 87.81 63.31 53.53 51.07 65.32

PS-RED
AVG 84.29 47.20 28.72 26.67 18.94

RSI 84.01 56.59 46.63 43.21 53.39

TinyImageNet

RED
AVG 60.40 32.86 23.50 21.89 19.29

RSI 57.55 41.11 28.94 24.96 42.28

PS-RED
AVG 57.98 36.68 18.75 16.35 14.57

RSI 54.74 38.94 25.88 22.32 37.81

B.1 INFERENCE METHOD ABLATION EXPERIMENTS

We provide the ablation experimental results to evaluate the function of the RSI strategy in Tab.
4. As seen in the table, we can see that the RSI strategy greatly improve the ensemble robustness.
Especially for AutoAttack, the RED/PS-RED improve the adversarial accuracy by ∼40% compared
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with the traditional average strategy. We attribute this increment to that the RSI strategy interrupts
the coherence of generating powerful adversarial samples.

Table 5: Lipschitz regularizer ablation study results (%) of our proposed ensemble methods on
CIFAR10. The best results are stressed in BOLD.

Method λa λb NAT FGSM MIM PGD AutoAttack

RED

0 10 90.69 39.27 16.05 18.57 29.75

1 10 88.76 49.79 26.08 31.12 48.73

10 10 87.81 63.31 53.53 51.07 65.32

100 10 77.20 59.74 39.49 42.05 66.83

PS-RED

0 10 90.47 24.08 1.58 1.93 8.41

1 10 85.76 39.42 9.87 13.15 34.66

10 10 84.01 56.59 46.63 43.21 53.39
100 10 66.52 32.34 19.06 29.68 41.09

B.2 LIPSCHITZ REGULARIZER ABLATION EXPERIMENTS

For evaluating the function of the Lipschitz regularizer RLipschitz, we conduct the Lipschitz regu-
larizer ablation study with letting λb = 10 (for Rsim). The experimental results are displayed in
Tab. 5, form which it is manifest that appropriate settings of λa (for RLipschitz) assist us reach better
robust performance of our proposed RED and PS-RED. Too small value of λa boosts the adversarial
accuracy for the NAT evaluation, e.g., when λa = 0, the RED method achieves the best results
(90.69%) under clear input. Besides, excessively large value of λa does not bring additional gains,
for example, when λa = 100, the robustness is inferior to that with λa = 10 against FGSM, MIM
and PGD.

Table 6: Gradient similarity regularizer ablation study results (%) of our proposed ensemble methods
on CIFAR10. The best results are stressed in BOLD.

Method λa λb NAT FGSM MIM PGD AutoAttack

RED

10 0 79.95 54.13 38.19 31.19 41.19

10 1 82.97 60.75 42.98 38.77 54.29

10 10 87.81 63.31 53.53 51.07 65.32
10 100 71.93 57.98 40.51 46.90 63.73

PS-RED

10 0 82.74 38.39 33.43 30.46 36.02

10 1 88.35 47.23 40.80 33.08 39.14

10 10 84.01 56.59 46.63 43.21 53.39
10 100 69.30 49.32 33.25 35.98 52.00

B.3 GRADIENT SIMILARITY REGULARIZER ABLATION EXPERIMENTS

To assess the function of the gradient similarity regularizer Rsim, we perform the gradient similarity
regularizer ablation study with letting λa = 10 (for RLipschitz), whose results are showcased in Tab.
6. According to the table, it is evident that proper assignments of λb (for Rsim) help us achieve
better robust performance of our proposed RED and PS-RED. Too small λb significantly weakens
the performance of the proposed methods, for example, when λb = 0, the robustness results of RED
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and PS-RED both decrease by a great margin. Nevertheless, too large value of λb provides few
gain for the ensemble robustness. Thus, we set λb as 10 for better robustness performance of our
proposed methods.

B.4 MEMBER NUMBER ABLATION EXPERIMENTS

To evaluate the influence of the member number in the ensemble set, we provide the robustness
results of our proposed methods and baselines with different ensemble members (3, 5, 8, 12). The
results are shown in Tab. 7, from which we can safely conclude that for most ensemble methods,
more members in the ensemble implies better adversarial robustness; for a specific number of mem-
bers, our proposed RED and PS-RED demonstrate stronger ensemble robustness compared with the
baselines. There is a exception, i.e., TRS, whose eight-member version is inferior to its five-member
version.

Table 7: Member number ablation study results (%) of our proposed methods and baselines on
CIFAR-10. The best results of every method are stressed in BOLD.

Method # of Member NAT FGSM MIM PGD AutoAttack

GAL

3 94.24 18.02 1.42 0.78 0.00

5 94.68 48.43 6.59 5.72 1.79

8 95.59 57.63 8.71 5.47 6.29

12 95.58 58.18 9.49 5.91 7.18

APD

3 94.17 57.59 2.26 0.81 2.63

5 94.82 60.75 17.19 9.15 2.23

8 95.82 55.43 26.22 20.20 3.66

12 94.99 57.92 26.77 23.11 5.22

DVERGE

3 92.83 68.55 18.51 12.85 20.62

5 93.28 75.73 30.02 26.38 42.14

8 92.85 76.52 37.02 34.06 50.97

12 93.04 69.88 46.56 44.40 53.25

TRS

3 86.73 44.03 18.63 14.22 2.48

5 88.08 55.57 34.49 31.31 24.41
8 91.01 54.82 31.30 27.60 20.61

12 89.12 55.68 34.95 32.69 22.50

RED

3 86.76 57.15 29.08 26.78 48.91

5 87.09 57.62 45.46 42.01 59.15

8 87.81 63.31 53.53 51.07 65.32

12 88.28 65.30 54.62 53.69 67.57

PS-RED

3 82.62 52.82 22.64 16.18 39.31

5 83.09 53.01 38.76 30.81 44.50

8 84.01 56.59 46.63 43.21 53.39

12 85.93 57.41 48.44 46.60 55.85

B.5 EMBEDDING DIMENSION ABLATION EXPERIMENTS

The original ensemble models (i.e., GAL, ADP, DVERGE, TRS and RED) contain 89,392,208 and
33,837,336 parameters for 8-sub-model CIFAR-10 ensemble and 3-sub-model TinyImageNet en-
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semble, respectively; while the parameter-efficient PS-RED methods (128 embedding dimension)
respectively include 9,528,400 and 3,865,560 parameters, saving approximately 90% of the parame-
ters. To explore the effect of parameter savings and robustness performance of the PS-RED method,
we conduct an ablation study on the hypernetworks input embedding. The experimental results are
depicted in Tab. 8. Note that we compare the number of parameters between the original ensem-
ble models (i.e., GAL, ADP, DVERGE, TRS and RED) and the PS-RED model with a specific
embedding dimension (like 32, 64, 128 and 256). As listed in the table, there exists a trade-off
between the embedding dimension and the robustness performance: normally, larger embedding di-
mension provides better robustness, which is probably because larger embedding dimension of the
input embeddings can enhance the representational capacity of hypernetworks, thus improving the
adversarial robustness. Nonetheless, a higher embedding dimension implies a need for more storage
space in PS-RED models. To illustrate, the number of parameters with the embedding dimension
of 256 is more than 39 times as that with the embedding dimension of 32. In addition, too large
dimension does not generate too many extra profits. As a example, the parameter count with the
embedding dimension of 256 is approximately three times greater than that with the embedding
dimension of 128, while the robustness only improves about 3% and 2% for the MIM and PGD
evaluations, respectively. Thus, the selection of hypernetworks input embedding dimension requires
a multifaceted trade-off and consideration.

Table 8: Hypernetworks’ input embedding dimension ablation study results (%) of the proposed
PS-RED method on CIFAR10.

Embed. # of Para. Para. Saving NAT FGSM MIM PGD AutoAttack

32 911,440 ↓98.98% 70.55 51.84 25.04 19.59 45.42

64 2,735,184 ↓96.94% 83.86 58.19 32.88 29.01 46.48

128 9,528,400 ↓89.34% 84.01 56.59 46.63 43.21 53.39

256 35,697,744 ↓60.07% 90.53 61.76 49.41 45.55 57.94

C MORE ANALYTICAL EXPERIMENTAL RESULTS

We conducted a more in-depth analysis of our proposed RED and PS-RED from various aspects:
multiple execution and comparison with latest random ensemble methods. These further experi-
ments assist readers gain a deeper insight into the proposed ensemble methods.

Table 9: Accuracy means and standard deviations (%) of our methods and baselines on CIFAR-10
under multiple executions. The best results are highlighted in BOLD, and the second-best results
are underlined.

Method NAT FGSM MIM BIM PGD C&W DeepFool AutoAttack

GAL 94.64±1.16 57.12±0.79 8.83±0.25 6.19±0.40 5.27±0.31 93.39±4.23 17.24±1.49 6.32±0.29

ADP 93.60±2.25 56.21±1.22 25.55±0.70 22.42±0.93 19.63±0.57 94.35±3.82 4.66±0.36 4.09±0.70

DVERGE 92.19±1.01 75.42±2.12 37.57±0.58 35.71±0.69 33.04±1.05 93.04±1.18 39.20±0.75 50.45±1.02

TRS 91.25±1.23 55.06±0.37 30.88±0.53 28.48±1.21 27.11±0.71 90.89±2.02 7.71±1.62 20.52±0.99

RED 88.33±2.31 62.21±1.24 54.58±1.29 52.73±1.47 50.50±0.67 87.54±2.59 52.72±2.33 64.48±1.11
PS-RED 82.47±2.83 54.30±2.77 45.81±1.82 44.49±1.18 41.61±1.89 82.04±3.51 49.33±0.24 52.68±0.71

C.1 MULTIPLE EXECUTION EXPERIMENTS

Our ensemble methods include a random module (RSI), whose performance may be influenced by
different execution environments. To eliminate the environmental variance and get a stable robust-
ness evaluation, we run our proposed RED as well as PS-RED multiple times (five times). The
means and standard deviations are shown in Tab. 9, in which we used the different machine random
seed for the multi-execution results. As indicated in the table, it is clear that our proposed methods
can obtain stable robustness results that are consistently close to the robustness results in Tab. 1.
Additionally, we also conduct multi-execution comparative experiments of the corresponding coun-
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terparts, as illustrated in Tab. 9. The comparison results reveal that our proposed RED and PS-RED
excel over the baselines with a stable and noticeable robustness increments.

C.2 LATEST RANDOM ENSEMBLE METHOD COMPARISON

Cai et al. Cai et al. (2023) presented the random gated networks and ensemble-in-one (EIO) method
to boost ensemble robustness, achieving state-of-the-art ensemble robustness. We compared our
proposed methods with theirs. We used the default setting with their published code and train 3-
path and 8-path EIO super-nets. For fair comparison, we trained 3-member and 8-member RED
and PS-RED ensemble models. Results against white-box attacks are showcased in Tab. 10. The
table clearly demonstrates that our approach achieves a similar clean accuracy compared to EIO.
However, our method’s robustness significantly surpasses EIO’s, particularly for the 8-member/path
model. We believe EIO’s deficiency stems from inadequate training as the number of paths in-
creases, coupled with a lack of explicit constraints to ensure diversity in adversarial transferability
across paths. Within EIO’s framework, only one path is trained per step, which compounds the
training challenge with an increased number of paths. Furthermore, despite utilizing distilled ad-
versarial examples to enhance the diversity of each path’s vulnerability, it is challenging to sample
all paths adequately to improve their collective vulnerability diversity due to the sheer number of
potential paths. In addition, we have presented experimental outcomes that incorporate adversarial
training. For models with 3 members or paths, the EIO framework, when enhanced with adversarial
training, exhibits superior robustness in comparison to our RED and PS-RED approaches. However,
as previously discussed, an increased number of paths does not necessarily translate to enhanced ro-
bustness. On the contrary, our methods with 8 members demonstrate improved robustness over both
the 8-path-EIO and the 3-path-EIO models. This suggests that while adversarial training can bol-
ster EIO’s performance with a smaller number of paths, our approach is more effective in achieving
robustness with a larger number of members or paths.

Table 10: Comparison Robust experimental results (%) of our proposed RED and PS-RED with the
latest EIO on CIFAR-10. The best results of every setting are stressed in BOLD.

Member/Path Method NAT FGSM MIM PGD AutoAttack

3

EIO 87.22 20.29 7.12 5.81 3.78

RED 86.76 57.15 29.08 26.78 48.91
PS-RED 82.62 52.82 22.64 16.18 39.31

EIO+adv. training 82.00 55.12 51.49 50.77 48.29

RED+adv. training 78.53 51.68 45.98 44.34 52.12
PS-RED+adv. training 76.01 48.43 40.20 38.92 44.78

8

EIO 86.52 18.87 7.40 6.29 4.41

RED 87.81 63.31 53.53 51.07 65.32
PS-RED 84.01 56.59 46.63 43.21 53.39

EIO+adv. training 81.18 54.46 50.14 49.32 45.39

RED+adv. training 77.99 68.21 65.06 61.12 71.62
PS-RED+adv. training 68.84 62.83 48.57 46.37 56.13

D LOSS LANDSCAPES OF PROPOSED AND BASELINE METHODS

In this appendix section, we used the the neural network visualization tool provided by Li et al.
(2018) to visualize the loss landscapes of our proposed methods and counterparts in Figs. 4 and 5.
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(c) DVERGE

Figure 4: Loss landscapes with different training methods (GAL, ADP, DVERGE). The left and
middle ones are the loss landscapes of two sub-models; the right one is the corresponding 3D surface
of both models.
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Figure 5: Loss landscapes with different training methods (TRS, RED, PS-RED). The left and
middle ones are the loss landscapes of two sub-models; the right one is the corresponding 3D surface
of both models.
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