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A DETAILS ON EXPERIMENTAL SETUP

Implementation details. The LoE structure can be configured with the number of layers L,
the number of experts at each layer K, the channel dimension of each expert C, and the di-
mension of the latent at each layer H , denoted as a tuple (L,K,C,H). We train LoEs of
(7, 384, 128, 128), (5, 256, 64, 256), (6, 256, 64, 64), and (5, 64, 64, 64) in CelebA-HQ (Karras,
2017), ShapeNet (Chang et al., 2015), SRN-Cars (Sitzmann et al., 2019), and AMASS (Mahmood
et al., 2019) datasets, respectively. We follow mNIF (You et al., 2024) on the data processing pro-
tocols for CelebA-HQ, ShapeNet, and SRN-Cars datasets. Details about the AMASS dataset are
provided in Sec. B.3.

Training details. In Stage-1, we train LoEs via meta-learning on CelebA-HQ, ShapeNet, and
AMASS, and with auto-decoding on SRN-Cars. We use a batch size of 32, an outer learning rate of
1e−4, an inner learning rate of 1 with 3 steps, and train the LoE for 800 epochs in the meta-learning
setting. For auto-decoding experiments on SRN-Cars, we use a batch size of 8, a learning rate of
1e−4, and train the LoE for 1000 epochs. In both settings, we use the AdamW (Loshchilov, 2017)
optimizer without weight decay. In Stage-2, we set the training batch size to be 32, learning rate
1e−4, and cosine scheduler with minimum learning rate 0.0. We train the HCDM for 1000 epochs
with the AdamW optimizer.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 GENERALIZABILITY ANALYSIS THROUGH RETRIEVAL

We use retrieval to compare the generalizability of CHINR and mNIF on the CelebA-HQ dataset.
Specifically, we generate samples and retrieve the closest images from the training set. As shown
in Fig. 1, mNIF generates samples that are very similar to the training images, suggesting a higher
chance of “memorization”. In contrast, CHINR demonstrates better generalization by producing
“new” samples that differ more noticeably from the training data.

B.2 MORE GENERATED SAMPLES

Fig. 2 shows more generated samples on CelebA-Net, ShapeNet, and SRN-Cars datasets.

B.3 AMASS EXPERIMENTS

We apply our proposed CHINR model to the AMASS dataset of 3D human motions. For each
motion sequence, we use 200 frames, with each frame represented by 165 values corresponding to
the locations and rotations of body joints. As a result, each data instance is formatted as a grid with
size 200 × 165. In Stage-1, the LoE is employed to fit the motion instances. In Stage-2, we set the
binary lengths to 8 to avoid memorizing conditions.

Reconstruction and generation results. The reconstruction performance is shown in Table. 1. The
randomly generated motions are shown in Fig. 3.

Semantic-level Interpolation. Since the LoE successfully learns the consistent latent space, we can
perform semantic-level interpolation for motions. As shown in Fig. 4, given two fitted sequential
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mNIF

CHINR

Generated Retrieved from training set

Figure 1: Retrieval on CelebA-HQ: mNIF retrieves images closely resembling those from the train-
ing set, while CHINR demonstrates better generalization by producing distinct new images.

Figure 2: More generated samples of CelebA-HQ, ShapeNet, and SRN-Cars data.

Table 1: Quantitative results on AMASS.

Model MSE↓

mNIF (You et al., 2024) 0.015
CHINR 0.011
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Figure 3: Generated motions with HCDM. each row denotes one sampled data.

Figure 4: Semantic interpolation for AMASS data. Anchor sequential motions (indicated by the red
and green dashed boxes) are first fitted with LoE to obtain latents. Then semantic-level interpolation
is performed by interpolating the latents. The red dashed box denotes the start motion, and the green
dashed box denotes the end motion.

motions with LoE, each corresponds to a latent, we can interpolate the latent from the start motion
(indicated by the red dashed box) to the end motion (indicated by the green dashed box) linearly
with ratio [0.2, 0.4, 0.6, 0.8]. We can see that the interpolated motions change smoothly from the
start to the end. Semantic-level interpolation can be useful in the gaming industry, and 3D-digital
content generation.

Temporal-level interpolation. Since the INR can generate data instances in any resolution, we can
easily enlarge the input coordinates’ resolution in the time dimension to achieve temporal-level inter-
polation. We set the length of the time dimension to be 200 and 400, then get motions with LoE. The
interpolated results are submitted as videos named “motion short.mp4” and “motion long.mp4”.

B.4 HIERARCHICAL CONTROLLABLE GENERATION

More examples of hierarchical controllable data generation are presented in Fig 5.
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Sampled

Fixed

(a) CelebA-HQ

(b) ShapeNet (c) SRN-Cars

Figure 5: More examples of hierarchical controllable generation on CelebA-HQ, ShapeNet, and
SRN-Cars data.

B.5 LATENT-BASED RETRIEVAL

We show an application of data retrieval by latents, since they already embed rich semantic mean-
ings. We first obtain the latents for the target data by fitting it to the LoE through a few gradient
steps. Once the latents are optimized, they can be used to retrieve similar data by comparing their
latent representations to the searched set, allowing us to search for semantically similar examples
within the latent space. Fig. 6 shows this process by using images from the test-split of CelebA-HQ
as the targets, and train-split images as the searched set. We demonstrate two approaches for re-
trieval: (1) using the flattened h for all layers, and (2) layer-wise retrieval using each layer’s latent
hl. As shown in Fig. 6, retrieval by the flattened h will retrieve samples that are broadly similar,
while layer-wise retrieval retrieves samples with specific semantic similarities. For example, h2 re-
trieves faces with similar orientations, while h3 retrieves faces with similar facial features such as
eye shape and expressions.

C ANALYSIS

In this section, we provide more analysis of the latent space and the functionalities of binary condi-
tions.
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Target

Retrival by 
all layers

Retrival by 
each layer

Closer

Closer

Closer

CloserTarget

Figure 6: Latent-based retrieval via two approaches: retrieval by all layers and retrieval by each
layer.

C.1 LATENT SPACE ANALYSIS

Here, we analyze the latent space further, focusing on its interpolation capabilities and providing
additional results of correlation analysis.

C.1.1 LATENT INTERPOLATION

To illustrate that our model learns a consistent and metric latent space, following definitions in Du
et al. (2021), we perform latent space interpolation in two ways: complete interpolation, and layer-
wise interpolation.

Figure 7: Latent space interpolation is performed for LoE, with four corner points representing the anchor
examples rendered in stage 1. The intermediary points are generated through the bilinear interpolation of the
latents associated with these four anchors. The interpolation is evaluated on datasets CelebA-HQ, ShapeNet,
and SRN-Cars.

Complete Interpolation is shown in Fig.7. Four corners present the signals with latent generated
from Stage-1. The intermediary signals are bilinearly interpolated from four corners in latent space.
The results demonstrate that the learned latent is metric and consistent with human perception.

Layer-wise Interpolation. Since our LoE embeds semantics hierarchically in different parts of the
latent, we can interpolate each part to control specific semantics. As shown in Fig. 8, we interpolate
the second, third, and fourth parts of the latent associated with red-boxed signals, with the corre-
sponding parts of the right side latent. For CelebA-HQ samples, we find that the facial orientation,
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Figure 8: Layerwise interpolation. The red boxes denote the start and the green boxes denote the end. For the
CelebA-HQ, the layers 2 → 4 are interpolated respectively while other layers are fixed. For the ShapeNet, the
layers 1 → 3 are interpolated respectively.

(a) ShapeNet. (b) SRN-Cars.

Figure 9: Correlation between the learned latents across layers, trained on ShapeNet (Chang et al.,
2015) and SRN-Cars (Sitzmann et al., 2019). The non-negligible correlation between adjacent layers
(e.g., h1 and h2) reveals the necessity of conditional distribution learning.

facial features, and skin tone can be interpolated independently. This demonstrates that each part of
the latent also constructs a metric and consistent manifold.

C.1.2 LAYER-WISE CORRELATION ANALYSIS

We provide correlation analysis on additional datasets in Fig. 9 and Fig. 10. This highlights the
significance of conditional modeling in the hierarchical generation process.

Figure 10: Visualization of conditional distributions across layers 3, 4, 5. The gray regions present
the distribution of latents from Stage-1, while the colored regions represent the sampled latents from
Stage-2.

C.2 BINARY CONDITION ANALYSIS

We analyze the clustering of latents and binary conditions on CelebA-HQ dataset, as shown in
Fig. 11. Firstly, we use the KMeans algorithm to get 10 clusters of latents, shown as the dots in
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Figure 11: Clusters of each part of latent and binary conditions. The dotted plot presents clusters of
each part of latents trained on ClebA-HQ. The gray distribution plot presents the distribution of each
part of latents, and starred scatter plot presents clusters of latents with similar binary conditions.

the figure. Then we select three anchor latents, generate three binary conditions with HCDM, and
search the nearest binary-corresponded latents. The nearest neighbors are represented by the stars.
We can observe that the binary conditions embed the latents’ information and form a consistent
binary condition space. This binary condition space corresponds to the latent space.
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