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ABSTRACT

In this paper, we present Consistent4D, a novel approach for generating 4D dy-
namic objects from uncalibrated monocular videos. Uniquely, we cast the 360-
degree dynamic object reconstruction as a 4D generation problem, eliminating
the need for tedious multi-view data collection and camera calibration. This is
achieved by leveraging the object-level 3D-aware image diffusion model as the
primary supervision signal for training dynamic Neural Radiance Fields (DyN-
eRF). Specifically, we propose a cascade DyNeRF to facilitate stable convergence
and temporal continuity under the supervision signal which is discrete along the
time axis. To achieve spatial and temporal consistency, we further introduce an
interpolation-driven consistency loss. It is optimized by minimizing the L2 dis-
tance between rendered frames from DyNeRF and interpolated frames from a pre-
trained video interpolation model. Extensive experiments show that our Consis-
tent4D can perform competitively to prior art alternatives, opening up new pos-
sibilities for 4D dynamic object generation from monocular videos, whilst also
demonstrating advantage for conventional text-to-3D generation tasks.

Figure 1: Video-to-4D results achieved by our method. We show the renderings of 2 objects at 2
viewpoints and 3 timestamps.

1 INTRODUCTION

Perceiving dynamic 3D information from visual observations is one of the fundamental yet chal-
lenging problems in computer vision, which is the key to a broad range of downstream applications
e.g., virtual content creation, autonomous driving simulation, and medical image analysis. How-
ever, due to the high complexity nature of dynamic 3D signals, it is rather difficult to recover such
information from a single monocular video observation. As a result, existing dynamic object re-
construction approaches usually take synchronized multi-view videos as inputs (Li et al., 2022b;a;
Shao et al., 2023), or rely on training data containing effective multi-view cues (e.g., teleporting
cameras or quasi-static scenes (Li et al., 2021; Pumarola et al., 2021; Park et al., 2021b;a)). How-
ever, current reconstruction approaches often fail in reconstructing regions that were not observed
in input sequences (Gao et al., 2022a). Moreover, multi-view data capturing requires synchronized
camera rigs and meticulous calibrations, which inevitably limit the methods to potential real-world
applications.

On the other hand, given only a video clip of a dynamic object, humans are capable of depicting
the appearance, geometry, and movement of the object. This is achieved by prior knowledge of
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visual appearance accumulated through human life. In contrast to the multi-view video setting, our
approach favors such simple and practical input settings of a static monocular video. The static
monocular video offers several advantages: ease of collection for handheld cameras, minimizing
the risk of motion blur due to camera movement, and obviating the need for camera parameter
estimation. As a static monocular video does not provide effective multi-view information for re-
construction, we instead opt for the generation approaches.

Inspired by recent advancements in text-to-3D (Poole et al., 2023; Wang et al., 2022; Chen et al.,
2023; Wang et al., 2023) and image-to-3D (Deng et al., 2022; Tang et al., 2023; Melas-Kyriazi
et al., 2023) techniques, in this work, we present a novel video-to-4D generation approach termed
Consistent4D. In this approach, we represent dynamic objects through a specially designed Cascade
DyNeRF and leverage a pre-trained 2D diffusion model to regulate the DyNeRF optimization. To
ensure both spatial and temporal consistency, we introduce an Interpolation-driven Consistency Loss
(ICL), which minimizes the L2 distance between frames rendered by DyNeRF and frames interpo-
lated by a pre-trained video interpolation model. The ICL loss not only enhances consistency in 4D
generation but also mitigates multi-face issues in 3D generation. Furthermore, to improve novel-
view video rendering in challenging monocular video scenarios, we consider post-reconstruction
video enhancements as essential. We train a lightweight video enhancer with cross-frame attention
using GANs to further enhance the video generated from dynamic NeRF as a post-processing step.
Furthermore, we train a lightweight video enhancer to enhancer the video generated from dynamic
NeRF as an optional post-processing step.

We have extensively evaluated our approach on both synthetic videos rendered from animated 3D
model and in-the-wild videos collected from the Internet. To summarize, the contribution of this
work includes:

• We propose a video-to-4D framework for dynamic object generation from a statically cap-
tured monocular video. A specially designed Cascade DyNeRF is applied to represent
the object and is optimized through the Score Distillation Sampling (SDS) loss by a pre-
trained 2D diffusion model. Moreover, for the comprehensiveness of the framework, we
train a lightweight vide enhancer to improve the rendering of 4D object as an optional
post-processing step.

• We introduce a novel video enhancer module to improve the spatial and temporal consis-
tency of the 4D generation. To address the challenge of maintaining temporal and spa-
tial consistency in 4D generation, we introduce a novel Interpolation-driven consistency
loss to improve the spatial and temporal consistency of the 4D generation. The proposed
interpolation-driven consistency loss can significantly improve both video-to-4D and text-
to-3D generation quality.

• We apply a lightweight video enhancer with cross-frame attention to further improve the
rendering quality of the 4D object.

• We extensively evaluate our method on both synthetic and in-the-wild videos collected
from the Internet, showing promising results for the new task of video-to-4D generation.

2 RELATED WORK

3D Generation 3D generation aims to generate 3D content conditionally or unconditionally. Early
works mainly make use of GAN, i.e., generate category-specific 3D objects or scenes from random
noise after learning the category prior (Schwarz et al., 2020; Chan et al., 2021; Gao et al., 2022b).
Recently, general-purpose 3D generation has been enabled by text-to-image diffusion model pre-
trained on Internet-scale data, and it also becomes more controllable, e.g., controlled by text prompt
or single image. The pioneer work of text-to-3D is DreamFusion (Poole et al., 2023), which proposes
Score Distillation Sampling (SDS) loss to leverage the image diffusion model for neural radiance
field (NeRF) training. The following works (Lin et al., 2023; Chen et al., 2023; Wang et al., 2023)
further enhance the visual quality of the generated object by using mesh representation, Variational
Score Distillation, etc. However, the challenging problem, multi-face Janus problem, has not been
addressed in the above works. Image is another popular condition for 3D generation. Different from
3D reconstruction, which focuses on the reconstruction of visible regions from multi-view images,
3D generation usually has only a single image and relies much on the image diffusion model to
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generate invisible regions of the object (Melas-Kyriazi et al., 2023; Tang et al., 2023; Liu et al.,
2023). So many works simply translate the image to words using Lora and then exploit text-to-
3D methods (Melas-Kyriazi et al., 2023; Tang et al., 2023; Seo et al., 2023). One exception is
Zero123 (Liu et al., 2023), which trains a 3D-aware image-to-image model using multi-view data
and could generate a novel view of the object in the input image directly. Benefiting from multi-view
data training, the multi-face Janus problem has been alleviated to some extent in Zero123.

4D Reconstruction 4D reconstruction, aka dynamic scene reconstruction, is a challenging
task. Some early works focus on object-level reconstruction and adopt parametric shape mod-
els (Matthew Loper & Black, 2015; Vo et al., 2020) as representation. In recent years, dynamic neu-
ral radiance field become popular, and convenient dynamic scene reconstruction is enabled. These
works can be classified into two categories: a deformed scene is directly modeled as a NeRF in
canonical space with a time-dependent deformation (Pumarola et al., 2021; Park et al., 2021a;b; Wu
et al., 2022b; Tretschk et al., 2021) or time-varying NeRF in the world space (Gao et al., 2021; Li
et al., 2021; Xian et al., 2021; Fridovich-Keil et al., 2023; Cao & Johnson, 2023). Some of them
require multi-view synchronized data to reconstruct dynamic scenes, however, data collection and
calibration is not convenient (Li et al., 2022b; Shao et al., 2023). So, reconstruction from monoc-
ular videos gain attention. However, those monocular methods either require teleporting camera or
quaic-static scenes (Pumarola et al., 2021; Park et al., 2021a;b), which are not representative of daily
life scenarios (Gao et al., 2022a).

4D Generation 4D generation extends 3D generation to space+time domain and thus is more
challenging. Early works are mainly category-specific and adopt parametric shape models (Zuffi
et al., 2017; 2018; Vo et al., 2020; Kocabas et al., 2020) as representation. They usually take images
or videos as conditions and need category-specific 3D templates or per-category training from a
collection of images or videos (Ren et al., 2021; Wu et al., 2021; Yang et al., 2022; Wu et al.,
2022a). Recently, one zero-shot category-agnostic work, text-to-4D (Singer et al., 2023), achieves
general-purpose dynamic scene generation from text prompt. It follows DreamFusion (Poole et al.,
2023) and extends it to the time domain by proposing a three-stage training framework. However,
the quality of generated scenes is limited due to low-quality video diffusion models.

3 PRELIMINARIES

3.1 SCORE DISTILLATION SAMPLING FOR IMAGE-TO-3D

Score Distillation Sampling (SDS) is first proposed in DreamFusion (Poole et al., 2023) for text-to-
3D tasks. It enables the use of a 2D text-to-image diffusion model as a prior for optimization of a
NeRF. We denote the NeRF parameters as θ, text-to-image diffusion model as ϕ, text prompt as ρ,
the rendering image and the noisy image as x and z, the SDS loss is defined as:

∇θLSDS (ϕ,x) = Eτ,ϵ

[
ω(t) (ϵ̂θ (zt; ρ, τ)− ϵ)

∂x

∂θ

]
, (1)

where τ is timestamps in diffusion process, ϵ denotes noise, and ω is a weighted function. Intuitively,
this loss perturbs x with a random amount of noise corresponding to the timestep τ , and estimates
an update direction that follows the score function of the diffusion model to move to a higher density
region.

Besides text-to-3D, SDS is also widely used in image-to-3D tasks. Zero123 (Liu et al., 2023) is one
prominent representative. It proposes a viewpoint-conditioned image-to-image translation diffusion
model fine-tuned from Stable Diffusion (Rombach et al., 2022), and exploits this 3D-aware image
diffusion model to optimize a NeRF using SDS loss. This image diffusion model takes one image,
denoted by Iin, and relative camera extrinsic between target view and input view, denoted by (R,T),
as the input, and outputs the target view image Iout. Compared with the original text-to-image
diffusion model, text prompt in Equation 1 is not required in this model cause the CLIP embedding
of the input image and the relative viewpoint change replace the text prompt. Then Equation 1 could
be re-written as:

∇θLSDS (ϕ,x) = Eτ,ϵ

[
ω(t) (ϵ̂θ (zt; Iin,R,T, τ)− ϵ)

∂x

∂θ

]
, (2)
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Figure 2: Schematic illustration of Consistent4D. The framework consists of two stages, the first
for DyNeRF learning, and the second for video enhancer training. In Stage I, we design a Cascade
DyNeRF, which is supervised by SDS loss from an image-to-image diffusion model. Particularly,
a novel Interpolation-driven Consistency Loss is proposed to compensate for the spatiotemporal
inconsistency brought by the image diffusion model. In Stage II, we train a cross-frame video
enhancer using GAN to further improve the quality of the video rendered from DyNeRF.

3.2 K-PLANES

K-planes (Fridovich-Keil et al., 2023) is a simple and effective dynamic NeRF method which fac-
torizes a dynamic 3D volume into six feature planes (i.e., hex-plane), denoted as P = {Po}, where
o ∈ {xy, yz, xz, xt, yt, zt}. The first three planes correspond to spatial dimensions, while the last
three planes capture spatiotemporal variations. Each of the planes is structured as a M ×M × F
tensor in the memory, where M represents the size of the plane and F is the feature size that en-
codes scene density and color information. Let t denote the timestamp of a video clip, given a point
p = (x, y, z, t) in the 4D space, we normalize the coordinate to the range [0,M) and subsequently
project it onto the six planes using the equation f(p)o = Po(ιo(p)), where ιo is the projection from
a space point p to a pixel on the o’th plane. The plane feature f(p)o is extracted via bilinear in-
terpolation. The six plane features are combined using the Hadamard product (i.e., element-wise
multiplication), to produce a final feature vector as follows:

f(p) =
∏

o∈{xy,yz,xz,xt,yt,zt}

f(p)o, (3)

Then, the color and density of p is calculated as c(p) = c(f(p)) and d(p) = d(f(p)), where c and d
denotes mlps for color and density.

4 METHOD

In this work, we target to generate a 360◦ dynamic object from a statically captured monocular
video. To achieve this goal, we develop a framework consisting of a DyNeRF and a video enhancer,
supervised by the pre-trained 2D diffusion model in Zero123 and a GAN, respectively. As shown
in Figure 2, our framework contains two stages, in the first stage, we train a specially designed
cascade DyNeRF using SDS loss and image reconstruction loss. To guarantee spatial and temporal
consistency, we propose a novel Interpolation-driven Consistency Loss as the extra regularization
for the DyNeRF. Inspired by pix2pix (Isola et al., 2017), we apply GAN to train a lightweight video
enhancer together with the DyNeRF. In such a way, we obtain a DyNeRF from which we can render
360◦ view of the dynamic object, and the rendered results can be further enhanced by the video
enhancer.
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In the following sections, we will first introduce our design of the Cascade DyNeRF, and then
illustrate the Interpolation-driven Consistency loss. At last, we will detail the video enhancer. Video
enhancer is described in the third section. At last, we detail the training loss.

4.1 CASCADE DYNERF

Existing DyNeRF methods mainly assume the supervision signals are temporally coherent, how-
ever, this assumption does not hold in our task pipeline due to the use of the image diffusion models
with no time notion. In order to minimize the impact of temporal discontinuity in the supervision
signals, we are prone to DyNeRF methods with low-rankness. So we choose to build our DyNeRF
on K-planes (Fridovich-Keil et al., 2023), which represent the dynamic object using only six feature
planes. In order to minimize the impact of temporal discontinuity in the supervision signals, we are
prone to 4D representations which naturally guarantee a certain level of temporal continuity. There-
fore, we build our DyNeRF based on K-planes (Fridovich-Keil et al., 2023) which exploits temporal
interpolation, an operator naturally inclined to temporal smoothing. Empirically, maintaining tem-
poral coherence is possible when the time resolution of spatiotemporal planes is small; however, this
results in over-smoothed images where finer details are lost. In contrast, when the time resolution
is large, the quality of the images is enhanced, but the continuity of images within the same time
series diminishes. To combine the benefits of both approaches To achieve both temporal continuity
and high image quality, we adjust the multi-scale technique from the original paper and introduced
Cascade DyNeRF.

Let us denote the scale index by s. In original K-planes, multi-scale features are exploited by
concatenation along feature dimension, then the color and density could be calculated as:

c(p) = c(concat({f(p)s)}Ss=1), d(p) = d(concat({f(p)s)}Ss=1), (4)

where S is the number of scales. In our setting, simple concatenation is hard to balance between
image quality and temporal consistency. So we propose to leverage the cascade architecture and let
the low-resolution planes learn temporally coherent dynamic objects with a certain degree of over-
smoothing, and let the high-resolution planes learn the residual between the above results and the
target ones. The final color and density are the addition of results from planes across the scale. That
is,

c(p)s =

s∑
k=1

c(f(p)k), d(p)s =

s∑
k=1

d(f(p)k), (5)

where k indicates the scale index. Note that SDS loss and other losses are applied to the rendering
results of each scale to guarantee that planes with higher resolution only learn the residual between
results from previous scales and the target object. In this way, we can improve temporal consistency
without sacrificing much object quality. But Cascade DyNeRF alone is not enough for spatiotempo-
ral consistency, so we resort to extra regularization, please see in the next section.

4.2 INTERPOLATION-DRIVEN CONSISTENCY LOSS

Video generation methods usually train an inter-frame interpolationi module to enhance the temporal
consistency between keyframes (Ho et al., 2022; Zhou et al., 2022; Blattmann et al., 2023). Inspired
by this, we exploit a pre-trained light-weighted video interpolation model and propose Interpolation-
driven Consistency Loss to enhance the spatiotemporal consistency of the 4D generation.

The interpolation model adopted in this work is RIFE (Huang et al., 2022), which takes a pair of
consecutive images as well as the interpolation ratio γ (0 < γ < 1) as the input, and outputs the
interpolated image. In our case, we first render a batch of images that are either spatially continuous
or temporally continuous, denoted by {x}Jj=1, where J is the number of images in a batch. Let
us denote the video interpolation model as ψ, the interpolated image as x̂, then we calculate the
Interpolation-driven Consistency Loss as:

x̂j = ψ(x0,xj , γj),

x̂j = ψ(x1,xJ , γj),

LICL =

J−1∑
j=2

∥xj − x̂j∥2,
(6)
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where γj = j−1
J−1 , and 2 ≤ j ≤ J − 1.

This simple yet effective loss enhances the continuity between frames thus improving the spatiotem-
poral consistency in dynamic object generation by a large margin. Moreover, we find the spatial ver-
sion of this loss alleviates the multi-face problem in 3D generation tasks as well. Please refer to the
experiment sections to see quantitative and qualitative results. The Interpolation-driven Consistency
Loss and some other regularization losses are added with SDS loss in Equation 2, details of which
can be found in the experiment section.

4.3 CROSS-FRAME VIDEO ENHANCER

Sometimes image sequence rendered from the optimized DyNeRF suffers from artifacts, such as
blurry edges, small floaters, and insufficient smoothness, especially when the object motion is abrupt
or complex. To further improve the quality of rendered videos, we design a lightweight video en-
hancer and optimize it via GAN, following pix2pix (Isola et al., 2017). The real images are obtained
with image-to-image technique (Meng et al., 2021) using a super-resolution diffusion model, and
the fake images are the rendered ones.

To better exploit video information, We add cross-frame attention to the UNet architecture in
pix2pix, i.e., each frame will query information from two adjacent frames. We believe this could
enable better consistency and image quality. Denote the feature map before and after cross-frame-
attention as F and F′

j , we have:

F ′
j = Attention(Qj ,Kj ,Vj),

Qj = flatten(Fj), Kj = Vj = flatten(concat(Fj−1, Fj+1),
(7)

where Q, K and V denotes query, key, and value in attention mechanism, and concat denotes the
concatenation along the width dimension.

Loss for the generator and discriminator are the same as pix2pix.

4.4 OPIMIZATION

We optimize the dynamic NeRF using SDS loss LSDS in Eq. 2 and ICL loss LICL in Eq. 6. Besides,
we apply reconstruction loss Lrec and foreground mask loss Lm for the input view following Guo
et al. (2023). 3D normal smooth loss Ln (Guo et al., 2023) and orientation loss Lori (Verbin et al.,
2022) are utilized to achieve better geometry. Therefore, the final optimization objective for dynamic
NeRF is calculated as:

L = λ1LSDS + λ2LICL + λ3Lrec + λ4Lm + λ5Ln + λ6Lori (8)

For video enhancer in optional post-processing step, the loss function is the same as pix2pix (Isola
et al., 2017).

5 EXPERIMENT

We have conducted extensive experiments to evaluate the proposed Consistent4D generator using
both synthetic data and in-the-wild data. The experimental setup, comparison with dynamic NeRF
baselines, and ablations are provided in the following sections.

5.1 IMPLEMENTATION DETAILS

Data Preparation For each input video, we initially segment the foreground object utilizing
SAM (Kirillov et al., 2023) and subsequently sample 32 frames uniformly. The majority of the
input videos span approximately 2 seconds, with some variations extending to around 1 second or
exceeding 5 seconds. For the ablation study of video sampling, please refer to the appendix A.3.

Training During SDS and interpolation consistency optimization, we utilize zero123-xl trained by
Deitke et al. (2023) as the diffusion model for SDS loss. For Cascade DyNeRF, we set s = 2, i.e., we
have coarse-level and fine-level DyNeRFs.The spatial and temporal resolution of Cascade DyNeRF
are configured to 50 and 8 for coarse-level, and 100 and 16 for fine-level, respectively. We first
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image-level video-level
LPIPS ↓ CLIP ↑ FVD ↓

D-NeRF 0.51 0.68 2327.83
K-planes 0.38 0.72 2295.68
Zero123 0.15 0.90 1571.60

Ours 0.16 0.87 1133.44

(a) Comparison with other methods.

image-level video-level
Cas-DyNeRF ICL Video enhancer LPIPS ↓ CLIP ↑ FVD ↓

0.16 0.86 1303.31
✓ 0.16 0.87 1226.92

✓ 0.15 0.88 1205.80
✓ ✓ 0.16 0.87 1133.44
✓ ✓ ✓ 0.16 0.87 1114.85

(b) Ablations.

Table 1: Quantitative results on synthetic dataset.

train DyNeRF with batch size 4 and resolution 64 for 5000 iterations. Then we decrease the batch
size to 1 and increase the resolution to 256 for the next 5000 iteration training. ICL is employed
in the initial 5000 iterations with a probability of 25%, and we sample consecutive temporal frames
at intervals of one frame and sample consecutive spatial frames at angular intervals of 5◦-15◦ in
azimuth. SDS loss weight is set as 0.01 and reconstruction loss weight is set as 500. The learning
rate is set as 0.1 and the optimizer is Adam. SDS loss weight is set as 0.1 and reconstruction loss
weight is set as 500. The learning rate is set as 0.01 and the optimizer is Adam. In the post video
enhancing stage, we train the video enhancer with a modified Unet architecture. The learning rate is
set as 0.002, the batch size is 16, and the training epoch is 200. The main optimization stage and the
video enhancing stage cost about 6 hours and 15 minutes on a single V100 GPU. The optimization
of dynamic NeRF and video enhancer cost about 2.5 hours and 15 minutes on a single V100 GPU.
For details, please refer to the appendix A.4.
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5.2 COMPARISONS WITH OTHER METHODS

To date, few methods have been developed for 4D generation utilizing video obtained from a static
camera, so we only manage to compare our method with D-NeRF (Pumarola et al., 2021) and K-
planes (Fridovich-Keil et al., 2023). so we compare our method with approaches with 4D modeling
capabilities, i.e., D-NeRF (Pumarola et al., 2021) and K-planes (Fridovich-Keil et al., 2023), as well
as approaches with 3d generation ability, i.e. Zero123 (Liu et al., 2023). For a fair comparison,
video enhancer is not applied here.

Quantitative Results To quantitatively evaluate the proposed video-4D generation method, we se-
lect and download seven animated models, namely Pistol, Guppie, Crocodie, Monster, Skull, Trump,
Aurorus, from Sketchfab (ske, 2023) and render the multi-view videos by ourselves, as shown in Fig-
ure 3 and appendix A.2. We render one input view for scene generation and 4 testing views for our
evaluation. The per-frame LPIPS (Zhang et al., 2018) score and the CLIP (Radford et al., 2021)
similarity are computed between testing and rendered videos. We report the scores averaged over
the four testing views in Table. 1a. Note that the commonly used PSNR and SSIM scores were not
applied in our scenario as the pixel- and patch-wise similarities are too sensitive to the reconstruc-
tion difference, which does not align with the generation quality usually perceived by humans. As
shown in Table 1, our dynamic 3D generation produces the best quantitative results over the other
two methods on both the LPIPS and CLIP scores, which well aligns with the qualitative compar-
isons shown in Figure 3. For evaluation metrics, we provide image-level metrics, LPIPS (Zhang
et al., 2018) and CLIP (Radford et al., 2021), as well as video-level metric, Frechet Video Distance
(FVD) (Unterthiner et al., 2018). LPIPS and CLIP are computed between testing and rendered
videos in a per-frame way, reflecting single-frame quality. FVD is computed between video pairs,
taking both single-frame quality and temporal coherence in the entire video into consideration. We
report the scores averaged over the four testing views of seven objects in Table. 1a (detailed metrics
on each object can be found in the appendix). As shown in Table 1a, our dynamic 3D generation
produces the best quantitative results over the other two dynamic NeRF methods on all metrics,
which well aligns with the qualitative comparisons shown in Figure 3. Zero123 (per-frame recon-
struction) has advantages over our method in terms of image-level metric, however, it lags behind
the proposed method by a clear margin in terms of video-level metric FVD, which indicates severe
temporal incoherence in Zero123 outputs.

Qualitative Results The outcomes of our method and those of dyNeRFs other baselines are illus-
trated in Figure 3. It is observable that both D-NeRF and HyperNeRF methods struggle to achieve
satisfactory results in novel views, owing to the absence of multi-view information in the training
data. Zero123, although outperforms ours in terms of image quality, suffers from severe temporal
inconsistency, which could be observed via the video attached in the supplementary material. In
contrast, leveraging the strengths of the generation model as well as the temporal modeling capa-
bility of dynamic NeRF, our method proficiently generates a 360◦ representation of the dynamic
object. For additional results, please refer to the appendix A.1.

5.3 ABLATIONS

We perform ablation studies for every component within our framework. For clarity, the video en-
hancer is excluded when conducting ablations for SDS and interpolation consistency optimization.
Quantitative results averaged on seven objects in the synthetic dataset are provided in Table 1b.
Considering that the primary objective of introducing Cascade DyNeRF and ICL loss is to enhance
spatial and temporal coherence, we advise readers to prioritize the video-level metric (FVD) over
image-level metrics (LPIPS and CLIP) in evaluating this ablation study. The notable improvements
observed in FVD scores underscore the efficacy of the proposed Cascade DyNeRF and ICL loss (as
shown in the first four rows). Below, we provide qualitative results on dynamic objects generated
from in-the-wild monocular video captured in real-world or segmented from the animated films.
This is intended to better demonstrate the effectiveness of each proposed module in real-world ap-
plications.

Cascade DyNeRF In Figure 11 (see in appendix), we conduct an ablation study for Cascade DyN-
eRF. Specifically, we substitute Cascade DyNeRF with the original K-planes architecture, maintain-
ing all other settings unchanged. In the absence of the cascade architecture, the training proves to be
unstable, occasionally yielding incomplete or blurry objects, as demonstrated by the first and second
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Figure 4: Ablation of Interpolation-driven Consistency Loss.

w/o ICL w/ ICL
preference rate(%) 24.5 75.5

(a) Video-to-4D.

w/o ICL w/ ICL
success rate(%) 19.3 28.6

(b) Text-to-3D.
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(c) Details of Text-to-3D user study. Data is sorted.

Table 2: User study of Interpolation-driven Consistency Loss.

objects in Figure 11. In some cases, while the model manages to generate a complete object, the
moving parts of the object lack clarity, exemplified by the leg and beak of the bird. Conversely,
the proposed Cascade DyNeRF exhibits stable training, leading to relatively satisfactory generation
results.

Interpolation-driven Consistency Loss The introduction of Interpolation-driven Consistency Loss
(ICL) stands as a significant contribution of our work. Therefore, we conduct extensive experiments
to investigate both its advantages and potential limitations. Figure 4a illustrates the ablation of both
spatial and temporal Interpolation-driven Consistency Loss (ICL) in the video-to-4D task. Without
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ICL, the objects generated exhibit spatial and temporal inconsistency, as evidenced by the multi-
face/foot issue in the blue jay and T-rex, and the unnatural pose of the seagull. Additionally, color
discrepancies, such as the black backside of the corgi, are also noticeable. Employing either spatial
or temporal ICL mitigates the multi-face issue, and notably, the use of spatial ICL also alleviates the
color defect problem. Utilizing both spatial and temporal ICL concurrently yields superior results.
We further perform a user study, depicted in Figure 2a, which includes results w/ and w/o ICL for 20
objects. For efficiency in evaluation, cases in which both methods fail are filtered out in this study.
20 users participate in this evaluation, and the results unveiled a preference for results w/ ICL in
75% of the cases.

We further explore whether ICL could alleviate multi-face problems for text-to-3D tasks. We com-
pared the success rate of DreamFusion implemented w/ and w/o the proposed ICL loss. For the sake
of fairness and rigor, we collect all prompts related to animals from the official DreamFusion project
page, totaling 230. 20 users are asked to participate in this non-cherry-pick user study, where
we establish three criteria for a successful generation: alignment with the text prompt,
absence of multi-face issues, and clarity in geometry and texture. We
visualize the statistics in Table 2b and Table 2c. The results show that although users have differ-
ent understandings of successful generation, results w/ ICL always outperform results w/o it. For a
comprehensive understanding, qualitative comparisons are presented in Figure 4b, which indicates
the proposed technique effectively alleviates the multi-face Janus problem and thus promotes the
success rate. Implementation details about text-to-3D can be found in the appendix A.4, and we also
analyze the failure cases and limitations of ICL in A.5.

Cross-frame Video Enhancer In Figure 12 (see in appendix), we show the proposed cross-frame
video enhancer could improve uneven color distribution and smooth out the rough edges, as shown
in almost all figures, and remove some floaters, as indicated by the cat in the red and green box.

6 CONCLUSION

We introduce a two-stage framework, named Consistent4D, aimed at generating 360◦ 4D objects
from uncalibrated monocular videos captured by a stationary camera. In the first stage, we develop
a Cascade DyNeRF, designed to facilitate stable training under the discrete supervisory signals pro-
vided by an image-to-image diffusion model. More crucially, we introduce an Interpolation-driven
Consistency Loss to enhance spatial and temporal consistency in 4D generation tasks. In the op-
tional second stage, we train a lightweight video enhancer to rectify scattered color discrepancies
and eliminate minor floating artifacts. Comprehensive experiments conducted on both synthetic and
in-the-wild data demonstrate the effectiveness of our method.
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A APPENDIX

A.1 ADDITIONAL VISUALIZATION RESULTS

In Figure 5, we present the result of our method on four in-the-wild videos. For clarity, we describe
the input videos as follows: robot dancing, squirrel feeding, toy-spiderman dancing, toy-rabbit
deforming. Due to limited space, the reviewers are strongly recommended to watch the video in the
attached files to see various visualization results.

A.2 DATA USED IN VIDEO-TO-4D QUANTITATIVE EVALUATION

Sin three dynamic objects are shown in Figure 6, we only visualize the rest four here, as shown in
Figure 6. The observation is similar to the results in the main paper. Additionally, we provide the
details of quantitative comparison in Table 3

We demonstrate the effectiveness of video enhancer in Figure 12. The analysis can be found in the
main paper.

A.3 THE NUMBER OF FRAMES

For simplicity, we sample each input video to 32 frames in all experiments. However, we find input
videos without sampling sometimes give slightly better results, as shown in Figure 7.

A.4 IMPLEMENTATION DETAILS

Loss Function in Video-to-4D Besides SDS loss LSDS , Interpolation-driven consistency loss
LICL, we also apply reconstruction loss Lrec and mask loss Lm for the input view. 3D normal
smooth loss Ln and orientation loss Lori (Verbin et al., 2022) are also applied. Therefore, the final
loss is calculated as L = λ1LSDS +λ2LICL+λ3Lrec+λ4Lm+λ5Ln+λ6Lori, where λ1 = 0.1,
λ2 = 2500, λ3 = 500, λ4 = 50, 5 = 2.0, and λ6 is initially 1 and increased to 20 linearly until 5000
iterations. Note that the reconstruction loss and SDS loss are applied alternatively.

A.4.1 CASCADE DYNERF

Initialization We follow Maigc3D (Lin et al., 2023) to initialize the dynamic NeRF. Specifically,
the blob scale and standard deviation of the density are set as 10.0 and 0.5. The activation function
is softplus.

Forward propagation To help the reader get a clear understanding of the Cascade DyNeRF, we
provide the pseudo-code (pytorch style) of its forward process in Listing 1.

Optimization We optimize the Dynamic NeRF using Equation 8, where λ1 = 0.1, λ2 = 2500,
λ3 = 500, λ4 = 50, 5 = 2.0, and λ6 is initially 1 and increased to 20 linearly until 5000 iterations.
Reconstruction loss and foreground mask, alternate with SDS loss to optimize the model. When cal-
culating SDS loss, the guidance scale of the diffusion model is set as 5, and the maximum/minimum
percent of noise added to the rendering images decreases linearly from 0.98/0.8 at the beginning of
the training to 0.25/0.2 at the medium of the training, and then kept unchanged.

A.4.2 VIDEO ENHANCER

For video enhancer architecture, we follow pix2pix (Isola et al., 2017) except for that we modify
the unet256 architecture to a light-weighted version, with only three up/down layers and one cross-

Pistol Guppie Croco. Monst. Skull Trump Aurorus Average
LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓ LPIPS ↓ CLIP ↑ FVD ↓

D-NeRF 0.52 0.66 1342.82 0.32 0.76 2244.47 0.54 0.61 2628.77 0.52 0.79 2720.27 0.53 0.72 3344.38 0.55 0.60 2145.56 0.56 0.66 1868.54 0.51 0.68 2327.83
K-planes 0.40 0.74 2060.83 0.29 0.75 2077.25 0.19 0.75 1823.25 0.47 0.73 2738.59 0.41 0.72 3338.74 0.51 0.66 3338.74 0.37 0.67 1304.83 0.38 0.72 2295.68
Zero123 0.10 0.92 647.08 0.12 0.88 931.23 0,11 0.85 2038.22 0.16 0.93 2288.40 0.15 0.95 2490.25 0.23 0.88 1630.89 0.17 0.87 975.11 0.15 0.90 1571.60

ours 0.10 0.90 853.89 0.12 0.90 811.23 0.12 0.82 1237.29 0.18 0.90 1307.53 0.17 0.88 2000.20 0.23 0.85 704.13 0.17 0.85 1019.81 0.16 0.87 1133.44

Table 3: Details of video-to-4D quantitative comparison.
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Input video Novel view 1

t = t1

t = t2

t = t3

t = t1

t = t2

t = t3

t = t1

t = t2

t = t3

Novel view 2

t = t1

t = t2

t = t3

Figure 5: Visualization results of our method. All four input videos are in-the-wild videos. The
novel views presented are 22.5◦ and 112.5◦ away from the input view, respectively. The results of
our methods include RGB, normal map and depth map (from left to right).
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Figure 6: Data and comparison results for video-to-4D quantitative evaluation.
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Figure 7: Ablation of video frame sampling. Videos w/ sampling contain 32 frames. Videos w/o
sampling contain 72 and 39 frames for Aurorus and minions, respectively. The results of our methods
include RGB and normal map (from left to right).
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Conv2d LeakReLU+Conv2d+BN2dCross-attention module

ReLU + ConvTranspose2d + BN2d ReLU + ConvTranspose2d + tanh

Figure 8: Video enhancer architecture.

frame attention layer. Our codebase for video enhancer is 1the official GitHub repository of pix2pix,
and we adopt all the default settings in their code except for Unet architecture, the learning rate
and the training epochs, with the last two already mentioned in the main paper. For Unet(our video
enhancer), we illustrate the architecture in Figure 8 and describe it as belows. The feature dimen-
sions for the unet layers are set as 64, 128, and 256. Besides, we inject a cross-attention layer in
the inner layer of the unet to enable the current frame to query information from adjacent frames.
For generating real images, we use DeepFloyd-IF stage II (dee, 2023), which is a diffusion model
for super-resolution tasks. For generating real images, we use DeepFloyd-IF stage II (dee, 2023) in
an image-to-image way (Meng et al., 2021) with denoising strength set as 0.35. Since this model is
a diffusion model designed for single-image super-resolution, its outputs are images with improved
quality yet in lack of temporal coherence. The input image, i.e., the rendered image, is resized to
64× 64 and the output resolution is 256× 256. The prompt needed by the diffusion model is man-
ually set, i.e., we use the ”a ∗” as the prompt, in which ∗ is the category of the dynamic object. For
example, the prompts for dynamic objects in Figure 12 are a bird, a cat, a minions. The prompt
cloud also be obtained from image or video caption models, or large language models.

A.4.3 TEXT-TO-3D DETAILS

We choose Threestudio built by (Guo et al., 2023) as the codebase since it is the best public im-
plementation we could find. DeepFloy-IF (dee, 2023) is employed as the diffusion model, and all
default tricks in Threestudio are utilized. The hyper-parameters for results w/ and w/o ICL, such
as batch size and learning rate, are kept consistent between the implementations w/ and w/o ICL,
except for those related to ICL. We train the model for 5000 iterations, the first 1000 iterations with
batch size 8 and resolution 64, and the rest 4000 with batch size 2 and resolution 256. The learning
rate is 0.01 and the optimizer is Adam, the same as the default setting in Threestudio. The ICL loss
is applied in the first 1000 iterations with probability 30% and weight 2000.

A.5 FAILURE CASES

Video-to-4D Since the video-to-4D task in this paper is very challenging, our method actually has
many failure cases. For example, we fail to generate the dynamic object when the motion is complex
or abrupt, as shown in Figure 9. In Figure 9, the dog’s tail disappears in the second image because
the tail is occluded in the input image when t = t2. The frog, which is jumping up and down fast,
gets blurry when t = t1.

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 9: Video-to-4D failure cases.
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Figure 10: Text-to-3D failure cases.

Text-to-3D When applying ICL in text-to-3D, we find some multi-face cases that could not be
alleviated, and we show them in Figure 10.

A.6 LIMITATIONS

Although the proposed method achieves promising results for 360◦ dynamic object generation, our
method has the following limitations: 1) Our method relies on a pre-trained diffusion model, and
this limits the generalization ability of our method. Particularly, since the diffusion model adopted
in this work is trained on synthetic dataset, our model might have worse performance when the input
image/video is from the real-world. 2) The performance of our model relies on the quality of input
video. We find when the input video is noisy, our model might not be able to generate the dynamic
object in the video. 3) The training of our model costs more than 2 hours per object, and the long
training time might present a challenge for practical deployment.
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class CascadeDyNeRF:

def __init__(self):

self.act_rgb = nn.Sigmoid()
self.act_density = nn.Softplus()
...

def forward(self, rgb_feature, density_feature, **kwargs):
’’’
rgb_feaature: Tensor, [L, B, N, C], L-the number of cascade

↪→ layers, B-batch size,
N-the number of sampling points, C-feature dim

density_feature: Tensor, shape [L, B, N, C]
’’’
# cascade features
rgb_feature_cascade = torch.cumsum(rgb_feature, dim=0)
density_feature_cascade = torch.cumsum(density_feature, dim=0)

# activation
rgb_feature_cascade = self.act_rgb(rgb_feature_cascade)
density_feature_cascade =

↪→ self.act_density(self.get_density(density_feature_cascade))

# rendering
num_cascade = rgb_feature_cascade.shape[0]
rgb_img_cascade, depth_img_cascade, opacity_mask_cascade,

↪→ 3d_normal_cascade = [], [], [], []

for l in range(num_cascade):
rgb_img, depth_img, opacity_mask, 3d_normal =

↪→ self.renderer(rgb_feature_cascade[l],
↪→ density_feature_cascade[l], **kwargs) # [B, H, W, 3],
↪→ [B, H, W, 1], [B, H, W, 1], [B, N, 3]

rgb_img_cascade.append(rgb_img)
depth_img_cascade.append(depth_img)
opacity_mask_cascade.append(opacity_mask)
3d_normal_cascade.append(3d_normal)

return rgb_img_cascade, depth_img_cascade, opacity_mask_cascade,
↪→ 3d_normal_cascade

Listing 1: Pesudo code of Cascade DyNeRF in pytorch style

19



Under review as a conference paper at ICLR 2024

Input video

Ours K-planes

Ours Cas-DyNeRF

N
o

v
el

 v
ie

w
 1

N
o

v
el

 v
ie

w
 2

t = t1 t = t2 t = t1 t = t2 t = t1 t = t2

Ours K-planes

Ours Cas-DyNeRF

Figure 11: Ablation of Cascade DyNeRF.
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Figure 12: Ablation of Video enhancer. Please zoom in to view the details.
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