Appendix A A Medical Time Series Example

Here we use EEG data of Alzheimer’s as an example. An EEG dataset has many patients with or
without Alzheimer’s (healthy control). Data collectors take multiple trials on a specific patient. These
trials could be collected continuously within a short time or across a long period but follow the
same experiment manner. Usually, the timestamps are too long for the deep learning pipeline to
learn. For example, a 5 minutes trial with a sampling rate 256Hz has 76800 timestamps. Researchers
generally use data preprocessing to split a trial into many samples, such as 1-second and 3-second
short samples, for further representation learning. Each observation denotes a scalar or a vector of
real value at a specific timestamp. An experiment with a sampling rate 256Hz has 256 observations
in one second.

Appendix B Data Augmentation Banks

Binomial masking: Generate a mask following a binomial distribution that masks some timestamps
of a sample, setting all channels at the masked timestamps to zero.

Channel binomial masking: Generate a mask following a binomial distribution that masks some
channels of some timestamps of a sample, setting only a subset of channels at the masked timestamps
to zero.

Continuous masking: Mask some continuous sequences of timestamps of a sample, setting all
channels at the masked timestamps to zero.

Channel continuous masking: Mask some continuous sequences of timestamps of a sample, setting
only a random half of the channels at the masked timestamps to zero.

All true: Do not apply any masking to the sample. Output the raw sample.

Appendix C Shuffle Function Banks

In real-world scenarios, ensuring the presence of samples from the same trial or patient within a
training batch becomes increasingly low probability as the number of patients grows. This situation
can hinder learning meaningful representations at the trial and patient levels. To address this situation,
we have designed two distinct shuffle functions that serve to rearrange samples while also upholding
the requirement to include samples originating from the same trial and patient. These functions are
called the "trial shuffle" and the "batch shuffle".

Trial shuffle: This function shuffles samples originating from the same trial and subsequently shuffies
the trial order. Initially, we arrange the samples by sorting them based on their trial IDs. Next,
samples from the same trial are grouped into sets, and the order of samples within each trial set is
shuffled. Finally, we sort the trial sets themselves while preserving the order of samples within each
respective trial set.

Batch shuffle: This function shuffles samples in a batch and subsequently shuffles the order of
batches. The logic of trial and batch shuffle are similar. Initially, we arrange the samples by sorting
them based on their trial IDs. Next, we group samples into batch sets, and the order of samples within
each batch set is shuffled. Finally, we sort the batch sets themselves while preserving the order of
samples within each respective batch set.

Random shuffle: Besides the two specifically designed shuffle functions, this random shuffle function
shuffles all the samples in the dataset.

All the shuffle functions mentioned here are designed to shuffle samples within the dataset before
training. During training, it is also essential to shuffle samples each epoch to prevent the model
from memorizing the dataset and encourage it to learn more useful representations. To address this,
we implemented a specially crafted BatchSampler class in PyTorch, following the "batch shuffle"
approach. This BatchSampler shuffles the samples locally within each epoch, ensuring that the
pre-shuffled sample order is not disrupted significantly. This approach guarantees that each batch
contains samples from the same trial. It’s worth noting that when a batch consists of samples from
the same trial, it also has samples from the same patient.



Appendix D Data Preprocessing

D.1 AD Data Preprocessing

The AD dataset [44] comprises EEG recordings from 12 patients with Alzheimer’s disease and 11
healthy controls. Each patient has an average of 30.0 & 12.5 trials. Each trial corresponds to a
5-second interval with 1280 timestamps (sampled at 256Hz) and includes 16 channels. Prior to
further processing, each trial is scaled using a standard scaler. To facilitate analysis, we segment
each trial into nine half-overlapping samples, where each sample has a duration of 256 timestamps
(equivalent to 1 second). Additionally, we assign a unique trial ID and patient ID to each sample
based on its origin in terms of the patient and trial. We split training, validation, and test sets in
a patient-independent way. We use samples from patient IDs 17 and 18 as the validation set and
samples from IDs 19 and 20 as the test set. The rest of the samples are all put into the training set.

D.2 PTB Data Preprocessing

The PTB dataset [45] consists of ECG recordings from 290 patients, with 15 channels sampled at
1000 Hz. There are a total of 8 types of heart diseases present in the dataset. For this paper, we focus
on binary classification using a subset of the dataset that includes 198 patients with major disease
labels, specifically Myocardial infarction and healthy controls. To preprocess the ECG signals, they
are first normalized using a standard scaler after being resampled to a frequency of 250 Hz. Due
to special peak information in ECG signals, a regular sliding window segmentation approach may
result in the loss of crucial information. To address this issue, a different segmentation strategy
is employed. Instead of sliding windows, the raw trials are segmented into individual heartbeats,
with each heartbeat treated as a sample. To perform this segmentation, (1) the first step involves
determining the maximum duration. The median value of R-Peak intervals across all channels is
calculated for each raw trial, and outliers are removed to obtain a reasonable maximum interval as
the standard heartbeat duration. (2) The next step is to determine the position of the first R-Peak.
The median value of the first R-Peak position is calculated and used for all channels. (3) Next, the
raw trials are split into individual heartbeat segments based on the median value of their respective
R-Peak intervals. Each heartbeat is sampled starting from the R-Peak position, with the segments
extending to both ends with half the length of the median interval. (4) To ensure the same length of
the heartbeat samples, zero padding is applied to align their lengths with the maximum duration. (5)
Finally, the samples are merged into trials, where 10 nearby samples are grouped together to form a
pseudo-trial, similar to the neighborhood idea presented in [17]. We split training, validation, and
test sets in a patient-independent way. We use samples from 28 patients(7 healthy and 21 positive) as
the validation set and samples from another 28 patients(7 healthy and 21 positive) as the test set. The
rest of the samples are all put into the training set.

D.3 TDBrain Data Preprocessing

The TDBrain [46] is a large dataset that monitors the brain signals of 1274 patients with 33 channels
(500 Hz) during EC (Eye closed) and EO (Eye open) tasks. The dataset consists of 60 types of
diseases, and it is possible for a patient to have multiple diseases simultaneously. This paper focuses
on a subset of the dataset, specifically 25 patients with Parkinson’s disease and 25 healthy controls.
Only the EC task trials are used for representation learning. To process the raw EC trials, we
employ a sliding window approach that continuously moves from the middle of the trial to both
ends without any overlap. Each raw EC trial is divided into processed pseudo-trials with a length
of 2560 timestamps (10 seconds) after resampling to 256 Hz. These processed pseudo-trials are
then scaled using a standard scaler. Furthermore, each pseudo-trial is split into 19 half-overlapping
samples, with each sample having a length of 256 timestamps (1 second). In addition to the binary
label indicating Parkinson’s disease or healthy, each sample is assigned a patient and trial ID based
on the patient and processed trial it originates from. It is important to note that the trial ID refers to
the ID of the processed pseudo-trial and not the raw EC trial. We split training, validation, and test
sets in a patient-independent way. We use samples from 8 patients(4 healthy and 4 positive) as the
validation set and samples from another 8 patients(4 healthy and 4 positive) as the test set. The rest
of the samples are all put into the training set.



Appendix E  COMET and Baseline Implementation Details

We implement the baselines following their corresponding papers, including TS2vec [13], Mixing-
up [16], TS-TCC [27], SimCLR [43], CLOCS [15], and TF-C [26]. In our COMET framework and
all baselines, we use the last epoch of the contrastive pre-training encoder G for downstream tasks.
For the P-FT and F-FT tasks, we save the best model in terms of F1 score on the validation set during
training and load the saved model to evaluate the performance on the test set.

COMET (our model) We use a two-layer, fully connected network as the projection head to map the
input dimension to the output dimension. The input dimension corresponds to the feature dimension
of the data, while the hidden dimension is set to 128, and the output dimension is set to 64. To
augment the data, we apply time series masking on the output dimension using the [all_true, all_true,
continuous, continuous] (see B) for the observation, sample, trial, and patient-level contrastive blocks,
respectively. The augmented output dimension from the projection head is then passed to the encoder
G for representation learning. For the encoder G, we adopt a dilated CNN module. It consists of
10 hidden blocks, each following the order "GELU -> DilatedConv -> GELU -> DilatedConv." A
residual connection is applied between the beginning and end of each block. The dilation factor of
the convolution in the i-th block is set to 27. Each hidden dimension of the dilated convolution is
set to 64, and the kernel size is set to 3. The output dimension of encoder G is fixed at 320. We
utilize positive pair selection strategies specific to each contrastive block to build the contrastive
loss in the embedding space (after encoder G). A max-pooling layer is employed before applying
the representation to downstream tasks. During contrastive pre-training, we set the learning rate
to 0.0001. The pre-training batch size is 256, and the total number of pre-training epochs is 100.
We report the hyperparameters that achieved good results and stability among random seeds. The
hyperparameters A1, A2, A3, A4 are assigned values of (0.25, 0.25, 0.25, 0.25), (0.1, 0.7, 0.1, 0.1),
and (0.25, 0.25, 0.25, 0.25) for the AD, PTB, and TDBrain datasets, respectively.

TS2vec [13] introduces contextual consistency using overlapping subseries and a hierarchical loss
function to capture data consistency at the observation and sample levels. To incorporate their
methodology, we utilize the open-source code available at https://github.com/yuezhihan/ts2vec.
However, their code does not include downstream tasks for F-FT (Full Fine-Tuning), so we implement
these tasks using the same setup as our COMET. Specifically, we set the number of epochs for
contrastive pre-training to 100, the learning rate to 0.0001, and the batch size to 256. To align with
our model, we adjust the convolution blocks to 10, matching our configuration. We adopt the default
settings provided by the TS2vec implementation for other settings during pre-training.

TS-TCC [27] leverages temporal and contextual consistency by contrasting a strong and weak
augmentation. They employ a transformer-based autoregressive as the encoder. They perform a
cross-view prediction by using temporal context to predict one view’s future. Then, they maximize
the similarity of contexts generated by the encoder to leverage contextual consistency. We utilize
the open-source code available https://github.com/emadeldeen24/TS-TCC. We set the number of
pre-training epochs to 100. We adopt the default settings provided by the TS-TCC implementation
for other settings during pre-training.

Mixing-up [16] proposes a mixing-up augmentation by mixing the proportion of two time-series
samples. This augmentation involves creating an augmented sample as the convex combination
of two randomly selected time-series samples from the dataset. The mixing parameter follows a
beta distribution, determining the proportion of the two samples in the augmentation process. We
utilize the open-source code available at https://github.com/wickstrom/mixupcontrastivelearning to
implement Mixing-up. Although they only provide downstream tasks for F-FT, we align their method
with our setups for all downstream tasks, including P-FT and F-FT. We set the number of pre-training
epochs to 100, the learning rate to 0.0001, and the batch size to 256 during pre-training.

SimCLR [18] is the most classic contrastive learning framework first proposed in the CV domain.
It applies data augmentation techniques to create augmented views of input samples and constructs
a contrastive loss based on these views. While initially designed for images, SIimCLR has also
been successfully adapted to time series data, as demonstrated in previous work such as [43]. To
implement SimCLR, we utilize their open-source code available at https://github.com/iantangc/
ContrastiveLearningHAR. We set the number of pre-training epochs to 100, the learning rate to
0.0001, and the batch size to 512, aligning with their recommended settings. We use the default values
provided in the SimCLR implementation for other configuration parameters during pre-training.



CLOCS [15] employs samples from the same patient as positive pairs to leverage the data
invariance in ECG recordings. They make use of both temporal and spatial information for
contrastive learning. To implement CLOCS, we utilized their open-source code, available at
https://github.com/danikiyasseh/CLOCS. We incorporated their contrastive loss function to im-
plement the Contrastive Multi-segment Coding (CMSC) mechanism described in their paper. Addi-
tionally, we modified their backbone to use TCN, which shares the same network structure as our
COMET, including the configuration parameters. Specifically, we set the number of pre-training
epochs to 100, the learning rate to 0.0001, and the batch size to 256.

TF-C [26] leverages the consistency between time domain and frequency domain. They assume
that the time-based and frequency-based representations of the same example exhibit proximity
in the time-frequency space. We utilize their open-source code available at https://github.com/
mims-harvard/TFC-pretraining to implement TF-C. While the original method is primarily designed
for transfer learning, we extend it to incorporate downstream tasks such as P-FT and F-FT in our
experiments. We set the number of pre-training epochs to 100, the learning rate to 0.0001, and
the batch size to 256. We use the default values provided in the TF-C implementation for other
configuration parameters during pre-training.

E.1 Partial Fine-tuning

In the P-FT (Partial Fine-Tuning) setup, we introduce a classifier L on top of the pre-trained encoder
G, while keeping the parameters of G fixed. Only the classifier L is fine-tuned in this setup.

In the COMET, TS2vec, and Mixing-up approaches, we utilize logistic regression from the Sklearn
library to implement the classifier L. We use the default settings of Sklearn, except for setting the
maximum iteration to 100,000. We employ a one-layer fully connected network as the classifier L
for the TF-C method. The learning rates are specifically set to 8e-5, 3e-5, and 1e-4 for the AD, PTB,
and TDBrain datasets, respectively. As for TS-TCC and SimCLR, we follow their respective default
settings for the partial fine-tuning phase.

E.2 Full Fine-tuning

In the F-FT (Full Fine-Tuning) setup, we introduce a classifier P on top of the pre-trained encoder
G, where both the parameters of the encoder GG and the classifier P are trainable. In this setup, we
fine-tune both the classifier P and the encoder GG. We utilize a fraction of 100%, 10%, and 1% labeled
training data for fine-tuning.

In the COMET, TS2vec, and Mixing-up approaches, we set the finetune learning rate to 1e-4. We use
a batch size of 128 and perform fine-tuning for 50, 100, and 100 epochs for 100%, 10%, and 1% label
fractions, respectively. The classifier P is implemented as a two-layer fully connected network with
hidden dimensions 128. For TF-C, we change the hidden dimension of this two-layer fully connected
network to 64. The learning rates are specifically set to 8e-5, 3e-5, and 1e-4 for the AD, PTB, and
TDBrain datasets, respectively. Regarding TS-TCC and SimCLR, we follow their respective default
settings for the full fine-tuning phase.

Appendix F  Experimental Setting

F.1 Patient-Independent Experimental Setting

This paper adopts a patient-independent setting for the train-validation-test split. In medical time
series classification tasks, two common approaches to splitting the data are patient-independent
and patient-dependent settings [15, S1]. Figure 3 illustrates these two settings’ differences. In
the patient-dependent setting, samples from the same patient can appear in both the training and
testing sets, whereas in the patient-independent setting, samples from the same patient are exclusively
included in either the training or testing set.

Performing patient-independent representation learning poses challenges due to the unique char-
acteristics and different data distributions exhibited by each patient [50]. Even if two patients
share the same label, the patterns within their data may differ significantly due to individual noise
characteristics, potentially overshadowing the common patterns observed across patients. However, in
real-world scenarios, it is essential for a model to be robust and general to perform patient-independent



representation learning. The goal is to train a model on a subset of patients with known labels and
utilize it to predict other patients with unknown labels. In contrast, patient-dependent classification is
usually impractical since it requires knowledge of the labels for all patients.

F.2 Pseudo-Trial Experimental Setting

For many medical time series datasets, patient information is readily available, but trial information
may be absent or limited to a single trial per patient. In such cases, the question arises of effectively
employing trial-level contrastive learning. The solution is straightforward. We can generate pseudo-
trials rather than merely deactivating the trial-level block by setting A to 0.

We can define groups of adjacent samples as pseudo-trials and assign them the same trial ID. In our
paper, we employed ten neighboring samples as a pseudo-trial for the PTB and TDBrain datasets,
and this approach yielded favorable results. This concept is akin to the approach taken by TNC [17],
where close samples are defined as positive pairs.

Appendix G Ablation Study, Visualization, Additional Downstream Tasks,
and Heavy Duty Baseline

G.1 Ablation Study

Ablation study of contrastive blocks We examined the effectiveness of each contrastive block and
progressively incorporated each block from the observation-level to all four levels. Table 5 compares
the full-level COMET model with its six variants on the AD, PTB, and TDBrain datasets. The
variants are as follows: (1) O, S, R, P, which utilize only one level of the contrastive block. We
activate that specific level by setting its A to 1 and deactivate the other three levels by setting their A
to 0; (2) S+0, which combines the sample and observation-level contrastive blocks. The A values for
sample and observation levels are set equally to 0.5; (3) R+S+0, incorporating the trial, sample, and
observation-level contrastive blocks. The A values for these three levels are set equally to 0.33; and
(4) P+R+S+0, representing our complete COMET method with all four levels of contrastive blocks.
The A values for the four levels are set equally to 0.25. The "Fraction" column indicates the fraction
of labeled training samples used during fine-tuning.

We observed that variants R and P exhibit strong performance, achieving comparable or even
outperforming the full-level COMET model P+R+S+0 on the PTB and TDBrain datasets across
different fractions of labeled data (100%, 10%, and 1%). Notably, they also perform well with a
1% fraction in the AD dataset, although they exhibit significant instability in this case. This finding
suggests that adding more contrastive blocks may not necessarily improve final results. Achieving
a balance in weights among different levels through A is crucial. Nevertheless, training models at
individual levels can provide insights into the importance of each level in contrastive representation
learning. Furthermore, it’s noteworthy that the full-level COMET model P+R+S+O consistently
demonstrates comparable or superior results across all datasets and fractions. Importantly, we did not
perform any parameter tuning here, opting to set all the A values equally, highlighting the stability of
the full-level COMET P+R+S+0 compared to other variants.

Ablation study of hyperparameter A We conducted an analysis to assess the impact of hyper-
parameter A on the AD, PTB, and TDBrain datasets in table 6. The values of A1, A2, A3, and A4,
from left to right, correspond to the patient, trial, sample, and observation levels, respectively. In this
analysis, all four data levels are incorporated, representing the full-level COMET model P+R+S+0O.
We applied a significant weight to one data level by setting its corresponding A to 0.7 while assigning
lower weights of 0.1 to the other levels. Furthermore, we explored scenarios with increased weights
on patient and trial levels or sample and observation levels. The "Fraction" column indicates the
fraction of labeled training samples used during fine-tuning.

We observed that the results exhibited greater stability than the ablation study of contrastive blocks. In
the contrastive block ablation study, there were significant discrepancies between different COMET
variants at times. For instance, the S and R variants of the TDBrain dataset exhibited substantial
differences across various fraction setups. However, in the full-level COMET model, the differences
between these inter-running setups were notably reduced, even when a heavy weight was applied
to one data level. For instance, the differences between lambda setups (0.1, 0.1, 0.7, 0.1) and (0.1,
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Figure 4: Visualizing the learned representation (a) Visualization for TS2vec. (b) Visualization for
COMET(Ours). The visualized representation is trained in the F-FT setup on the AD dataset. Dark blue
and light blue denotes the negative class(Health) and positive class(Alzheimer), respectively. We calculate
the mean Euclidean distance between pairwise samples from two classes for each pair of samples to evaluate
the class separability. As the figure shows, our method exhibits superior separation between the two classes,
resulting in larger pairwise distances.

0.7, 0.1, 0.1) were not as significant in the TDBrain dataset. This observation underscores again the
stability and robustness of the full-level COMET model.

G.2 Visualization

To visualize the effectiveness of COMET, we depict the learned representation h; using the F-FT
setup on the AD dataset as a case study. It is important to note that the learned representation h;
consists of 320 dimensions after pooling. To visualize the representations more interpretably, we
employ UMAP, a dimensionality reduction technique with 20 neighbors and a minimum distance
of 0.2. To establish a benchmark for comparison, we utilize TS2vec, which has shown the best
performance among all baselines in the F-FT setup on the AD dataset. Additionally, we compute the
average pairwise Euclidean distance between the negative (healthy) and positive (Alzheimer) classes,
offering a quantitative measure of separability between the two classes.

G.3 Performance on Downstream Tasks

Clustering We assess the clustering performance of COMET using the AD dataset as a case study.
Instead of employing a classifier model on top of the encoder, we apply K-means clustering (K=2) to
the encoder G. We utilize three widely-used evaluation metrics: Silhouette score, Adjusted Rand
Index (ARI), and Normalized Mutual Information (NMI). To establish a benchmark for comparison,
we consider TS2vec, which has shown the best performance among all baselines in the F-FT setup on
the AD dataset. Table 7 illustrates that COMET surpasses TS2vec with an improvement of 0.0586 in
Silhouette score, 0.945 in ARI, and 0.881 in NMI.

Anomaly detection We evaluate the anomaly detection performance of COMET using the AD
dataset as a case study. While some previous works focus on identifying outlier observations within a
sample [S2, S3], we concentrate on sample-level anomaly detection. We construct a very unbalanced
AD test set comprising 90% negative (healthy) samples and 10% positive (Alzheimer’s) samples.
The negative samples are considered normal, while the positive samples are treated as outliers. The
test set is prepared accordingly, while the remaining aspects of the experiment follow the F-FT setup.
Specifically, We utilize the saved trained models from the F-FT setup to evaluate the new test set,
and for comparison, we still employ TS2vec as a benchmark. The "Fraction" column indicates the
fraction of labeled training samples used during fine-tuning. The experiment result is shown in table
8. The COMET outperforms TS2vec by 5.25%, 15.3% and 11.4% with label fraction 100%, 10%
and 1%, respectively.



Table 5: Ablation study of contrastive blocks. The ablation study of contrastive blocks is evaluated on the AD,
TDBrain, and PTB datasets. We examine the effectiveness of each contrastive block. Besides, we progressively
incorporate each block from the observation-level to all four levels. Here, O, S, R, and P denote the observation,
sample, trial, and patient-level contrastive blocks, respectively.

Datasets  Fraction Blocks Accuracy  Precision  Recall F1 score AUROC AUPRC
(0] 81.69+10.71 87.28+571  79.64+1207  78.90+13.78  92.54+4.18  92.36+4.34
N 83.53+2.89 84.35+169  82.81+356 82974347  91.01+196  90.81+1.95
R 78.58+1499 83.14+1160 763141666 74.53+1869 85.05+1274 84.44+13.22
100% P 72.69+13.13  78.67+11.81  69.74+1450 67.04+1727 83.30+1391  82.57+14.29
S+0 85.70+1.82 86.14+163  85.09+204  85.35+196 92.21+140  92.09+1.39

R+S+0 85.57+4.04 88.12+258  84.31+479  84.734+450  93.28+252  92.98+283
P+R+S+0  84.50+4.46 88.31+242  82.95+539  83.33+s515 94.44+4237  94.43+248

o 86.35+9.25 87.09+9.04  85.55+9.92 85.70+1010  92.62+899  92.77+8.72

S 77.30+3.63 78.45+375  76.26+391  76.36+3.92  85.43+361 84.63+3.76

AD R 77.83+1759 83.45+1435 75.41+1962 72.0842345 83.51+1690 83.27+17.00
10% P 714141531 76.91+1556 68.70+1646 66.54+17.74 76.11+1698 76.06+16.19
S+0 82.7342.05 84334271 81.51+207  81.98+211  90.024+247  90.02+2.40

R+S+0 91.19+3.14 91.74+301  90.70+334  90.98+325  95.86+263  95.86+267
P+R+S+0 91.43+3.12 92.52+236  90.71+356 91.14+331  96.44+284  96.48+2.82

(0] 69.56+7.54 71434804  68.19+7.16  67.83+741 77324869  77.32+845

S 59.09+3.50 61.08+486  59.83+400 58.12+357  63.99+662  63.33+6.09

R 90.15+1323  93.83+7.28 89.03+1488 88.17+1678  96.22+597  96.02+6.28

1% P 85.57+1345  90.36+7.16 83.98+15.13  82.72+1803  94.23458  94.10+5.65
S+0 63.24+3.62 63.52+4.15  63.30+426  62.72+414 67984517  67.25+4.97

R+S+0 82.65+4.23 83.21+406  82.97+458  82.46+443  90.07+677  90.24+6.56
P+R+S+0 88.22+336 88.55+273  88.56+3.14  88.14+337  96.05+136  96.12+1.31

(0] 85.27+1.73 84.21+125  77.74+401  79.78+337  88.13+223  84.76+2.14

S 84.30+2.56 84.00+2.16  75.68+569  77.74+5.13  88.66+205  84.80+2.15

R 88.63+1.43 88.42+145  82.46+235 84.72+212  89.29+396  86.21+4.96

100 % P 88.85+3.22 88.74+230 82.78+611  84.75+538  94.32+181 90.61+281
S+0 84.38+2.34 84.33+118  75.49+5690  77.69+476  90.37+259  86.57+4.32

R+S+0 85.32+1.93 84.82+178  77.54+458  79.64+394  92.34+185  88.75+1.98
P+R+S+0 86.36+1.44 87.18+128  77.87+255  80.79+244  93.414235  89.09+1.64

(0] 86.75+1.44 85.42+210  80.884327 82454229  90.71+3.16  88.84+3.50

S 86.34+0.73 84.75+149  80.21+178  81.90+125  88.36+031 85.20+1.17

PTB R 88.12+1.75 86.36+228  84.16+355  84.80+239  91.80+250  90.45+1.90
10% P 90.38+2.23 90.33+271  85.69+436  87.27+345  93.06+386  91.83+2.93
S+0 85.84+1.74 84.14+076  80.07+s5.18  81.14+382  90.28+275  87.57+3.42

R+S+0 85.88+3.08 83.60+3.61 82.45+194 82481271 90.79+179  88.68+1.91
P+R+S+0  90.32+1.61 89.67+194  85.85+299  87.35+236  92.78+111  90.46+3.00

(0] 85.73+1.59 83.79+215  79.53+3.14  81.094254  90.15+232  88.85+2.64

S 77.63+1.72 72364241 69.41+253  70.38+229  79.09+4221  75.07+1.88

R 86.28+1.97 84.02+285  82.06+208  82.61+197  90.50+099  88.32+1.40

1% P 91.55+245 90.28+3.27  88.45+322  89.25+313 95.12+258 94.80+2.04
S+0 81.78+1.07 77.65+134  77.17+214  77.20+143  86.65+238  82.12+1.95

R+S+0 80.714228 76.79+203  80.51+167  77.84+213  88.76+138  85.00+2.23
P+R+S+0  86.62+3.9 82.99+450  85.36+573  83.89+496  93.78+382  91.94+4.96

o 89.92+42.15 90.50+207  89.92+215  89.89+2.17  96.79+129  96.84+1.29

S 77.86+2.85 78.98+251  77.86+285  77.62+3.01 88.44+223  88.96+2.14

R 94.44+1.79 94.60+1.75  94.44+1.79  94.44+180  98.39+129  98.31+146

100 % P 93.18+3.70 93.27+367  93.18+370  93.18+370  97.59+201  97.58+2.00
S+0 80.38+4.22 81.59+370  80.38+422  80.16+438  91.35+224  91.64+2.05

R+S+0 86.01+4.29 86.35+381  86.01+429 85954438 94.14+272 94371258
P+R+S+0 85.47+1.16 85.68+120 85.47+116 85454116  93.73+1.02  93.96+0.99

o 85.34+438 86.03+397  85.34+438  85.25+448  93.18+352  93.244353

S 74.02+2.09 74.62+201  74.02+200  73.86+2.17  81.924325  81.76+342
TDBrain R 92.96+8.22 93.02+820 92.96+822  92.96+823  96.14+580 95.93+6.08
10% P 89.38+1469 89.58+1472 89.38+1469 89.36+1469 93.23+1181  93.52+11.10
S+0 74924257 76.60+3.07  74.92+257  74.54+255  84.514307  84.40+3.07

R+S+0 81.90+4.74 83.55+4.02  81.90+474  81.61+499 91.21+352  90.73+3.72
P+R+S+0  79.28-+4.64 79.83+483  79.28+464  79.19+462  88.39+4.13  88.38+3.96

(0] 71.52+7.54 72.17+7171 71.52+754  71.31+762  78.32+4837  77.56+891

S 58.62+3.84 59.66+395  58.62+384  57.39+426  62.85+638 61.61+6.61

R 85.29+5.93 85.55+566  85.29+593  85.24+599  91.19+476¢  91.11+4.74

1% P 77.23+3.42 78.10+330  77.23+342  77.04+347  86.12+388  85.10+4.11
S+0 61.71+297 61.824290  61.71+297  61.60+307  66.09+298  64.94+2.66

R+S+0 72.15+6.26 73.39+750  72.15+626  T71.91x612 78394777  76.97+7.61
P+R+S+0 72934721 74.20+768  72.93+7.21 72.57+737  78.724842  77.71+9.10




Table 6: Ablation study of hyperparameter ). The ablation study of hyperparameter ) is evaluated on the AD,
TDBrain, and PTB datasets. The A1, A2, A3, A4 from left to right are for patient, trial, sample, and observation
levels, respectively.

Datasets  Fraction \j, A2, A3, \g Accuracy Precision Recall F1 score AUROC AUPRC

(0.1,0.1,0.1,0.7) 87.82+744  91.08+410  86.62+858  86.77+864  97.95+126  97.94+1.26
(0.1,0.1,0.7,0.1) 85.03+5.64 89.09+322 83.32+637 83.78+659  95.33+1.381 95.30+1.90
(0.1,0.7,0.1,0.1) 82.76+8.67 88.00+4.65 80.98+1002 80.72+1030  95.32+2.72 95.26+2.71
100% (0.7,0.1,0.1,0.1) 82.224831 87.27+441  80.42+962 80.17x1000 94.841+264  94.80+2.65
(0.2,0.2,0.3,0.3) 86.88+5.78 89.96+4.00 85.46+6.52 85.97+636  94.03+356  94.07+354
(0.3,0.3,0.2,0.2) 86.72+597  89.76+3.12  85.41+692  85.73+696  95.14+195  95.09+2.04
(0.3,0.3,0.15,0.25) 82.84+696  88.09+399  80.87+793  81.04+806 94.73+298  94.64+3.12

(0.1,0.1,0.1,0.7) 89.56+867 91.37+673  88.64+965  88.82+951  96.55+441  96.47+4.63
(0.1,0.1,0.7,0.1) 87.84+6.09  88.72+5.16  87.50+676  87.42+666  94.58+532  94.38+567
(0.1,0.7,0.1,0.1) 79.89+1406 85.79+750 77.97+1605 75.54+19.81 92.89+645  92.67+6.64

AD 10% (0.7,0.1,0.1,0.1) 78.26+1358 84.99+668 76.38+1580 73.44+1924  92.74+764  92.57+793
(0.2,0.2,0.3,0.3) 93.25+171 93.86+124 92.77+200  93.09+180  97.68+087  97.75+0.82
(0.3,0.3,0.2,0.2) 91434370  92. 714239  90.68+428  91.09+400 96.81+162 96.88+1.64
(0.3,0.3,0.15,0.25)  91.54+363  92.93+232  90.77+425  91.19+391  97.26+163  97.29+1.67
(0.1,0.1,0.1,0.7) 95.884229  96.21+192  95.64+255  95.79+236  92.72+934  93.24+4874
(0.1,0.1,0.7,0.1) 85.03+980  87.164+575  85.65+854 84.62+1042 94714273  94.73+289
(0.1,0.7,0.1,0.1) 97.19+128  97.32+111 97.08+142  97.15+131  99.02+106  98.98+1.11

1% (0.7,0.1,0.1,0.1) 97.00+1.10  97.10+106  96.92+1.14  96.96+1.12  98.93+120 98.89+1.26
(0.2,0.2,0.3,0.3) 84.55+7.39 84.47+751 84.75+7.65 84.44+749 89.95+1083 89.78+1127
(0.3,0.3,0.2,0.2) 86.96+592  87.16+566  86.87+6.31 86.72+6.19  92.68+7.76  92.93+7.43
(0.3,0.3,0.15,0.25) 92.40+252  92.75+241  92.16x244 92271255 9776111 97.76£1.17
(0.1,0.1,0.1,0.7) 85.51+246  85.54+252  76.96+420  79.60+391  91.30+228  87.11+384
(0.1,0.1,0.7,0.1) 85.94+340  87.23+403  76.69+561  79.64+594  93.78+251  90.78+4.78
(0.1,0.7,0.1,0.1) 87.84+198 87.67+172  81.14+368 83.45+322 92.95+156 87.47+282

100% (0.7,0.1,0.1,0.1) 87.76+275  88.20+141  80.65+554  82.96+507  91.82+366  88.70+3.08
(0.2,0.2,0.3,0.3) 87.74+146  87.78+148  80.79+258  83.28+231  92.97+197  88.67+171
(0.3,0.3,0.2,0.2) 87.16+202  87.62+160  79.47+360  82.15+333  94.00+042  88.83+165
(0.3,0.3,0.15,0.25) 87.56+087 87.91+064 80.25+1.69 82.92+150 91.85+244  88.27+234
(0.1,0.1,0.1,0.7) 87.76+2.62 87.15+227 81.53+5.10 83.43+4.15 92.54+2.17 89.85+2.65
(0.1,0.1,0.7,0.1) 88.29+253  85.80+357 86.87+1.39  85.89+234  94.56+080  93.15+0.75

PTB (0.1,0.7,0.1,0.1) 88.49+328  88.98+260 81.65+600 84.01+561  94.83+1.08 92.48+22
10% (0.7,0.1,0.1,0.1) 88.70+320  89.47+240  81.85+6.02 84.26+545 94.30+176  93.24+241
(0.2,0.2,0.3,0.3) 89.25+207  88.87+255  83.98+397  85.72+3.43  94.26+147  90.82+343
(0.3,0.3,0.2,0.2) 89.39+202  88.86+290 84.43+365  86.03+3.00  93.59+1.13 92.42+2.00
(0.3,0.3,0.15,0.25) 89.82+3.00 89.36+216 84.71+573  86.34+484  93.55+196  90.54+3.20
(0.1,0.1,0.1,0.7) 89.45+180  87.49+215  86.23+3.61 86.62+257  94.03+259  93.21+2.60
(0.1,0.1,0.7,0.1) 85.124224  81.334260  83.06+324  82.01+276  91.124214  88.96+2.92
(0.1,0.7,0.1,0.1) 90.52+190 88.58+293 88.23+198  88.23+210 95.08+150 93.78+1.98

1% (0.7,0.1,0.1,0.1) 90.19+175  87.88+223  88.20+270  87.87+219  94.82+165  93.68+224
(0.2,0.2,0.3,0.3) 85.28+439  81.484503  84.10+566  82.47+528 92874385  90.34+4.96
(0.3,0.3,0.2,0.2) 86.96+256  83.38+289  85.65+359  84.32+315  94.47+190 92314267
(0.3,0.3,0.15,0.25) 89.43+138 86.42+196 88.86+094 87.37+139  95.32+1.04 94.29+1.72
(0.1,0.1,0.1,0.7) 87.20+339  87.40+334  87.20+339  87.18+340  94.844234  94.96+233
(0.1,0.1,0.7,0.1) 88.531386 88.66+379  88.53:386 88.52+387 95.57+274  95.711266
(0.1,0.7,0.1,0.1) 87.97+326  88.33+3.15  87.97+326  87.94+328  95.58+1.92  95.77+1.86

100% (0.7,0.1,0.1,0.1) 87.25+271 87.54+274  87.25+271 87.22+271  95.14+173  95.32+1.70
(0.2,0.2,0.3,0.3) 85.69+2.42 86.00+2.53 85.69+2.42 85.66+2.41 94.14+1.43 94.31+1.28

(0.3,0.3,0.2,0.2) 85.76+3.18  86.24+275  85.76+3.18  85.69+324  94.34+179  94.45+177

(0.3,0.3,0.15,0.25)  85.54+4.11 86.30+362  85.54+4.11 85.44+421 9422428  94.36+2.80

(0.1,0.1,0.1,0.7) 76.92+484  78.35+364 76924484  76.50+533  85.85+399  85.36+4.30

(0.1,0.1,0.7,0.1) 81.91+584  82.40+58  81.91+s584  81.83+587  90.38+s511 90.72+5.16

TDBrain (0.1,0.7,0.1,0.1) 84.51+481 84.90+4.61 84.51+481 84.45+486  92.58+330  92.62+3.09

10% (0.7,0.1,0.1,0.1) 84.921583 85244543 84.92+583 84.86+594  92.69+407  92.69+3381
(0.2,0.2,0.3,0.3) 80.79+384  82.00+376  80.79+384  80.59+394  89.88+350  89.56+3.76
(0.3,0.3,0.2,0.2) 78.934388  79.78+406 78931388  78.77+394  88.64+352  88.594324
(0.3,0.3,0.15,0.25)  79.96+5.63 81.00+552  79.96+5.63 79.76+5.76 88.89+4.57 88.70+4.21

(0.1,0.1,0.1,0.7) 68.68+288  70.46+356  68.68+288  68.02+295  73.79+480  72.99+527
(0.1,0.1,0.7,0.1) 66.49+38.01 68.46+764  66.49+8.01 65.034+926  73.30+8.15  72.74+832
(0.1,0.7,0.1,0.1) 73.08+861  74.89+8.18  73.08+861  72.45+880  78.39+458  77.79+4.18
1% (0.7,0.1,0.1,0.1) 73.164872 75144813  73.164872 72464905  78.42+448  77.76+4.05
(0.2,0.2,0.3,0.3) 71.55+849  72.14+9.44  71.55+849  71.44+844  77.14+924  76.04+9.79
(0.3,0.3,0.2,0.2) 70.11+807  71.68+895  70.11+807  69.54+838 76.24+1055 75.26+10.84
(0.3,0.3,0.15,0.25) 73.59+928  74.53+961  73.59+928 73.331936 79.07+967 77.97+9.62




Table 7: Performance on downstream clustering. The clustering performance is evaluated on the AD dataset.
We compare the baseline TS2vec, which performs best in the F-FT setup.

Method Silhouette ARI NMI
Random Init. 0.11844 0.0082  0.1189+0.0664 0.1258+0.0660
TS2vec 0.07954 0.0032  0.0013+£ 0.0026  0.001840.0016

COMET (Ours)  0.1381£ 0.0139  0.9358+0.0264 0.8827+0.0414

Table 8: Performance on anomaly detection. Sample-level anomaly detection on a very unbalanced AD test
set comprising 90% negative (healthy) samples and 10% positive (Alzheimer) samples.

Fraction Models Accuracy  Precision Recall F1 score AUROC  AUPRC
100% TS2vec 82.11+330  66.05+245 82.13+321  68.70+337 91.27+147 76.80+3.08
COMET (Ours) 83.03+1165 71.76+760 90.33+631 73.95+11.97 97.99+137 91.52+552
10% TS2vec 76.05+635  62.48+290 77.33+474  62.67+500 86.76+395 72.21+5.09
COMET (Ours) 88.22+2388 73.22+331  92.49+1.73 77.97+387 97914114 92.21+443
1% TS2vec 67244805  57.34+3.12 67.87+645 54.35+621 T72.75+682 61.32+525

COMET (Ours) 77.57+421 64.72+195 84.41+338  65.74+367 93.13+282 79.65+7.65

G.4 Heavy Duty Baselines

In COMET, we incorporate four contrastive blocks to leverage four levels of data consistency,
allowing the data to pass through the model four times within one epoch during contrastive pre-
training. To ensure that our superior performance is not due to increased data passing, we conduct
experiments on the AD dataset with two baselines: SimCLR and TS2vec.

SimCLR utilizes only one contrastive block during training. We employ two strategies to match the
data passing number with COMET: (1) Run SimCLR with one contrastive block for four times the
original number of epochs in pre-training (400 epochs instead of 100). (2) Duplicate the contrastive
blocks, resulting in four SimCLR contrastive blocks. The notation 4E signifies running the model
for four times the original number of epochs, while 4B indicates the use of four times the number of
contrastive blocks compared to the original SimCLR.

TS2vec incorporates two contrastive blocks during training, leading to data passing twice within
one epoch. Similarly, we adopt two strategies to align the data passing number with COMET: (1)
Run TS2vec for two times the original number of epochs in pre-training (200 epochs instead of 100).
(2) Duplicate the contrastive blocks, resulting in four TS2vec contrastive blocks. The notation 2E
denotes running the model for four times the original number of epochs, while 2B indicates the use
of four times the number of contrastive blocks compared to the original TS2vec.

The results are presented in Table 9. We observe that simply increasing the number of epochs or
contrastive blocks does not improve performance but rather leads to a decrease in most cases. We
speculate that this decrease is caused by overfitting.

Appendix H Broader Impacts

Our approach for self-supervised contrastive learning improves classification performance on target
datasets in patient-independent medical diagnosis scenarios. Leveraging different data consistency
levels in medical time series is crucial to enable effective and accurate contrastive learning without
sufficient labels. Our work will encourage the research community to discover universal frameworks
for other practical applications based on time series representation learning. We also hope our work
can attract more researchers to the more general problem of hierarchical consistency from other
related fields.

From the societal perspective, our work and the line of contrastive learning can promote more efficient
use of medical time series with the lack of labels. Specifically, our model has the potential to identify
patterns and anomalies that may not be immediately apparent to human experts. This could lead
to earlier and more accurate diagnoses, improving patient outcomes and reducing healthcare costs.
However, practitioners need to be aware of the limitations of the model.



Table 9: Heavy Duty Baselines. Run more epochs or add more contrastive blocks to SimCLR and TS2vec on
the AD dataset.

Fraction Models Accuracy Precision Recall Flscore AUROC AUPRC
4E-SimCLR 56.87+251 57.67+402 53.31+230 48.28+463 57.67+402 51.97+1.44
4B-SimCLR 53.92+381 51.884325 51.26+305 46.92+507 51.884325 50.75+1.69
SimCLR 54.77+197 50.15+702 50.58+192 43.18+427 50.15+7.02 50.42+1.06

100% 2E-TS2vec 76.49+6.10 78.97+354 77.694516 76214645 88.44+240 88.12+253
2B-TS2vec 81.61+165 81.47+175 81.53+168 81.43+165 89.50+160 89.22+1.75

TS2vec 81.26+208 81.21+2.14 81.344204 81.12+206 89.20+1.76 88.94+135
COMET (Ours) 84.50+446 88314242 82954539 83331515 94441237 94.4312.48
4E-SimCLR 57.97+174 58.41+831 53.69+225 46.47+571 58.41+831 52.33+1.38
4B-SimCLR 53.57+629 53.894505 52.97+422 50.60+546 53.89+505 51.80+2.34
SimCLR 56.09+225 53.81+574 51.73+259 44.10+484 53.81+574 51.08+1.53

10% 2E-TS2vec 66.29+786 69.9245.13 67.79+644 65.36+855 78.54+498 77.95+5.29
2B-TS2vec 72.61+446 73.86+436 72984366 72.30+424 81.91+483 81.74+485

TS2vec 73.28+434 74144433 73524377  73.00+4.18 81.66+520 81.58+5.11
COMET (Ours) 91.43+312 92.52+236 90.71+356 91.14+331 96.44+284 96.48+2.82
4E-SimCLR 58.07+193 57.724350 54.92+199 51.93+3.11 57.72+350 52.91+1.28
4B-SimCLR 54.67+5.43 54.86+494 54.48+464 53.68+489 54.86+494 52.67+2.68
SimCLR 55424243 52.184555 51.37+276 45.02+4.79 52.18+555 50.87+1.45

1% 2E-TS2vec 63.56+462 64.97+353 64.49+390 63.28+469 70.26+355 68.77+3.59
2B-TS2vec 64.18+453 64.26+480 64.26+480 63.93+461 70.07+597 68.62+6.25

TS2vec 64.93+353 65.284352 65.14+359 64.64+358 70.56+538 68.97+5.75

COMET (Ours) 88.22+336 88.55+273 88.56+3.14 88.14+337 96.05+136 96.12+1.31

All datasets in this paper are publicly available and are not associated with privacy or security
concerns. Furthermore, we have followed guidelines on responsible use specified by the primary
authors of the datasets used in the current work.
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