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A  OTHER RELATED WORK

Human Motion Synthesis. Human motion synthesis aims at generating natural motions consistent
with any signal that describes the motion, such as action category (Guo et al.,|2020; Petrovich et al.,
2021)), text (Guo et al.| 2022} [Tevet et al.,|2023)), music (Tseng et al.,|2023;|Alexanderson et al.,[2023)
and historical pose sequences (Mao et al.,2019; |Li et al.| [2020). With these guidance, earlier works
(Ahuja & Morencyl [2019;|Ghosh et al.,2021)) focus on learning a shared latent space for motion and
conditions deterministically, limiting one-to-one mapping from condition to motion. Some recent
works have put more emphasis on the promotion of diversity, and learned to model the distribution of
motions based on the development of deep generative models, like Variational AutoEncoders (VAEs)
(Kingma & Welling, [2013)) and Generative Adversarial Networks (GANs) (Goodfellow et al.,|[2014)).
BiHMP-GAN (Kundu et al., 2019), conditioned on a given starting sequence, uses the discriminator
of GAN:Ss to regress the random vector for multiple probable predictions. (Cai et al., 2021)) presents
a VAE-based unified framework for generalized motion synthesis that covers motion prediction,
completion, interpolation and recovery. |[Wang et al.[(2022) involves the modeling of human-scene
interaction, path planning and body movement, to implement motion generation in the given scene
environment with target action sequence. ACTOR (Petrovich et al., 2021)) and TEMOS (Petrovich
et al., 2022) suggest employing a VAE to map action labels and texts into a variational distribution
with transformer structure (Vaswani et al.,|2017), respectively.

However, all the aforementioned methods primarily focus on fixed-size motion modeling, and do
not take into consideration the aspect of motion framerate. As a result, higher-framerate details and
lower-framerate global structures in datasets are disregarded. Moreover, these methods are con-
strained to generating motions of fixed sizes. In contrast, our proposed method addresses these
limitations by incorporating available varied framerates into considerations and enabling the gener-
ation of motions at arbitrary framerates.

Motion Representation. Motion representation is very crucial for the subsequent synthesis task.
There existing several motion representation on different datasets, such as (1) the classical SMPL-
based motion parameters (Petrovich et al.| [2021), (2) the redundant hand-crafted motion features
(Guo et al.| [2022)), and (3) straight-forward joint positions (Mao et al.,[2019). We opt for the first
two representations in this paper. Particularly, The first one is widely used in motion capture, and the
second one is mainly used in character animation. Following (Tevet et al.| 2023} |Chen et al., |2023)),
we employ the SPML parameters in action-to-motion task for a fair comparison, and redundant
hand-crafted features in text-to-motion and unconditional tasks.

B MORE DETAILS

B.1 IMPLEMENTATION

Our NeRM are decomposed into two stages, including INR and latent diffusion. For INR, the
hidden layer size is fixed to 1,024. We use the pre-trained codebook of (Zhang et al., 2023a), which
is trained by VQ-VAE (Van Den Oord et al.,|2017)) on the HumanML3D dataset. The codebook size
is set to 512 x 512. The number of learnable query embeddings of codebook-coordinate attention
is 256, and the dimension of each embedding is 128. We employ a frozen CLIP-ViT-L-14 model as
our text encoder for text descriptions, and a learnable embedding for action categories. The shape
of latent codes z is set to 256, which is then injected into condition by concatenation for diffusion
training and inference. Our models are trained with the AdamW optimizer using a fixed learning
rate of 10~%. Our batch size is set to 4,096 during the INR training stage and 64 during the diffusion
training stage separately. Since INR requires learning a latent code for each training sample, we
set its batch size large for efficient training. Besides, INR model was trained for 20,000 epochs
and diffusion model was trained for 3,000 epochs. The number of diffusion steps is 1,000 during
training while 50 during inference. The corresponding variances fJ, in diffusion are scaled linearly
from 8.5 x 10~* to 0.012. We train our models under Pytorch on NVIDIA GeForce RTX 3090.

B.2 AUTO-DECODING OF LATENT CODE

Unlike traditional auto-encoder whose latent code is produced by the encoder, we draw inspiration
from DeepSDF Park et al.| (2019) in 3D shapes and use an auto-decoder to learn the latent code
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Figure 6: Detailed network architecture of Codebook-Coordinate Attention (CCA).

without an encoder. This encoder-less design avoids explicit modeling of raw motions, making
arbitrary-framerate training feasible. To construct distributions where one can sample a representa-
tion to generate a new high-quality motion, we gain insight from Variational Auto-Encoder (VAE)
that utilizes an encoder to infer a distribution from which representations of motions can be sam-
pled, and employs a decoder to reconstruct the data from the representation. As our design does
not contain an encoder, we model each motion by sampling from a learnable distribution with op-
timized parameters, i.e., mean p and covariance ¥, leading to learnable parameters {f;, X} 4
for all training dataset. When training, we sample a latent representation z; from a distribution
N (i, %;). We then combine z; with temporal coordinate encodings (), and input them into a
shared MLP decoder fy. The parameters y;, >.; and 6 are optimized simultaneously by minimizing
the reconstruction loss between the generated and ground truth.

B.3 SYNTHESIZING LONG SEQUENCES

Ideally, NeRM is possible to generate motions with arbitrary framerates s and durations [/ by setting
appropriate temporal coordinates. However, either significant increase of s or [/ requires significant
memory resources. Thus, we employ an iterative-synthesis approach to generate non-overlapping
motion clips and assemble them into longer motions. By leveraging clip-based multi-framerate
training conditioned on temporal coordinates, we learn continuous motion fields and ensure smooth
transitions between motion segments. Notably, the framerate range we support is still limited by
the original training data. The model is unlikely to learn motion patterns that exceed the highest
framerate present in the training data.

C DETAILS OF EVALUATION METRICS

C.1 EVALUATION METRICS

Frechet Inception Distance (FID). FID is widely used for overall generative quality evaluation.
FID is calculated by extracting features from 1,000 generated motions and real motions in test set.
Instead of the inception neural network in image domain, we extract a deep representation of the
motion with the evaluator network |Guo et al.|(2022])), as suggested by [Tevet et al.[(2023).

R-Precision (Top-3). This metric is used for text-motion matching measurement. For each gen-
eration, its corresponding GT description and randomly selected 31 mismatched descriptions are
gathered in a pool. Then the Euclidean distance between the motion feature and each text feature in
the pool is calculated, where accuracy of Top 3 are picked. The GT description falling into the Top
3 candidates represents a successful retrieval.

MultiModality Dist. Like R-Precision, this metric also measures text-motion similarity. We calcu-
late the average Euclidean distance between the motion feature of each generation and text feature
of the corresponding description.

Diversity. Diversity measures generative variance across all motions. We randomly select mo-
tions from all generations, and put each of them in either of the two subsets {q1,...,qp,} and
{41, -, dp, } with the same size as D, = 300, where ¢; indicates a motion feature vector. Diver-
sity can be expressed as:

D
N I
Diversity = o Z llgi — q§||2~ 7
¢ =1
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Figure 7: Comparisons of conventional FID and our clip-FID. FID evaluates global structure, but
downsamples all human motions to a common 20fps which ignores high-framerate details. In con-
trast, clip-FID takes motion clips instead, thereby keeping the original framerates. We employ both
metrics to validate the effectiveness of our method.

Table 4: Mean reconstruction errors of MLD and NeRM for motion of different framerates.

Framerates (fps)
Method / Metric 20 40 60 100 120

MLD / MPJPE 0.027 0.062 0.113 0.184 0.228
NeRM/MPJPE 0.016 0.019 0.013 0.019 0.011

MLD / MRE 0.074 0.105 0.194 0.254 0.387
NeRM / MRE 0.041 0.036 0.034 0.035 0.038

MultiModality (MM). MM measures the generated motions diversify within each condition (text
or action). We randomly pick .S text descriptions from all descriptions. Then the motions generated

by the s-th description are randomly picked and put into one of the two subsets: {gs 1,...,¢s,p, }
or {5 1,4, p,}» with subset size D, = 10. MultiModality can be expressed as:
1 S De
MM = si— G ill2- 8
S % D, ;; Hq , qs,1||2 (8)

Accuracy. We employ the pre-trained action recognition model to classify 1,000 generate motions.
The obtained overall recognition accuracy demonstrates the correlation of the motion and its action
label.

C.2 MortioN CLIP-BASED FID (cL1P-FID).

All the metrics above are designed for low-framerate data, and unable to be trained on original
high-framerate data due to prohibitive memory requirements. Thus, we here present a new met-
ric clip-FID that is aimed at better capturing the realism of details at high framerate by avoiding
downsampling. As depicted in Figure [/| we show the comparison of standard FID and clip-FID,
where FID evaluates global structure (the coarse information of the entire motion is preserved),
but downsamples all human motions to a common 20fps, ignoring high-framerate details; clip-FID
takes motion clips extracted/cropped from motions (the detailed information of the motion clip is
preserved), keeping the original framerates. Note that we randomly sample clips (a short segment
of motion) of size m from real motions at framerate s and center v to generate the corresponding
clip. A lower value implies better high-framerate details.
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Table 5: Ablation study on effectiveness of time encoding.

Simple  Codebook Motion Reconstruction (MRE) Motion Synthesis (clip-FID)
20 40 60 100 120 20 40 60 100 120
X X 0.134 0.141 0.164 0.094 0.091 0471 0.803 1.070 1.769 2.944
v X 0.053 0.049 0.039 0.057 0.043 0397 0.519 0.701 0.142 1.717
X v 0.041 0.036 0.034 0.035 0.038 0.389 0.493 0.680 0.903 1.315

Table 6: Ablation study on effectiveness of Variational INRs.

Variational INRs Motion Reconstruction (MRE) Motion Synthesis (clip-FID)
20 40 60 100 120 20 40 60 100 120
X 0.032 0.030 0.031 0.036 0.027 1.280 2.924 7.012 10.482 14.654
v 0.041 0.036 0.034 0.035 0.038 0.389 0.493 0.680 0.903 1.315

D NETWORK ARCHITECTURE

Codebook-Coordinate Attention (CCA). Inspired by CoCo-NeRF (Yin et al. [2022)), we apply
CCA modulation to enrich the Fourier features of each coordinate. The detailed architecture is illus-
trated in Figure[6] Specifically, we employ one cross-attention block to learn dependency between
learnable query embeddings Q = {¢;}}£, and codebook prototypes & = {e;},. Then, the em-
beddings are fed into self-attention blocks with three layers to improve their feature representations
further and obtain the final motion-relevant prototypes Q. Finally, we conduct once cross-attention
operation between Q and Fourier embeddings of each coordinate ~(t). All attention modules are
based on transformer (Vaswani et al.|[2017) with 4 head Attention mechanism, Layer Normalization,
Feed-Forward Network and GELU activation.

MLP Decoder. Similar to other neural representations (Ashkenazi et al.,|2023), the NeRM decoder
fo s constructed using a simple neural network architecture. It consists of a 9-layer MLP with ReLU
activations and layer normalization. The hidden layer size remains constant across the network. We
also incorporate residual connections within each layer to improve gradient flow. In contrast to
previous approaches (Chen et al.| 2023 Tevet et al., [ 2023) that rely on a transformer backbone, our
choice of a simple decoder offers benefits in terms of inference speed for generating new motions.

Latent Denoiser. Different from the UNet-based architecture (Ronneberger et al., |2015) in latent
diffusion model that designed for image synthesis, our latent denoiser € is built ViT backbone with
long skip connections (Bao et al.,[2023)), which is more appropriate for time series data.

E ADDITIONAL EXPERIMENTS

Our NeRM consists of an INR model fs and a latent diffusion model 4. We conduct additional
experiments to evaluate the effectiveness of each component, as well as reconstruction capability.
We also report time costs on inference and GPU memory on multi-framerate training dataset.

E.1 RECONSTRUCTION CAPABILITY

We first compare the reconstruction capability of MLD (Chen et al.,[2023) and our NeRM with dif-
ferent framerates. Note that MLD learns latent representation via Variational AutoEncoder (VAE)
based on transformer encoder. We randomly select 100 different motion sequences with their orig-
inal framerate on HumanML3D dataset, and report the average reconstruction errors in Table [4]
Since MLD cannot process multi-framerate dataset, we use spherical linear interpolation to generate
higher-framerate motions for MLD. For evaluation metrics, we make use of the Mean Per Joint Posi-
tion Error (MPJPE) (Mao et al.,2019)), commonly used for image-based 3D human pose estimation.
We also employ Mean Redundant Error (MRE) that measures the Euclidean distance between two
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Table 7: Ablation study on decoder architecture.

MLP  Transformer Motion Reconstruction (MRE) Motion Synthesis (clip-FID)
20 40 60 100 120 20 40 60 100 120
X v 0.037 0.032 0.037 0.035 0.037 0.381 0.487 0.607 0.782 1.199
v X 0.041 0.036 0.034 0.035 0.038 0.389 0.493 0.680 0.903 1.315

Table 8: Ablation study on the dimension d and weight parameter A\, of latent representation.

d 128 256 512
MRE@20fps 0.0459 0.0412 0.0407
AKL le-5 le-4 le-3

MRE@20fps 0.0410 0.0412 0.0459

poses represented by redundant hand-crafted features. From the results in Table || we find that our
NeRM with a simple MLP can achieve lower reconstruction error with 20 fps than MLD with com-
plicated transformer backbone. When the framerate increases, the performance of MLD deteriorates
significantly while NeRM still maintains very low reconstruction error.

E.2 ABLATION STUDY

In this section, we provide ablation studies on the HumanML3D dataset to evaluate the effectiveness
of network design.

Effectiveness of Time Encoding. Time encoding plays a critical role in the generalization. In
Table 5] we evaluate the influence of different encoding manners, including No Time Encoding,
Simple Time Encoding, and Codebook-Coordinate Encoding. Here, “Simple” means that we only
use Fourier features to encode ¢ like traditional NeRF (Mildenhall et al., 2021); and “Codebook” is
our design of NeRM. From the table, we find that the model without time encoding achieves poor
performance in both terms of motion reconstruction and motion synthesis. This can be attributed to
“spectral bias” (Rahaman et al.} [2019). In other words, INRs with simple MLP layers cannot learn
high-frequency variations from motion data. Our codebook-based representation reaches the best
performance, which confirms that the codebook is beneficial for feature representation of temporal
coordinates.

Effectiveness of Variational INRs. We investigate the influence of variational INR by comparing
a variational INR with a non-variational version. In this case, the latent code z of non-variational
INR is obtained by optimizing the following:

z; = argmin ||&},;, — al, |I°, for i=1,2,--- n ©)
zi
where :i:ilip = fo(tv,s, s). Comparison results are shown in Table@ We observe that the reconstruc-
tion errors of non-variational INRs is smaller than variational ones, as non-variational INRs may
overfit the motion sequence by powerful neural network. However, the realism of non-variational
INRs is significantly improved by the variational ones. This suggests that the variational approach
strongly regularizes the latent space and enhances the capability of sampling new motions.

Decoder Architecture. Furthermore, we compare the performance of MLP-based and transformer-
based models. Table [/| shows that the self-attention mechanism can slightly improve the ability
of motion synthesis. However, the latent representation learned by diffusion model is fed to the
decoder of our variational INR, which implies that the complexity of the network greatly impacts
the generation speed of new motions. Therefore, we pick MLP layers as our decoder architecture.

Effectiveness of latent representation. The latent representation z is a crucial variable in our
NeRM. It acts as a bridge between the variational INR model fj and the diffusion model €4. In our
context, the quality of latent representation can be influenced by the dimension and the variational
distribution N (p1, ) of z. Therefore, we investigate the impact of different dimensions d of z and
weight A\x 1, on the KL loss for motion reconstruction in Table [8] When the dimension d is set to
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Table 9: Ablation study on effectiveness of time normalization.

Time Normalization MRE@20fps FID  Diversity
X 0.118 0.958 9.892
v 0.041 0.389 9.547

Methods Time FID  clip-FID
®T2M 00525 1067 6.442

MDM  32.17s 0544 4.605
0.8 ®MLD 03665 0473 3.816
® NeRM  0.295s 0.389  0.680

Qo 064
fre
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Figure 8: Average inference time (seconds) for generating one motion sequence. The circle size is
proportional to the value of clip-FID. Bigger circle indicates worse performance of high-framerate
details.

256, the motion reconstruction loss becomes significantly small, and higher dimension can slightly
improve the reconstruction ability. For Ax 1, a higher weight results in a smoother latent space but
increases the reconstruction error. We set A1, to a small value (i.e., 0.0001) like|Chen et al.| (2023]).

Effectiveness of time normalization. In this section, we explore the effect of time normaliza-
tion. Table [9] shows the results on HumanML3D dataset with 20 fps. Notably, ‘X’ indicates that
we directly use the true temporal coordinates, i.e., {1,2,--- ,T}, instead of normalized temporal
coordinates ¢,, ;. From the table, we find that time normalization plays a vital role in time encoding
of implicit neural representation.

E.3 INFERENCE TIME

In Figure[8] we report average inference time on per sequence. As T2M (Guo et al.| 2022) is built
under VAEs, it uses the least time for generation; but under diffusion setting, we are the most time-
saving. To be specific, due to the latent diffusion design, MLD (Chen et al.||2023)) and our NeRM
are much faster than MDM (Tevet et al., 2023)). We are even faster than MLD in that we use simple
MLP decoder of INR, rather than the transformer-based decoder in MLD. We yield the best FID
for best global motion quality, and significant superiority in clip-FID (the target framerate is set to
60 fps), indicated by the smallest circle size. All of these experiments are conducted on NVIDIA
GerForce RTX 3090.

E.4 MEMORY BURDEN

By padding zeros, current text-to-motion generative models are able to train motions with the same
framerate s (20 fps) and different duration 2 < [ < 9.8 (seconds). When exploiting native framerates
of motions, one possible solution is to padding zeros according to the maximum framerates (250 fps).
However, this operation cannot capture accurate temporal dependency as fixed-framerate training.
Another problem is that the dimensionality of padded motions needs to be much larger than what
state-of-the-art diffusion models can be trained on. For example, MDM (Tevet et al., 2023) trains
the diffusion model on motions where the maximum number of poses is 196 (9.8s x 20 fps), while
we use motions of maximum size 2450 (9.8s x 250 fps). This imposes a substantial burden on
GPU memory. Alternatively, we approach it from the perspective of implicit neural representation,
which enables us to process clips (a short segment of motion) with size m (m < 2450), therein
significantly reducing the memory burden. In addition, we find a representative latent code for each
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Figure 9: High-framerate generation (120 fps). We visualize a short fragment from the whole gen-
eration, with purple, pink, yellow, green, and grey sequentially indicating high-framerate motion
changing. The entire generation can be found in our video.
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Figure 10: User study on HumanML3D dataset.

motion and learn the distribution in this low-dimensional latent space efficiently, which decouples
the modeling of the distribution from varied-size human motions.

E.5 VISUALIZATION

A video is contained in our supplement. We provide 120 fps generation on two more examples,
where our NeRM constantly outperforms MLD 2023) in both terms of basic motion
quality and high-framerate quality. Note that, as MLD cannot directly generate high-framerate mo-
tions, we use SLERP to interpolate them towards the target framerate (120 fps). We also select
a short fragment from our video with full discussion shown in Figure [0} Additionally, for clearer
observation on artifacts of baseline, we slow down the video by 6 times, so the motions may appear
to be slower.

E.6 USER STUDY

Human eyes are the ultimate evaluation for human motion performance. We asked 17 people over
question (a) “Which of the two motions is more realistic” and (b) “Which of the two motions is
more consistent with the given texts”. In each fwo-motion pair, we provide one motion generated
by NeRM and the other by baselines MDM 2023), MLD and GT
from HumanML3D. We randomly pick 8 cases for each question. We evaluate on conventional 20
fps generation and high-framerate generation (each of 120, 100, 60 and 40 fps has 2 cases). Shown
in Figure[I0] our NeRM gains more preference than baselines, and even comparable to GT motions.
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F LIMITATIONS AND FUTURE WORK

Although our method has achieved promising performance for high-framerate motion synthesis, it
still has the following challenges. (1) While our method currently supports generation with external
conditions such as action labels or text prompts, it has limitations in incorporating fine-grained
internal conditions such as keyframes or trajectory. A promising direction for future research is
to design a more comprehensive framework (as exemplified by Karunratanakul et al.|(2023)); Zhang
et al. (2023b)) that can simultaneously consider both external and internal conditions. By integrating
these factors, we can achieve more precise and nuanced motion generation. (2) The quality of motion
generated using INRs is highly dependent on the dataset. If the dataset lacks high-framerate data,
the performance of generating high-framerate motions may not be optimal. Additionally, the model
is unlikely to learn motion patterns that exceed the highest framerate present in the training data.
(3) While our method demonstrates fast inference time, the training process can be relatively slow,
particularly when dealing with the dataset containing numerous samples. This is because our method
learns a latent code for each training sample. (4) Our method is designed for motion modeling and
can not adapt to outputs with varying body shapes. Some recent worksMihajlovic et al.|(2022)) have
employed INRs to model skinned articulated objects with specific poses. It would be interesting to
explore the integration of our method with them.
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