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ABSTRACT

We introduce a novel optimization problem formulation that departs from the con-
ventional way of minimizing machine learning model loss as a black-box function.
Unlike traditional formulations, the proposed approach explicitly incorporates an
initially pre-trained model and random sketch operators, allowing for sparsifica-
tion of both the model and gradient during training. We establish the insightful
properties of the proposed objective function and highlight its connections to the
standard formulation. Furthermore, we present several variants of the Stochastic
Gradient Descent (SGD) method adapted to the new problem formulation, includ-
ing SGD with general sampling, a distributed version, and SGD with variance
reduction techniques. We achieve tighter convergence rates and relax assumptions,
bridging the gap between theoretical principles and practical applications, covering
several important techniques such as Dropout and Sparse training. This work
presents promising opportunities to enhance the theoretical understanding of model
training through a sparsification-aware optimization approach.

1 INTRODUCTION

Efficient optimization methods have played an essential role in the advancement of modern Machine
Learning (ML), given that many supervised problems ultimately reduce to the task of minimizing an
abstract loss function — a process that can be formally expressed as:

min
𝑥∈R𝑑

𝑓(𝑥), (1)

where 𝑓 : R𝑑 → R is a loss function of a model with parameters/weights 𝑥 ∈ R𝑑. The problem (1)
has been comprehensively analyzed within the domain of optimization literature. Within the ML
community, substantial attention has been directed towards studying this problem, particularly in the
context of the Stochastic Gradient Descent (SGD) method (Robbins & Monro, 1951). SGD stands
as a foundational and highly effective optimization algorithm within the realm of ML (Bottou et al.,
2018). The pervasive use of SGD in the field attests to its versatility and success in training a diverse
array of models (Goodfellow et al., 2016). Notably, contemporary deep learning practices owe a
substantial debt to SGD, as it is the cornerstone for many state-of-the-art training techniques (Sun,
2020).

While problem (1) has been of primary interest in mainstream optimization research, this approach is
not always best suited for representing recent ML techniques, such as sparse/quantized training (Wu
et al., 2016; Hoefler et al., 2021), resource-constrained distributed learning (Caldas et al., 2018; Wang
et al., 2018), model personalization (Smith et al., 2017; Hanzely & Richtárik, 2020; Mansour et al.,
2020), and meta-learning (Schmidhuber, 1987; Finn et al., 2017). Although various attempts have
been made to analyze some of these settings (Khaled & Richtárik, 2019; Lin et al., 2019; Mohtashami
et al., 2022), there is still no satisfactory optimization theory that can explain the success of these
techniques in deep learning. Previous works analyze variants of SGD trying to solve problem (1),
which often results in vacuous convergence bounds and/or overly restrictive assumptions on the class
of functions and algorithms involved (Shulgin & Richtárik, 2024). We assert that these issues arise
due to mismatches between the method used and the problem formulation being solved.

In this work, to address the issues mentioned above, we propose a new optimization problem
formulation called Model-Agnostic Sparsified Training (MAST):

min
𝑥∈R𝑑

[︁
𝑓𝒟(𝑥)

def
= E [𝑓S(𝑥)]

]︁
, (2)

*
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where 𝑓S(𝑥)
def
= 𝑓(𝑣 + S(𝑥 − 𝑣)) for 𝑣 ∈ R𝑑 (e.g., a pre-trained model, possibly compressed),

S ∈ R𝑑×𝑑 is a random matrix (i.e., a sketch) sampled from distribution 𝒟.

When 𝑣 = 0, the function takes the following form: 𝑓S(𝑥) = 𝑓(S𝑥). This scenario may be considered
a process in which the architecture requires training from scratch, with quantization as a central
consideration. Such an approach involves a substantial increase in training time and the necessity of
hyperparameter tuning to achieve effectiveness. In terms of theory, formulation (2) can be viewed
as a nested (stochastic) composition optimization (Bertsekas, 1977; Polyak, 1979; Ermoliev, 1988).
Moreover, our formulation is partially related to the setting of splitting methods (Condat et al., 2023).
However, due to their generality, other setups do not consider the problem instance’s peculiarities and
focus on other applications. Conversely, when 𝑣 is non-zero and pre-trained weights are utilized, the
newly formulated approach can be interpreted as acquiring a “meta-model” 𝑥. Solving problem (2)
then ensures that the sketched model 𝑣 + S(𝑥 − 𝑣) exhibits strong performance on average. This
interpretation shares many similarities with Model-Agnostic Meta-Learning (Finn et al., 2017).

We argue that this framework may be better suited for modeling various practical ML techniques, as
discussed below. Furthermore, our proposed framework facilitates thorough theoretical analysis and
holds potential independent interest for a broader audience. While our analysis and algorithms work
for a quite general class of sketches, we focus on applications that are relevant for sparse S.

1.1 MOTIVATING EXAMPLES

Dropout (Hanson, 1990; Hinton et al., 2012; Frazier-Logue & Hanson, 2018) is a regularization
technique initially introduced to prevent overfitting in neural networks by dropping some of the
model’s units (activations) during training. Later, this approach was generalized to incorporate
Gaussian noise (Wang & Manning, 2013; Srivastava et al., 2014) (instead of Bernoulli masks) and
zeroing the weights via DropConnect (Wan et al., 2013) or entire layers (Fan et al., 2019). It was
also observed (Srivastava et al., 2014) that training with Dropout induces sparsity in the activations.
In addition, using the Dropout-like technique (Gomez et al., 2019; LeJeune et al., 2021) can make
the resulting network more amenable to subsequent sparsification (via pruning) before deployment.
Modern DL has seen a huge increase in the size of models (Villalobos et al., 2022). This has resulted
in growing energy and computational costs, necessitating optimizations of neural networks’ training
pipeline (Yang et al., 2017). Among others, pruning and sparsification were proposed as effective
techniques due to the overparametrization properties of large models (Chang et al., 2021).

Sparse training algorithms (Mocanu et al., 2016; Guo et al., 2016; Mocanu et al., 2018), in particular,
suggest working with a smaller subnetwork during every optimization step. This increases efficiency
by reducing the model size (via compression), which naturally brings memory and computation
acceleration benefits to the inference stage. Moreover, sparse training has recently been shown to
speed up optimization by leveraging sparse backpropagation (Nikdan et al., 2023).

On-device learning also creates a need for sparse or submodel computations due to the memory,
energy, and computational constraints of edge devices. In settings like cross-device federated learning
(Konečný et al., 2016; McMahan et al., 2017; Kairouz et al., 2021), models are trained in a distributed
way across a population of heterogeneous nodes, such as mobile phones. The heterogeneity of the
clients’ hardware makes it necessary to adapt the (potentially large) server model to the needs of
low-tier devices (Caldas et al., 2018; Bouacida et al., 2021; Horváth et al., 2021).

Contributions. The main results of this work include:

∙ A rigorous formalization of a new optimization formulation, as shown in Equation (2), which can
encompass various important practical settings as special cases, such as Dropout and Sparse training.

∙ In-depth theoretical characterization of the proposed problem’s properties, highlighting its connec-
tions to the standard formulation in Equation (1). Notably, our problem is efficiently solvable with
practical methods.

∙ The development of optimization algorithms that naturally emerge from the formulation in Equation
(2), along with insightful convergence analyses in non-convex and (strongly) convex settings.

∙ The generalization of the problem and methods to the distributed scenario, expanding the range of
applications even further, including scenarios like IST and Federated Learning.
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∙ An experimental study of the proposed algorithms and MAST properties in the context of machine
learning, highlighting the advantages of the proposed approach.

Paper organization. We introduce the basic formalism and discuss sketches in Section 2. The
properties of the suggested formulation (2) are analyzed in Section 3. Section 4 contains convergence
results for full-batch, stochastic, and variance-reduced methods for solving problem (2). Extensions
to the distributed case are presented in Section 5. Section 6 describes some of our experimental
results. The last Section 7 concludes the paper and outlines potential directions of future work. All
proofs are provided in the Appendix.

2 SKETCHES

(Stochastic) gradient-based methods are mostly used to solve problem (1). Applying this paradigm
to our formulation (2) requires computing the gradient of 𝑓𝒟 = E [𝑓S]. In the case of the general
distribution S ∼ 𝒟, such computation may not be possible due to expectation E. Therefore, practical
algorithms typically rely on gradient estimates. An elegant property of the MAST problem (2) is that
the gradient estimator takes the form

∇𝑓S(𝑥) = S⊤∇𝑓(𝑣 + S(𝑥− 𝑣)), (3)
due to the chain rule, as matrix S is independent of 𝑥. Sketches/matrices S are random and sampled
from distribution 𝒟. Note that estimator (3) sketches both the model 𝑥 and the gradient of 𝑓 . Next,
we explore some of the sketches’ important properties and give practical examples.
Assumption 1. The sketching matrix S satisfies:

E [S] = I, and E
[︀
S⊤S

]︀
is finite, (4)

where I is the identity matrix. Note that S⊤∇𝑓(𝑥) is an unbiased estimator of the gradient ∇𝑓(𝑥).

Denote 𝐿S
def
= 𝜆max(S

⊤S), 𝜇S
def
= 𝜆min(S

⊤S), and 𝐿𝒟
def
= 𝜆max(E

[︀
S⊤S

]︀
), 𝜇𝒟

def
= 𝜆min(E

[︀
S⊤S

]︀
),

where 𝜆max and 𝜆min represent the largest and smallest eigenvalues. Clearly, 𝐿S ≥ 𝜇S ≥ 0 and
𝐿𝒟 ≥ 𝜇𝒟 ≥ 0. If Assumption 1 is satisfied, then E

[︀
S⊤S

]︀
⪰ I, which means that 𝜇𝒟 ≥ 1 and

‖𝑥‖2 ≤ 𝜇𝒟 ‖𝑥‖2 ≤ E
[︁
‖S𝑥‖2

]︁
≤ 𝐿𝒟 ‖𝑥‖2 .

2.1 DIAGONAL SKETCHES

Let 𝑐1, 𝑐2, . . . , 𝑐𝑑 be a collection of random variables and define a matrix with 𝑐𝑖-s on the diagonal
S = Diag(𝑐1, 𝑐2, . . . , 𝑐𝑑), (5)

which satisfies Assumption 1 when E [𝑐𝑖] = 1 and E
[︀
𝑐2𝑖
]︀

is finite for every 𝑖.

The following example illustrates how our framework can be used to model Dropout.
Example 1. The independent Bernoulli sparsification operator is defined as a diagonal sketch (5),
where every 𝑐𝑖 is an (independent) scaled Bernoulli random variable:

𝑐𝑖 =

{︂
1/𝑝𝑖, with probability 𝑝𝑖
0, with probability 1− 𝑝𝑖

, (6)

for 𝑝𝑖 ∈ (0, 1] and 𝑖 ∈ [𝑑]
def
= {1, . . . , 𝑑}.

It can be shown that for independent Bernoulli sparsifiers,

𝐿𝒟 = max
𝑖

𝑝−1
𝑖

def
= 𝑝−1

min, 𝜇𝒟 = min 𝑝−1
𝑖

def
= 𝑝−1

max. (7)

Notice that when 𝑝𝑖 ≡ 𝑝, 𝑖 ∈ [𝑑], and 𝑣 = 0, gradient estimator (3) results in a sparse update as
S⊤∇𝑓(S𝑥) drops out 𝑑(1 − 𝑝) (on average) components of model weights and the gradient. The
difference from the Dropout described by Hinton et al. (2012) is that they do not use scaling 1/𝑝𝑖
in equation (6) during training to ensure unbiasedness. Experimental comparison is presented in
Appendix H.2.4.

Next, we show another practical example of a random sketch often used for reducing communication
costs in distributed learning (Konečný et al., 2016; Wangni et al., 2018; Stich et al., 2018).
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Example 2. Random 𝐾 sparsification (in short, Rand-𝐾 for 𝐾 ∈ [𝑑]) operator is defined by

SRand-𝐾
def
=

𝑑

𝐾

∑︁
𝑖∈𝑆

𝑒𝑖𝑒
⊤
𝑖 , (8)

where 𝑒1, . . . , 𝑒𝑑 ∈ R𝑑 are standard unit basis vectors, and 𝑆 is a random subset of [𝑑] sampled from
the uniform distribution over all subsets of [𝑑] with cardinality 𝐾.

Rand-𝐾 belongs to the class of diagonal sketches (5). S𝑥 preserves 𝐾 non-zero coordinates out of
total 𝑑 coordinates. Since E

[︀
S⊤S

]︀
= I · 𝑑/𝐾, this sketch satisfies 𝐿𝒟 = 𝜇𝒟 = 𝑑/𝐾. This example is

suitable for modeling fixed budget sparse training when the proportion (𝐾/𝑑) of network parameters
being updated remains constant during optimization (Mocanu et al., 2018; Evci et al., 2020).

3 PROBLEM PROPERTIES

We show that the proposed formulation (2) inherits the smoothness and convexity properties of the
original problem (1). Let us introduce the most standard assumptions in the optimization field.
Assumption 2. Function 𝑓 is differentiable and 𝐿𝑓 -smooth, i.e., there is 𝐿𝑓 > 0 such that

𝑓(𝑥+ ℎ) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), ℎ⟩+ 𝐿𝑓

2
‖ℎ‖2 ∀𝑥, ℎ ∈ R𝑑.

We also require 𝑓 to be lower bounded by 𝑓 inf ∈ R.
Assumption 3. Function 𝑓 is differentiable and 𝜇𝑓 -strongly convex, i.e., there is 𝜇𝑓 > 0 such that

𝑓(𝑥+ ℎ) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), ℎ⟩+ 𝜇𝑓

2
‖ℎ‖2 ∀𝑥, ℎ ∈ R𝑑.

Next, we show how the choice of the sketch S affects the smoothness parameters of 𝑓S and 𝑓𝒟.
Lemma 1 (Consequences of 𝐿𝑓 -smoothness). If 𝑓 is 𝐿𝑓 -smooth, then

(i) 𝑓S is 𝐿𝑓S -smooth with 𝐿𝑓S ≤ 𝐿S𝐿𝑓 .

(ii) 𝑓𝒟 is 𝐿𝑓𝒟 -smooth with 𝐿𝑓𝒟 ≤ 𝐿𝒟𝐿𝑓 .

(iii) 𝑓𝒟(𝑥) ≤ 𝑓(𝑥) +
(𝐿𝒟−1)𝐿𝑓

2 ‖𝑥− 𝑣‖2 ∀𝑥 ∈ R𝑑.

In particular, property (𝑖𝑖𝑖) in Lemma 1 demonstrates that the gap between the sketched loss 𝑓𝒟 and
the original function 𝑓 depends on the model weights and the smoothness parameter of function 𝑓 .
Lemma 2 (Consequence of Convexity). If 𝑓 is convex, then 𝑓𝒟 is convex and 𝑓𝒟(𝑥) ≥ 𝑓(𝑥).

It shows that the convexity of 𝑓 is preserved, and the “sketched” loss is always greater than the
original loss. Moreover, Lemma 2 (along with other results in this section) offers a huge advantage of
the proposed problem formulation over the sparsification-promoting alternatives based on ℓ0-norm
regularization (Louizos et al., 2018; Peste et al., 2021), that make the problem hard to solve.
Lemma 3 (Consequences of 𝜇𝑓 -convexity). If 𝑓 is 𝜇𝑓 -convex, then

(i) 𝑓S is 𝜇𝑓S -convex with 𝜇𝑓S ≥ 𝜇S𝜇𝑓 .

(ii) 𝑓𝒟 is 𝜇𝑓𝒟 -convex with 𝜇𝑓𝒟 ≥ 𝜇𝒟𝜇𝑓 .

(iii) 𝑓𝒟(𝑥) ≥ 𝑓(𝑥) +
(𝜇𝒟−1)𝜇𝑓

2 ‖𝑥− 𝑣‖2 ∀𝑥 ∈ R𝑑.

As a consequence, we get the following result for the condition number of the proposed problem:

𝜅𝑓𝒟
def
=

𝐿𝑓𝒟

𝜇𝑓𝒟

≤ 𝐿𝒟𝐿𝑓

𝜇𝒟𝜇𝑓
=

𝐿𝒟

𝜇𝒟
𝜅𝑓 . (9)

Therefore, 𝜅𝑓𝒟 ≤ 𝜅𝑓 · 𝐿𝒟 as 𝜇𝒟 ≥ 1. Thus, the resulting condition number may increase, which
indicates that 𝑓𝒟 may be harder to optimize, which agrees with the intuition that compressed training
is harder (Evci et al., 2019). In addition, for independent Bernoulli sparsifiers (6),

𝜅𝒟
def
= 𝐿𝒟/𝜇𝒟 = 𝑝max/𝑝min, (10)
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which shows that the upper bound on the ratio 𝜅𝑓𝒟/𝜅𝑓 can be made as large as possible by choosing
a small enough 𝑝min. At the same time, 𝜅𝒟 = 1 for classical Dropout: 𝑝𝑖 ≡ 𝑝, 𝑖 ∈ [𝑑], indicating
that training with Dropout may be no harder than optimizing the original model.

Relation between 𝑓 and 𝑓𝒟 minima. Let 𝒳 ⋆ be the solutions to problem 1, and 𝒳 ⋆
𝒟 the solutions

of the new MAST problem (2). We now show that a solution 𝑥⋆
𝒟 ∈ 𝒳 ⋆

𝒟 of (2) is an approximate
solution of the original problem (1).
Theorem 1. Let Assumptions 2 and 3 hold, and let 𝑥⋆

𝒟 ∈ 𝒳 ⋆
𝒟 and 𝑥⋆ ∈ 𝒳 ⋆. Then

𝑓(𝑥⋆) ≤ 𝑓(𝑥⋆
𝒟) ≤ 𝑓(𝑥⋆) +

(𝐿𝒟 − 1)𝐿𝑓

2
‖𝑥⋆ − 𝑣‖2 − (𝜇𝒟 − 1)𝜇𝑓

2
‖𝑥⋆

𝒟 − 𝑣‖2 ;

𝑓(𝑥⋆) +
(𝜇𝒟 − 1)𝜇𝑓

2
‖𝑥⋆

𝒟 − 𝑣‖2 ≤ 𝑓𝒟(𝑥
⋆
𝒟) ≤ 𝑓(𝑥⋆) +

(𝐿𝒟 − 1)𝐿𝑓

2
‖𝑥⋆ − 𝑣‖2 .

Consider Rand-𝐾 as a sketch. If 𝐾 = (1− 𝜀)𝑑 for some 𝜀 ∈ [0, 1), which corresponds to dropping
roughly an 𝜀 share of coordinates, then 𝐿𝒟 − 1 = 𝜇𝒟 − 1 = 𝑑/𝐾 − 1 = 𝜀/(1−𝜀). Theorem 1 then
states that

𝑓(𝑥⋆) ≤ 𝑓(𝑥⋆
𝒟) ≤ 𝑓(𝑥⋆) +

𝜀

2(1− 𝜀)

(︁
𝐿𝑓 ‖𝑥⋆ − 𝑣‖2 − 𝜇𝑓 ‖𝑥⋆

𝒟 − 𝑣‖2
)︁
;

𝑓(𝑥⋆) +
𝜀𝜇𝑓

2(1− 𝜀)
‖𝑥⋆

𝒟 − 𝑣‖2 ≤ 𝑓𝒟(𝑥
⋆
𝒟) ≤ 𝑓(𝑥⋆) +

𝜀𝐿𝑓

2(1− 𝜀)
‖𝑥⋆ − 𝑣‖2 .

If 𝜀 is small (a “light” sparsification), or if the pre-trained model 𝑣 is close to 𝑥⋆, then 𝑥⋆
𝒟 will have a

small loss, comparable to the loss of the optimal model 𝑥⋆; 𝑥⋆
𝒟 will be close to the pre-trained model

𝑣; MAST loss will be small comparable to the loss of the optimal uncompressed model 𝑥⋆.

4 INDIVIDUAL NODE SETTING

In this section, we discuss the properties of the SGD-type algorithm applied to problem (2)

𝑥𝑡+1 = 𝑥𝑡 − 𝛾∇𝑓S𝑡(𝑥𝑡) = 𝑥𝑡 − 𝛾
(︀
S𝑡
)︀⊤ ∇𝑓(𝑦𝑡) (11)

for 𝑦𝑡 = 𝑣 + S𝑡(𝑥𝑡 − 𝑣), where S𝑡 is sampled from 𝒟. One advantage of the proposed formulation
(2) is that it naturally gives rise to the described method, which generalizes standard (Stochastic)
Gradient Descent. As noted before, due to the properties of the gradient estimator (3), recursion (11)
defines an Algorithm 1 (I) that sketches both the model and the gradient of 𝑓 .

Let us introduce a notation frequently used in our convergence results. This quantity is determined by
the spectral properties of the sketches being used.

𝐿max
S

def
= sup

S
𝐿S = sup

S
𝜆max

(︀
S⊤S

)︀
, (12)

where supS 𝐿S represents the tightest constant such that 𝐿S ≤ supS 𝐿S almost surely. For indepen-
dent random sparsification sketches (6): 𝐿max

S = 1/𝑝2min. If S is Rand-𝐾 (8) then 𝐿max
S = 𝑑2/𝐾2.

Our convergence analysis relies on the following Lemma:
Lemma 4. Assume that 𝑓 is 𝐿𝑓 -smooth (2) and S satisfies Assumption 1. Then we have that ∀𝑥 ∈ R𝑑

E
[︁
‖∇𝑓S(𝑥)‖2

]︁
≤ 2𝐿𝑓𝐿

max
S

(︀
𝑓𝒟(𝑥)− 𝑓 inf

)︀
,

where the expectation is taken with respect to S.

It generalizes a standard property of smooth functions often used in the non-convex analysis of
SGD (Khaled & Richtárik, 2023). Now, we are ready to present our first convergence result.
Theorem 2. Assume that 𝑓 is 𝐿𝑓 -smooth (2), 𝜇𝑓 -strongly convex (3), and S satisfies Assumption 1.
Then, for stepsize 𝛾 ≤ 1/(𝐿𝑓𝐿

max
S ), the iterates of Algorithm 1 (I) satisfy

E
[︁⃦⃦

𝑥𝑇 − 𝑥⋆
𝒟
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

𝑇 ⃦⃦
𝑥0 − 𝑥⋆

𝒟
⃦⃦2

+
2𝛾𝐿𝑓𝐿

max
S

𝜇𝑓𝜇𝒟

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
. (13)
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Algorithm 1 Double Sketched (S)GD

1: Parameters: learning rate 𝛾 > 0; distribution 𝒟; initial model and shift 𝑥0, 𝑣 ∈ R𝑑.
2: for 𝑡 = 0, 1, 2 . . . do
3: Sample a sketch: S𝑡 ∼ 𝒟
4: Form a gradient estimator:

𝑔𝑡 =

{︂
∇𝑓S𝑡(𝑥𝑡) ▷ exact (I)
𝑔S𝑡 (𝑥𝑡) ▷ (stochastic) inexact (II)

5: Perform a gradient-type step: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡

6: end for

This theorem establishes a linear convergence rate with a constant stepsize up to a neighborhood of
the MAST problem (2) solution. Our result is similar to the convergence of SGD (Gower et al., 2019)
for standard formulation (1) with two differences, which are discussed below.

1. Both terms of the upper bound (13) depend not only on the smoothness and convexity parameters
of the original function 𝑓 , but also on the spectral properties of sketches S. Thus, for independent
Bernoulli sparsification sketches (6) with 𝑝𝑖 ≡ 𝑝 (or Rand-𝐾), the linear convergence term deterio-
rates and the neighborhood size is increased by 1/𝑝2 (𝑑2/𝐾2 respectively). Therefore, we conclude
that higher sparsity makes optimization harder.

2. Interestingly, the neighborhood size of (13) depends on the difference between the minima of
𝑓𝒟 and 𝑓 in contrast to the variance of stochastic gradients at the optimum typical for SGD (Gower
et al., 2019). Thus, the method may even linearly converge to the exact solution when 𝑓 inf

𝒟 = 𝑓 inf ,
which we refer to as the interpolation condition. This condition may naturally hold when the original
and sketched models are sufficiently overparametrized (allowing minimization of the loss to zero).
Notable examples when similar phenomena have been observed in practice are training with Dropout
(Srivastava et al., 2014) and the “lottery ticket hypothesis” (Frankle & Carbin, 2018).

Next, we provide results in the non-convex setting.
Theorem 3. Assume that 𝑓 is 𝐿𝑓 -smooth (2) and S satisfies Assumption 1. Then, for the stepsize
𝛾 ≤ 1/(𝐿𝑓

√︀
𝐿𝒟𝐿max

S 𝑇 ), the iterates of Algorithm 1 (I) satisfy

min
0≤𝑡<𝑇

E
[︁⃦⃦

∇𝑓𝒟(𝑥
𝑡)
⃦⃦2]︁ ≤ 3

(︀
𝑓𝒟(𝑥

0)− 𝑓 inf
𝒟
)︀

𝛾𝑇
+ 𝛾𝐿2

𝑓𝐿𝒟𝐿
max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

This theorem shows an 𝒪(1/
√
𝑇 ) convergence rate for reaching a stationary point. Our result shares

similarities with the theory of SGD (Khaled & Richtárik, 2023) for problem (1), with the main
difference that the rate depends on the distribution on sketches as

√︀
𝐿𝒟𝐿max

S . Moreover, the second
term depends on the difference between the minima of 𝑓𝒟 and 𝑓 , as in the strongly convex case.
However, the first term depends on the gap between the initialization and the lower bound of the loss
function, which is more common in non-convex settings (Khaled & Richtárik, 2023).

Corollary 1 (Informal). Fix 𝜀 > 0 and denote 𝛿𝑡
def
= E

[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀
, 𝑟𝑡

def
= E

[︁
‖∇𝑓𝒟(𝑥

𝑡)‖2
]︁
.

Then, for the stepsize 𝛾 = min

{︂
1√
𝐷𝑇

, 𝜀2

2𝐷(𝑓 inf
𝒟 −𝑓 inf)

}︂
, where 𝐷

def
= 𝐿𝑓

√︀
𝐿𝒟𝐿max

S , Algorithm 1 (I)

needs 𝑇 ≥ 12𝛿0𝐷
𝜀4 max

{︀
3𝛿0, 𝑓 inf

𝒟 − 𝑓 inf
}︀

iterations to reach a stationary point min0≤𝑡<𝑇 𝑟𝑡 ≤ 𝜀2,
which is order 𝒪(𝜀−4) optimal (Ghadimi & Lan, 2013; Drori & Shamir, 2020).

In the Appendix, we also provide a general convex analysis.

4.1 (STOCHASTIC) INEXACT GRADIENT

Algorithm 1 (I) is probably the simplest approach for solving the MAST problem (2). Analyzing
this algorithm isolates and highlights the unique properties of the proposed problem formulation.
Algorithm 1 (I) requires exact (sketched) gradient computations at every iteration, which may not be
feasible/efficient for modern ML applications. Hence, we consider the following generalization:

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔S𝑡(𝑥𝑡), (14)
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where 𝑔S𝑡(𝑥𝑡) is a gradient estimator satisfying

E [𝑔S(𝑥)] = ∇𝑓S(𝑥), (15)

E
[︁
‖𝑔S(𝑥)‖2

]︁
≤ 2𝐴

(︀
𝑓S(𝑥)− 𝑓 inf

S

)︀
+𝐵 ‖∇𝑓S(𝑥)‖2 + 𝐶, (16)

for ∀𝑥 ∈ R𝑑 and some constants 𝐴,𝐵,𝐶 ≥ 0.

The first condition (15) is an unbiasedness assumption standard for analyzing SGD-type methods.
The second (so-called “ABC”) inequality (16) is one of the most general assumptions covering
bounded stochastic gradient variance, subsampling/minibatching of data, and gradient compression
(Khaled & Richtárik, 2023; Demidovich et al., 2023). Note that the expectation in (15) and (16) is
taken with respect only to the randomness of the stochastic gradient estimator and not the sketch S.

Algorithm 1 (II) describes the resulting method in detail. We state the convergence result for it.

Theorem 4. Assume that 𝑓 is 𝐿𝑓 -smooth (2), S satisfies Assumption 1, and the gradient es-
timator 𝑔(𝑥) satisfies conditions 15, 16. Denote 𝐷𝐴,𝐵 = 𝐴 + 𝐵𝐿𝑓𝐿

max
S then, for stepsize

𝛾 ≤ 1/
√︀
𝐿𝑓𝐿𝒟𝐷𝐴,𝐵𝑇 , the iterates of Algorithm 1 (II) satisfy

min
0≤𝑡<𝑇

E
[︁⃦⃦

∇𝑓𝒟(𝑥
𝑡)
⃦⃦2]︁ ≤ 3

(︀
𝑓𝒟(𝑥

0)− 𝑓 inf
𝒟
)︀

𝛾𝑇
+

𝛾𝐿𝑓𝐿𝒟

2

{︁
𝐶 + 2𝐷𝐴,𝐵

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀}︁
.

Similarly to Theorem 3, this result establishes an 𝒪(1/
√
𝑇 ) convergence rate. However, the upper

bound in (4) is affected by constants 𝐴,𝐵,𝐶 due to the inexactness of the gradient estimator. The
case of 𝐴 = 𝐶 = 0, 𝐵 = 1 sharply recovers our previous Theorem 3. When 𝐵 = 1, 𝐶 = 𝜎2, we
obtain convergence of SGD with bounded (by 𝜎2) variance of stochastic gradients. Moreover, when
the loss is represented as a finite sum

𝑓𝒟(𝑥) =
1

𝑛

𝑛∑︁
𝑖=1

E [𝑓𝑖(𝑣 + S(𝑥− 𝑣))] , (17)

where each 𝑓𝑖 is 𝐿𝑓𝑖-smooth and lower-bounded by 𝑓 inf
𝑖 , then 𝐴 = max𝑖 𝐿𝑓𝑖 , 𝐶 =

2𝐴
(︀
1
𝑛

∑︀𝑛
𝑖=1 𝑓

inf − 𝑓 inf
𝑖

)︀
if losses 𝑓𝑖 are sampled uniformly at every iteration. Finally, our result (4)

guarantees optimal 𝒪(𝜀−4) complexity in a similar manner to Corollary 1.

We direct the reader to the Appendix for the convex and strongly convex results.

4.2 DISCUSSION OF RELATED WORKS

Compressed (sparse) model training. To our knowledge, the first work that analyzed convergence
of (full batch) Gradient Descent with compressed iterates (model updates) is the work of Khaled
& Richtárik (2019). They considered general unbiased compressors and, in the strongly convex
setting, showed linear convergence to the irreducible neighborhood, depending on the norm of the
model at the optimum ‖𝑥⋆‖2. In addition, their analysis requires the variance of the compressor
(𝑑/𝐾 for Rand-𝐾) to be lower than the inverse condition number of the problem 𝜇𝑓/𝐿𝑓 , which
basically means that the compressor has to be close to the identity mapping in practical settings.
These results were extended using a modified method to distributed training with compressed model
updates (Chraibi et al., 2019; Shulgin & Richtárik, 2022). Lin et al. (2019) consider dynamic pruning
with feedback inspired by the Error Feedback mechanism (Seide et al., 2014; Alistarh et al., 2018;
Stich & Karimireddy, 2020). Their result is similar to (Khaled & Richtárik, 2019), as the method
also converges only to the irreducible neighborhood, the size of which is proportional to the norm
of model weights. However, in (Lin et al., 2019), the norm of stochastic gradients is required to
be uniformly upper-bounded, narrowing the class of losses. The partial SGD method proposed in
(Mohtashami et al., 2022) allows general perturbations of the model weights where the gradient
(additionally sparsified) is computed. Unfortunately, their analysis (Wang et al., 2022) was recently
shown to be vacuous (Szlendak et al., 2024).

Dropout convergence analysis. Despite the wide empirical success of Dropout, there is limited
theoretical understanding of its behavior and success. A few recent works (Mianjy & Arora, 2020)
suggest convergence analysis of this technique. However, these attempts typically focus on a certain

7
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Algorithm 2 Distributed Double Sketched GD

1: Parameters: learning rate 𝛾 > 0; sketch distributions 𝒟1, . . . ,𝒟𝑀 ; initial model and shift
𝑥0, 𝑣 ∈ R𝑑

2: for 𝑡 = 0, 1, 2 . . . do
3: Sample sketches: S𝑡

𝑖 ∼ 𝒟𝑖

4: Compute 𝑦𝑡𝑖 = 𝑣 + S𝑡
𝑖(𝑥

𝑡 − 𝑣) for 𝑖 ∈ [𝑀 ] and broadcast to corresponding nodes
5: for 𝑖 = 1, . . . ,𝑀 in parallel do
6: Compute local gradient: ∇𝑓𝑖(𝑦

𝑡
𝑖)

7: Send gradient (S𝑡
𝑖)

⊤∇𝑓𝑖(𝑦
𝑡
𝑖) to the server

8: end for
9: Aggregate messages and make a gradient-type step: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾

𝑀

∑︀𝑀
𝑖=1(S

𝑡
𝑖)

⊤∇𝑓𝑖(𝑦
𝑡
𝑖)

10: end for

class of models, such as shallow linear Neural Networks (NNs) (Senen-Cerda & Sanders, 2022) or
deep NNs with ReLU activations (Senen-Cerda & Sanders, 2020). Moreover, Liao & Kyrillidis (2022)
analyzed overparameterized single-hidden layer perceptron with a regression loss in the context of
Dropout. In contrast, our approach is model-agnostic and requires only mild assumptions like the
smoothness of the loss (2) (and convexity (3) for some of the results).

5 DISTRIBUTED SETTING

Consider 𝑓 being a finite sum over a number of participants, i.e., in the distributed setup:

min
𝑥∈R𝑑

1

𝑀

𝑀∑︁
𝑖=1

𝑓𝑖,𝒟𝑖(𝑥), (18)

where 𝑓𝑖,𝒟𝑖
(𝑥)

def
= E [𝑓𝑖,S𝑖

(𝑥)] = E [𝑓𝑖(𝑣 + S𝑖(𝑥− 𝑣))]. This setting is more general than problem
(39) as every node 𝑖 has its own distribution of sketches S𝑖 ∼ 𝒟𝑖. Every machine performs local
computations with a model of different size, which is crucial for scenarios with heterogeneous
computing hardware. The shift model 𝑣 is shared across all 𝑓𝑖,𝒟𝑖

. We solve (18) with the method

𝑥𝑡+1 = 𝑥𝑡 − 𝛾

𝑀

𝑀∑︁
𝑖=1

(︀
S𝑡
𝑖

)︀⊤ ∇𝑓𝑖(𝑦
𝑡
𝑖), (19)

where 𝑦𝑡𝑖 = 𝑣 + S𝑡
𝑖(𝑥

𝑡 − 𝑣). Algorithm 2 describes the proposed approach in detail. Local gradients
can be computed for sketched (sparse) model weights, which decreases the computational load on the
computing nodes. Moreover, the local gradients are sketched as well, which brings communication
efficiency in the case of sparsifiers S𝑖.

Recursion (19) is closely related to the distributed Independent Subnetwork Training (IST) framework
(Yuan et al., 2022). At every iteration of IST, a large model 𝑥𝑡 is decomposed into submodels S𝑡

𝑖𝑥
𝑡

for independent computations (e.g., local training), which are then aggregated on the server to update
the whole model. IST efficiently combines model and data parallelism, allowing the training of
huge models that cannot fit onto a single device. IST was shown to be very successful for a range
of DL applications (Dun et al., 2022; Wolfe et al., 2023). Shulgin & Richtárik (2024) analyzed
the convergence of IST for a quadratic model decomposed with permutation sketches (Szlendak
et al., 2022), which satisfy Assumption 1. They also showed that naively applying IST to standard
distributed optimization problems ((18) for S𝑖 ≡ I) results in a biased method and may not converge.

Resource-constrained Federated Learning (FL) (Kairouz et al., 2021; Konečný et al., 2016; McMahan
et al., 2017) is another important practical scenario covered by Algorithm 2. In cross-device FL, local
computations are typically performed by edge devices (e.g., mobile phones), which have limited
memory, computational power, and energy (Caldas et al., 2018). Thus, this forces practitioners to rely
on smaller (potentially less capable) models or use techniques such as Dropout in distributed setting
(Alam et al., 2022; Bouacida et al., 2021; Charles et al., 2022; Chen et al., 2022; Diao et al., 2021;
Horváth et al., 2021; Jiang et al., 2022; Qiu et al., 2022; Wen et al., 2022; Yang et al., 2022; Dun
et al., 2023). Despite extensive experimental studies of this problem setting, the principled theoretical
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understanding remains minimal. Our work can be considered the first rigorous analysis in the most
general setting without restrictive assumptions.

Theorem 5. Assume that each 𝑓𝑖 is 𝐿𝑓𝑖-smooth (2) and sketches S𝑖 satisfy Assumption 1. Let

𝐷max
def
= max𝑖

(︁
𝐿2
𝑓𝑖
𝐿𝒟𝑖

𝐿max
S𝑖

)︁
. Then, for 𝛾 ≤ 1/

√
𝐷max𝑇 , the iterates of Algorithm 2 satisfy

min
0≤𝑡<𝑇

E
[︁⃦⃦

∇𝑓𝒟(𝑥
𝑡)
⃦⃦2]︁ ≤ 3

(︀
𝑓𝒟(𝑥

0)− 𝑓 inf
𝒟
)︀

𝛾𝑇
+ 𝛾𝐷max

(︂
𝑓 inf
𝒟 − 1

𝑀

𝑀∑︁
𝑖=1

𝑓 inf
𝑖

)︂
.

This result resembles our previous Theorem 3 in the single-node setting. Namely, Algorithm 2 reaches
a stationary point at rate 𝒪(1/

√
𝑇 ). However, due to the distributed setup, convergence depends on

𝐷max expressed as the maximum product of local smoothness and constants related to the sketches’
properties. Thus, clients with more aggressive sparsification may slow down the method, given the
same local smoothness constant 𝐿𝑓𝑖 . Yet, “easier” local problems (with smaller 𝐿𝑓𝑖) can allow the
use of “harsher” sparsifiers (with larger 𝐿𝒟𝑖

𝐿max
S𝑖

) without negatively affecting the convergence.

5.1 DISCUSSION OF RELATED WORKS

A notable distinction between our result and the theory of methods like Distributed Compressed
Gradient Descent (Khirirat et al., 2018) lies in the second convergence term of Theorem 5. Instead of
relying on the variance of local gradients at the optimum, given by 𝛿2 = 1

𝑛

∑︀𝑛
𝑖=1 ‖∇𝑓𝑖(𝑥

⋆)‖2, our
result depends on the average difference between the lower bounds of the global and local losses:
𝑓 inf
𝒟 − 𝑓 inf

𝑖 . This term measures heterogeneity within a distributed setting (Khaled et al., 2020).
Furthermore, our findings may provide a better explanation of the empirical efficacy of distributed
methods. Namely, 𝛿2 is less likely to be equal to zero, unlike our term, which can be very small when
models are over-parameterized, allowing local losses to be minimized to zero.

Yuan et al. (2022) analyzed convergence of Independent Subnetwork Training in their original work
using the framework of Khaled & Richtárik (2019). Their analysis was performed in the single-node
setting and required additional assumptions on the gradient estimator, which were recently shown to
be problematic (Shulgin & Richtárik, 2024). In a federated setting, Zhou et al. (2022) suggested a
method that combines model pruning with local compressed Gradient Descent steps. They provided
non-convex convergence analysis relying on bounded stochastic gradient assumption, which results
in “pathological” bounds (Khaled et al., 2020) for a heterogeneous distributed case.

6 EXPERIMENTS
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Figure 1: Test accuracies distributions of sparsified
solutions for the ERM formulation (1) and MAST
problem (2). “Sparsity” corresponds to the percent-
age of zeroed weights.

To empirically validate our theoretical frame-
work and its implications, we focus on care-
fully controlled settings that satisfy the assump-
tions of our work. Specifically, we consider an
ℓ2-regularized logistic regression optimization
problem with the a5a dataset from the LibSVM
repository (Chang & Lin, 2011). See Appendix
H for further details and Appendix H.2 for more
results on other methods and sketches.

In Figure 1, we compare the test accuracy of
sparsified solutions for the standard (ERM) prob-
lem (1) and introduced MAST formulation (2).
Visualization is performed using the boxplot
method from Seaborn (version 0.11.0) library
(Waskom, 2021) with default parameters. For
ERM, we find the exact (up to machine pre-
cision) optimum, which is subsequently used
for the accuracy evaluation. For the MAST op-
timization problem, we run DSGD with exact
sketched gradient ∇𝑓𝒟 for every sparsity level.
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After the ERM and MAST models (𝑥𝑇 ) are obtained, we apply partition sketches (47) to model
weights and evaluate the test accuracy of the sparsified solutions (S𝑥𝑇 ).

Figure 1 reveals that models obtained using the MAST approach exhibit greater robustness to random
pruning compared to their ERM counterparts given the same sparsity. Moreover, the ERM model
suffers from greater accuracy variability, while the median test accuracies of the MAST models
are markedly higher. Increasing the sparsity leads to the degradation of the performance of both
approaches.

Neural network results. Next we present a subset of our distributed deep learning results (full details
are provided in Appendix H.2.3). Our experimental setup closely follows that of Liao & Kyrillidis
(2022), which is based on the ResNet-50 model (He et al., 2016). We study the Algorithm 2 with
Bernoulli sketches (6) and 𝑝𝑖 ≡ 𝑝 for the standard (ERM) loss (18) with S𝑖 ≡ I.
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Figure 2: Performance of Algorithm 2 with Bernoulli sketches (6) on standard loss (18) (for S𝑖 ≡ I)

Figure 2 illustrates the impact of sparsity level (𝑝) and step size (𝛾) on the method’s performance.
Across all sparsity levels, we observe an optimal “sweet spot” (𝛾 = 0.5) for the step size, beyond
which increasing 𝛾 results in slower convergence. Crucially, a nuanced interplay of 𝛾 with sparsity
level exists. Namely, at 𝛾 = 1, convergence slows down for 𝑝 = 0.9, while for 𝑝 = 0.7, performance
degrades due to high variance, eventually being outperformed by a smaller step size.

Notably, high sparsity (𝑝 = 0.5) leads to a quick loss stagnation even with a small step size 𝛾 = 0.01
in contrast to 𝑝 ∈ {0.7, 0.9}. Remarkably, the left plot in Figure 2 illustrates that an excessively large
step size may even lead to divergence of the method. This can indicate that high sparsity significantly
alters the minimized loss, confirming that Sparse/Dropout training indeed optimizes a formulation
distinct from standard ERM. In general, larger step sizes and more aggressive sparsification (lower 𝑝)
result in increased loss variance, aligning with our theoretical predictions from Sections 2 and 4.

One of the key practical insights derived from our theoretical analysis is that the step size 𝛾 (learning
rate) must be decreased for sparse optimization and training with Dropout. Our results demonstrate
that this insight applies not only to convex models (Figure 5) but also to a broader range of neural
networks.

7 CONCLUSIONS AND FUTURE WORK

This work introduced a novel theoretical framework for sketched model learning. We rigorously
formalized a new optimization paradigm that captures practical scenarios like Dropout and Sparse
training. Efficient optimization algorithms tailored to the proposed formulation were developed
and analyzed in multiple settings. We expanded this methodology to distributed environments,
encompassing areas such as IST and Federated Learning, underscoring its broad applicability.

In future research, it would be interesting to expand the class of linear matrix sketches to encompass
other compression techniques, particularly those exhibiting conic variance property (contractive
compressors). Such an extension might offer insights into (magnitude-based) pruning methods and
quantized training. Nevertheless, a potential challenge to be considered is the non-differentiability of
such compression techniques.
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A BASIC FACTS

For all 𝑎, 𝑏 ∈ R𝑑 and 𝛼 > 0, 𝑝 ∈ (0,1] the following relations hold:

2⟨𝑎, 𝑏⟩ = ‖𝑎‖2 + ‖𝑏‖2 − ‖𝑎− 𝑏‖2 (20)

‖𝑎+ 𝑏‖2 ≤ (1 + 𝛼)‖𝑎‖2 +
(︀
1 + 𝛼−1

)︀
‖𝑏‖2 (21)

−‖𝑎− 𝑏‖2 ≤ − 1

1 + 𝛼
‖𝑎‖2 + 1

𝛼
‖𝑏‖2, (22)

(1− 𝑝)
(︁
1 +

𝑝

2

)︁
≤ 1− 𝑝

2
, 𝑝 ≥ 0. (23)

Lemma 5 (Lemma 1 from (Mishchenko et al., 2020)). Let 𝑋1, . . . , 𝑋𝑛 ∈ R𝑑 be fixed vectors,

𝑋
def
= 1

𝑛

∑︀𝑛
𝑖=1 𝑋𝑖 be their average. Fix any 𝑘 ∈ {1, . . . , 𝑛}, let 𝑋𝜋1 , . . . 𝑋𝜋𝑘

be sampled uniformly
without replacement from {𝑋1, . . . , 𝑋𝑛} and 𝑋𝜋 be their average. Then, the sample average and
variance are given by

E
[︀
𝑋𝜋

]︀
= 𝑋

E
[︁⃦⃦

𝑋𝜋 −𝑋
⃦⃦2]︁

=
𝑛− 𝑘

𝑘(𝑛− 1)

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
𝑋𝑖 −𝑋

⃦⃦2
Lemma 6. (Lemma 5 from (Richtárik et al., 2021)). Let 𝑎, 𝑏 > 0. If 0 ≤ 𝛾 ≤ 1√

𝑎+𝑏
, then

𝑎𝛾2 + 𝑏𝛾 ≤ 1. The bound is tight up to the factor of 2 since 1√
𝑎+𝑏

≤ min
{︁

1√
𝑎
, 1
𝑏

}︁
≤ 2√

𝑎+𝑏
.

Proposition 1. Nonzero eigenvalues of SS⊤ and S⊤S coincide.

Proof. Indeed, suppose 𝜆 ̸= 0 is an eigenvalue of S⊤S with an eigenvector 𝑣 ∈ R𝑑, then 𝜆 is an
eigenvalue of SS⊤ with an eigenvector S𝑣.

Lemma 7. Suppose that 𝑓(𝑥) is 𝐿𝑓 -smooth, differentiable, and bounded from below by 𝑓 inf . Then

‖∇𝑓(𝑥)‖2 ≤ 2𝐿𝑓

(︀
𝑓(𝑥)− 𝑓 inf

)︀
, ∀𝑥 ∈ R𝑑. (24)

Proof. Let 𝑥+ = 𝑥− 1
𝐿𝑓

∇𝑓(𝑥), then using the 𝐿𝑓 -smoothness of 𝑓 , we obtain

𝑓(𝑥+) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑥+ − 𝑥⟩+ 𝐿𝑓

2

⃦⃦
𝑥+ − 𝑥

⃦⃦2
.

Since 𝑓 inf ≤ 𝑓(𝑥+) and the definition of 𝑥+ we have,

𝑓 inf ≤ 𝑓(𝑥+) ≤ 𝑓(𝑥)− 1

𝐿𝑓
‖∇𝑓(𝑥)‖2 + 1

2𝐿𝑓
‖∇𝑓(𝑥)‖2 = 𝑓(𝑥)− 1

2𝐿𝑓
‖∇𝑓(𝑥)‖2 .

Rearrangement of the terms provides the claimed result.
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B AUXILIARY FACTS ABOUT FUNCTIONS 𝑓𝒟(𝑥) AND 𝑓S(𝑥)

For a differentiable function 𝑓 : R𝑑 → R and 𝑥,𝑦 ∈ R𝑑 Bregman divergence associated with 𝑓 is
𝐷𝑓 (𝑥,𝑦)

def
= 𝑓(𝑥)− 𝑓(𝑦)− ⟨∇𝑓(𝑦),𝑥− 𝑦⟩.

Lemma 8 (Bregman divergence). If 𝑓 is continuously differentiable, then 𝐷𝑓𝒟 (𝑥,𝑦) = E [𝐷𝑓S(𝑥,𝑦)] .

Proof. Since 𝑓 is continuously differentiable, we can interchange integration and differentiation. The
result follows from the linearity of expectation.

B.1 CONSEQUENCES OF 𝐿𝑓 -SMOOTHNESS

Recall the 𝐿𝑓 -smoothness assumption.
Assumption 2. Function 𝑓 is differentiable and 𝐿𝑓 -smooth, i.e., there is 𝐿𝑓 > 0 such that ∀𝑥, ℎ ∈ R𝑑

𝑓(𝑥+ ℎ) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), ℎ⟩+ 𝐿𝑓

2
‖ℎ‖2 .

We also require 𝑓 to be lower bounded by 𝑓 inf ∈ R.
Lemma 9 (Consequences of 𝐿𝑓 -smoothness). If 𝑓 is 𝐿𝑓 -smooth, then

(i) 𝑓S is 𝐿𝑓S -smooth with 𝐿𝑓S ≤ 𝐿S𝐿𝑓 . That is,

𝑓S(𝑥+ ℎ) ≤ 𝑓S(𝑥) + ⟨∇𝑓S(𝑥), ℎ⟩+
𝐿S𝐿𝑓

2
‖ℎ‖2 , ∀𝑥, ℎ ∈ R𝑑.

(ii) 𝑓𝒟 is 𝐿𝑓𝒟 -smooth with 𝐿𝑓𝒟 ≤ 𝐿𝒟𝐿𝑓 . That is,

𝑓𝒟(𝑥+ ℎ) ≤ 𝑓𝒟(𝑥) + ⟨∇𝑓𝒟(𝑥), ℎ⟩+
𝐿𝒟𝐿𝑓

2
‖ℎ‖2 , ∀𝑥, ℎ ∈ R𝑑.

(iii)

𝑓𝒟(𝑥) ≤ 𝑓(𝑥) +
(𝐿𝒟 − 1)𝐿𝑓

2
‖𝑥− 𝑣‖2 , ∀𝑥 ∈ R𝑑. (25)

Proof. (i) For any 𝑥, ℎ ∈ R𝑑, we have

𝑓S(𝑥+ ℎ) = 𝑓(𝑣 + S(𝑥+ ℎ− 𝑣))

= 𝑓(𝑣 + S(𝑥− 𝑣) + Sℎ)
Asn. 2
≤ 𝑓(𝑣 + S(𝑥− 𝑣)) + ⟨∇𝑓(𝑣 + S(𝑥− 𝑣)),Sℎ⟩+ 𝐿𝑓

2
‖Sℎ‖2

= 𝑓(𝑣 + S(𝑥− 𝑣)) +
⟨︀
S⊤∇𝑓(𝑣 + S(𝑥− 𝑣)), ℎ

⟩︀
+

𝐿𝑓

2

⟨︀
S⊤Sℎ, ℎ

⟩︀
≤ 𝑓S(𝑥) + ⟨∇𝑓S(𝑥), ℎ⟩+

𝐿S𝐿𝑓

2
‖ℎ‖2 .

(ii) For any 𝑥, ℎ ∈ R𝑑, we have

𝑓𝒟(𝑥+ ℎ) = E [𝑓(𝑣 + S(𝑥+ ℎ− 𝑣))]

= E [𝑓(𝑣 + S(𝑥− 𝑣) + Sℎ)]

Asn. 2
≤ E

[︂
𝑓(𝑣 + S(𝑥− 𝑣)) + ⟨∇𝑓(𝑣 + S(𝑥− 𝑣)),Sℎ⟩+ 𝐿𝑓

2
‖Sℎ‖2

]︂
= E [𝑓(𝑣 + S(𝑥− 𝑣))] +

⟨︀
E
[︀
S⊤∇𝑓(𝑣 + S(𝑥− 𝑣))

]︀
, ℎ
⟩︀

+
𝐿𝑓

2
E
[︁
‖Sℎ‖2

]︁
= 𝑓𝒟(𝑥) + ⟨∇𝑓𝒟(𝑥), ℎ⟩+

𝐿𝑓

2

⟨︀
E
[︀
S⊤S

]︀
ℎ, ℎ

⟩︀
≤ 𝑓𝒟(𝑥) + ⟨∇𝑓𝒟(𝑥), ℎ⟩+

𝐿𝒟𝐿𝑓

2
‖ℎ‖2 .
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(iii) For any 𝑥 ∈ R𝑑, we have

𝑓𝒟(𝑥) = E [𝑓(𝑣 + S(𝑥− 𝑣))]

Asn. 2
≤ E

[︂
𝑓(𝑥) + ⟨∇𝑓(𝑥),S(𝑥− 𝑣)− (𝑥− 𝑣)⟩+ 𝐿𝑓

2
‖S(𝑥− 𝑣)− (𝑥− 𝑣)‖2

]︂
= 𝑓(𝑥) + ⟨∇𝑓(𝑥),E [S(𝑥− 𝑣)− (𝑥− 𝑣)]⟩

+
𝐿𝑓

2
E
[︁
‖S(𝑥− 𝑣)− (𝑥− 𝑣)‖2

]︁
(4)
= 𝑓(𝑥) + ⟨∇𝑓(𝑥), 0⟩+ 𝐿𝑓

2
(𝑥− 𝑣)⊤

(︀
E
[︀
S⊤S

]︀
− I
)︀
(𝑥− 𝑣)

= 𝑓(𝑥) +
(𝐿𝒟 − 1)𝐿𝑓

2
‖𝑥− 𝑣‖2 .

B.2 CONSEQUENCES OF CONVEXITY

We do not assume differentiability of 𝑓 here. Recall that function 𝑓 is convex if, for all 𝑥,𝑦 ∈ R𝑑 and
𝛼 ∈ [0,1], we have that 𝑓(𝛼𝑥+ (1− 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1− 𝛼)𝑓(𝑦).

Lemma 10. If 𝑓 is convex, then 𝑓𝒟 is convex and 𝑓𝒟(𝑥) ≥ 𝑓(𝑥) for all 𝑥 ∈ R𝑑.

Proof. (i) Let 𝑥, 𝑦 ∈ R𝑑 and 𝛼 ∈ [0,1]. Then

𝑓𝒟(𝛼𝑥+ (1− 𝛼)𝑦)
(2)
= E [𝑓(𝑣 + S(𝛼𝑥+ (1− 𝛼)𝑦 − 𝑣))]

= E [𝑓(𝛼 (𝑣 + S(𝑥− 𝑣)) + (1− 𝛼) (𝑣 + S(𝑦 − 𝑣)))]

≤ E [𝛼𝑓(𝑣 + S(𝑥− 𝑣)) + (1− 𝛼)𝑓(𝑣 + S(𝑦 − 𝑣))]

= 𝛼E [𝑓(𝑣 + S(𝑥− 𝑣))] + (1− 𝛼)E [𝑓(𝑣 + S(𝑦 − 𝑣))]
(2)
= 𝛼𝑓𝒟(𝑥) + (1− 𝛼)𝑓𝒟(𝑦).

Alternative proof: Each 𝑓S is obviously convex, and expectation of convex functions is a
convex function.

(ii) Fix 𝑥 ∈ R𝑑 and let 𝑔 ∈ 𝜕𝑓(𝑥) be a subgradient of 𝑓 at 𝑥. Then

𝑓𝒟(𝑥)
(2)
= E [𝑓(𝑣 + S(𝑥− 𝑣))]

≥ E [𝑓(𝑥) + ⟨𝑔,S(𝑥− 𝑣)− (𝑥− 𝑣)⟩]
= 𝑓(𝑥) + ⟨𝑔,E [S(𝑥− 𝑣)− (𝑥− 𝑣)]⟩
(4)
= 𝑓(𝑥) + ⟨𝑔, 0⟩
= 𝑓(𝑥).

Alternative proof: Using Jensen’s inequality, 𝑓(𝑣 + S(𝑥 − 𝑣)) = E [𝑣 + S(𝑥− 𝑣)] ≥
𝑓(E [𝑣 + S(𝑥− 𝑣)]) = 𝑓(𝑥).

B.3 CONSEQUENCES OF 𝜇𝑓 -CONVEXITY

Recall the 𝜇𝑓 -strong convexity (or, for simplicity, 𝜇𝑓 -convexity) assumption.
Assumption 3. Function 𝑓 is differentiable and 𝜇𝑓 -strongly convex, i.e., there is 𝜇𝑓 > 0 such that
∀𝑥, ℎ ∈ R𝑑

𝑓(𝑥+ ℎ) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), ℎ⟩+ 𝜇𝑓

2
‖ℎ‖2 .

Lemma 11 (Consequences of 𝜇𝑓 -convexity). If 𝑓 is 𝜇𝑓 -convex, then

(i) 𝑓S is 𝜇𝑓S -convex with 𝜇𝑓S ≥ 𝜇S𝜇𝑓 . That is,

𝑓S(𝑥+ ℎ) ≥ 𝑓S(𝑥) + ⟨∇𝑓S(𝑥), ℎ⟩+
𝜇S𝜇𝑓

2
‖ℎ‖2 , ∀𝑥, ℎ ∈ R𝑑.
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(ii) 𝑓𝒟 is 𝜇𝑓𝒟 -convex with 𝜇𝑓𝒟 ≥ 𝜇𝒟𝜇𝑓 . That is,

𝑓𝒟(𝑥+ ℎ) ≥ 𝑓𝒟(𝑥) + ⟨∇𝑓𝒟(𝑥), ℎ⟩+
𝜇𝒟𝜇𝑓

2
‖ℎ‖2 , ∀𝑥, ℎ ∈ R𝑑.

(iii)

𝑓𝒟(𝑥) ≥ 𝑓(𝑥) +
(𝜇𝒟 − 1)𝜇𝑓

2
‖𝑥− 𝑣‖2 , ∀𝑥 ∈ R𝑑. (26)

Proof. (i) For any 𝑥, ℎ ∈ R𝑑, we have

𝑓S(𝑥+ ℎ) = 𝑓(𝑣 + S(𝑥+ ℎ− 𝑣))

= 𝑓(𝑣 + S(𝑥− 𝑣) + Sℎ)
Asn. 3
≥ 𝑓(𝑣 + S(𝑥− 𝑣)) + ⟨∇𝑓(𝑣 + S(𝑥− 𝑣)),Sℎ⟩+ 𝜇𝑓

2
‖Sℎ‖2

= 𝑓(𝑣 + S(𝑥− 𝑣)) +
⟨︀
S⊤∇𝑓(𝑣 + S(𝑥− 𝑣)), ℎ

⟩︀
+

𝜇𝑓

2

⟨︀
S⊤Sℎ, ℎ

⟩︀
≥ 𝑓S(𝑥) + ⟨∇𝑓S(𝑥), ℎ⟩+

𝜇S𝜇𝑓

2
‖ℎ‖2 .

(ii) For any 𝑥, ℎ ∈ R𝑑, we have

𝑓𝒟(𝑥+ ℎ) = E [𝑓(𝑣 + S(𝑥+ ℎ− 𝑣))]

= E [𝑓(𝑣 + S(𝑥− 𝑣) + Sℎ)]
Asn. 3
≥ E

[︁
𝑓(𝑣 + S(𝑥− 𝑣)) + ⟨∇𝑓(𝑣 + S(𝑥− 𝑣)),Sℎ⟩+ 𝜇𝑓

2
‖Sℎ‖2

]︁
= E [𝑓(𝑣 + S(𝑥− 𝑣))] +

⟨︀
E
[︀
S⊤∇𝑓(𝑣 + S(𝑥− 𝑣))

]︀
, ℎ
⟩︀

+
𝜇𝑓

2
E
[︁
‖Sℎ‖2

]︁
= 𝑓𝒟(𝑥) + ⟨∇𝑓𝒟(𝑥), ℎ⟩+

𝜇𝑓

2

⟨︀
E
[︀
S⊤S

]︀
ℎ, ℎ

⟩︀
≥ 𝑓𝒟(𝑥) + ⟨∇𝑓𝒟(𝑥), ℎ⟩+

𝜇𝒟𝜇𝑓

2
‖ℎ‖2 .

(iii) For any 𝑥 ∈ R𝑑, we have

𝑓𝒟(𝑥) = E [𝑓(𝑣 + S(𝑥− 𝑣))]
Asn. 3
≥ E

[︁
𝑓(𝑥) + ⟨∇𝑓(𝑥),S(𝑥− 𝑣)− (𝑥− 𝑣)⟩+ 𝜇𝑓

2
‖S(𝑥− 𝑣)− (𝑥− 𝑣)‖2

]︁
= 𝑓(𝑥) + ⟨∇𝑓(𝑥),E [S(𝑥− 𝑣)− (𝑥− 𝑣)]⟩

+
𝜇𝑓

2
E
[︁
‖S(𝑥− 𝑣)− (𝑥− 𝑣)‖2

]︁
(4)
= 𝑓(𝑥) + ⟨∇𝑓(𝑥), 0⟩+ 𝜇𝑓

2
(𝑥− 𝑣)⊤

(︀
E
[︀
S⊤S

]︀
− I
)︀
(𝑥− 𝑣)

= 𝑓(𝑥) +
(𝜇𝒟 − 1)𝜇𝑓

2
‖𝑥− 𝑣‖2 .
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C RELATION BETWEEN MINIMA OF 𝑓 AND 𝑓𝒟 .

Theorem 6. Let Assumptions 2 and 3 hold, and let 𝑥⋆
𝒟 ∈ 𝒳 and 𝑥⋆ ∈ 𝒳 ⋆. Then

𝑓(𝑥⋆) ≤ 𝑓(𝑥⋆
𝒟) ≤ 𝑓(𝑥⋆) +

(𝐿𝒟 − 1)𝐿𝑓

2
‖𝑥⋆ − 𝑣‖2 − (𝜇𝒟 − 1)𝜇𝑓

2
‖𝑥⋆

𝒟 − 𝑣‖2 ,

𝑓(𝑥⋆) +
(𝜇𝒟 − 1)𝜇𝑓

2
‖𝑥⋆

𝒟 − 𝑣‖2 ≤ 𝑓𝒟(𝑥
⋆
𝒟) ≤ 𝑓(𝑥⋆) +

(𝐿𝒟 − 1)𝐿𝑓

2
‖𝑥⋆ − 𝑣‖2 .

Proof. To obtain the result, combine inequalities (25) and (26):

𝑓(𝑥⋆
𝒟) +

(𝜇𝒟 − 1)𝜇𝑓

2
‖𝑥⋆

𝒟 − 𝑣‖2
(26)
≤ 𝑓𝒟(𝑥

⋆
𝒟) ≤ 𝑓𝒟(𝑥

⋆)
(25)
≤ 𝑓(𝑥⋆) +

(𝐿𝒟 − 1)𝐿𝑓

2
‖𝑥⋆ − 𝑣‖2 .

Theorem 7. Let Assumption 2 hold, and let 𝑥⋆
𝒟 ∈ 𝒳 ⋆

𝒟 and 𝑥⋆ ∈ 𝒳 ⋆. Then

𝑓(𝑥⋆) ≤ 𝑓𝒟(𝑥
⋆
𝒟) ≤ 𝑓(𝑥⋆) +

(𝐿𝒟 − 1)𝐿𝑓

2
‖𝑥⋆ − 𝑣‖2 .

Proof. To obtain the result, use inequality (25). Also, note that, since for every S ∼ 𝒟, we have
𝑓S(𝑥) = 𝑓 (𝑣 + S (𝑥− 𝑣)) ≥ 𝑓(𝑥⋆), for all 𝑥 ∈ R𝑑, we can conclude that 𝑓𝒟(𝑥⋆

𝒟) = E [𝑓S(𝑥
⋆
𝒟)] ≥

E [𝑓(𝑥⋆)] = 𝑓(𝑥⋆).

C.1 CONSEQUENCES OF LIPSCHITZ CONTINUITY OF THE GRADIENT

The gradient of 𝑓(𝑥) is 𝐿𝑓 -Lipschitz if, for all 𝑥,𝑦 ∈ R𝑑 we have that ‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤
𝐿𝑓 ‖𝑥− 𝑦‖ .
Lemma 12. If ∇𝑓 is 𝐿𝑓 -Lipschitz, then ∇𝑓𝒟 is 𝐿𝑓𝒟 -Lipschitz with

𝐿𝑓𝒟 ≤ 𝐿𝑓E
[︀⃦⃦
S⊤⃦⃦ ‖S‖]︀ .

Proof. We have that

‖∇𝑓𝒟(𝑥)−∇𝑓𝒟(𝑦)‖ = ‖∇E [𝑓(𝑣 + S(𝑥− 𝑣))]−∇E [𝑓(𝑣 + S(𝑦 − 𝑣))]‖
=

⃦⃦
E
[︀
S⊤∇𝑓(𝑣 + S(𝑥− 𝑣))

]︀
− E

[︀
S⊤∇𝑓(𝑣 + S(𝑦 − 𝑣))

]︀⃦⃦
=

⃦⃦
E
[︀
S⊤∇𝑓(𝑣 + S(𝑥− 𝑣))− S⊤∇𝑓(𝑣 + S(𝑦 − 𝑣))

]︀⃦⃦
≤ E

[︀⃦⃦
S⊤∇𝑓(𝑣 + S(𝑥− 𝑣))− S⊤∇𝑓(𝑣 + S(𝑦 − 𝑣))

⃦⃦]︀
≤ E

[︀⃦⃦
S⊤⃦⃦ ‖∇𝑓(𝑣 + S(𝑥− 𝑣))−∇𝑓(𝑣 + S(𝑦 − 𝑣))‖

]︀
≤ E

[︀⃦⃦
S⊤⃦⃦𝐿𝑓 ‖S𝑥− S𝑦‖

]︀
≤ 𝐿𝑓E

[︀⃦⃦
S⊤⃦⃦ ‖S‖]︀ ‖𝑥− 𝑦‖ .
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D DOUBLE SKETCHED GD

Recall that 𝐿max
S = supS

{︀
𝜆max

(︀
S⊤S

)︀}︀
= supS

{︀
𝜆max

(︀
SS⊤)︀}︀ (we used Proposition 1).

D.1 NONCONVEX ANALYSIS: PROOF OF THEOREM 3

The following lemma is a restated Lemma 4 from the main part of the paper.
Lemma 13. For all 𝑥 ∈ R𝑑, we have that

E
[︁
‖∇𝑓S(𝑥)‖2

]︁
≤ 2𝐿𝑓𝐿

max
S

(︀
𝑓𝒟(𝑥)− 𝑓 inf

)︀
.

where the expectation is taken with respect to S.

Proof. Due to 𝐿𝑓 -smoothness of 𝑓, we have that

E
[︁
‖∇𝑓S(𝑥)‖2

]︁
= E

[︁⃦⃦
S⊤∇𝑓(𝑦)|𝑦=𝑣+S(𝑥−𝑣)

⃦⃦2]︁
= E

[︀⟨︀
S⊤∇𝑓(𝑦),S⊤∇𝑓(𝑦)

⟩︀
|𝑦=𝑣+S(𝑥−𝑣)

]︀
= E

[︀⟨︀
SS⊤∇𝑓(𝑦),∇𝑓(𝑦)

⟩︀
|𝑦=𝑣+S(𝑥−𝑣)

]︀
≤ E

[︁
𝜆max

(︀
SS⊤)︀ ⃦⃦∇𝑓(𝑦)|𝑦=𝑣+S(𝑥−𝑣)

⃦⃦2]︁
≤ 𝐿max

S E
[︁⃦⃦

∇𝑓(𝑦)|𝑦=𝑣+S(𝑥−𝑣)

⃦⃦2]︁
(24)
≤ 2𝐿𝑓𝐿

max
S E

[︀
𝑓 (𝑣 + S(𝑥− 𝑣))− 𝑓 inf

]︀
= 2𝐿𝑓𝐿

max
S

(︀
𝑓𝒟(𝑥)− 𝑓 inf

)︀
.

All convergence results in the nonconvex scenarios rely on the following key lemma:
Lemma 14. The iterates {𝑥𝑡}𝑡≥0 of SGD satisfy

𝛾𝑟𝑡 ≤
(︀
1 + 𝛾2𝑀1

)︀
𝛿𝑡 − 𝛿𝑡+1 + 𝛾2𝑀2, (27)

where 𝑀1 and 𝑀2 are non-negative constants, 𝛿𝑡
def
= E

[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀

and 𝑟𝑡
def
= E

[︁
‖∇𝑓𝒟(𝑥

𝑡)‖2
]︁
.

Fix 𝑤−1 > 0 and, for all 𝑡 ≥ 0, define 𝑤𝑡 =
𝑤𝑡−1

1+𝛾2𝑀1
. Then, for any 𝑇 ≥ 1, the iterates {𝑥𝑡}𝑡≥0

satisfy
𝑇−1∑︁
𝑡=0

𝑤𝑡𝑟
𝑡 ≤ 𝑤1

𝛾
𝛿0 − 𝑤𝑇−1

𝛾
𝛿𝑇 + 𝛾𝑀2

𝑇−1∑︁
𝑡=0

𝑤𝑡.

Proof. Multiplying both sides of (27) by 𝑤𝑡

𝛾 , we obtain

𝑤𝑡𝑟
𝑡 ≤ 𝑤𝑡−1

𝛾
𝛿𝑡 − 𝑤𝑡

𝛾
𝛿𝑡+1 + 𝛾𝑤𝑡𝑀2.

For every 0 ≤ 𝑡 ≤ 𝑇 − 1, sum these inequalities. We arrive at
𝑇−1∑︁
𝑡=0

𝑤𝑡𝑟
𝑡 ≤ 𝑤−1

𝛾
𝛿0 − 𝑤𝑇−1

𝛾
𝛿𝑇 + 𝛾𝑀2

𝑇−1∑︁
𝑡=0

𝑤𝑡.

Recall that 𝐷 def
= 𝐿𝑓

√︀
𝐿𝒟𝐿max

S .

Theorem 8. Let Assumptions 1 and 2 hold. For every 𝑡 ≥ 0, put 𝛿𝑡
def
= E

[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀

and

𝑟𝑡
def
= E

[︁
‖∇𝑓𝒟(𝑥

𝑡)‖2
]︁
. Then, for any 𝑇 ≥ 1, the iterates {𝑥𝑡}𝑇−1

𝑡=0 of Algorithm 1 satisfy

min
0≤𝑡<𝑇

𝑟𝑡 ≤
(︀
1 +𝐷2𝛾2

)︀𝑇
𝛾𝑇

𝛿0 +𝐷2𝛾
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
. (28)
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Proof. Due to 𝐿𝑓 -smoothness of 𝑓, we have that

𝑓(𝑠+ S𝑡+1(𝑥𝑡+1 − 𝑠)) ≤ 𝑓(𝑠+ S𝑡+1(𝑥𝑡 − 𝑠))

+

⟨
∇𝑓 (𝑦) |𝑦=𝑠+S𝑡+1(𝑥𝑡−𝑠),S

𝑡+1
(︀
𝑥𝑡+1 − 𝑠

)︀
− S𝑡+1

(︀
𝑥𝑡 − 𝑠

)︀⟩
+

𝐿𝑓

2

⃦⃦
S𝑡+1

(︀
𝑥𝑡+1 − 𝑠

)︀
− S𝑡+1

(︀
𝑥𝑡 − 𝑠

)︀⃦⃦2
= 𝑓(𝑠+ S𝑡+1(𝑥𝑡 − 𝑠))− 𝛾

⟨
∇𝑓 (𝑦) |𝑦=𝑠+S𝑡+1(𝑥𝑡−𝑠),S

𝑡+1∇𝑓S𝑡(𝑥𝑡)

⟩
+

𝐿𝑓𝛾
2

2

⃦⃦
S𝑡+1∇𝑓S𝑡(𝑥𝑡)

⃦⃦2
≤ 𝑓(𝑠+ S𝑡+1(𝑥𝑡 − 𝑠))− 𝛾

⟨
∇𝑓S𝑡+1

(︀
𝑥𝑡
)︀
,∇𝑓S𝑡(𝑥𝑡)

⟩
+

𝐿𝑓𝛾
2

2

⟨(︀
S𝑡+1

)︀⊤
S𝑡+1∇𝑓S𝑡(𝑥𝑡),∇𝑓S𝑡(𝑥𝑡)

⟩
.

Taking the expectation with respect to S𝑡+1 yields

𝑓𝒟
(︀
𝑥𝑡+1

)︀
≤ 𝑓𝒟

(︀
𝑥𝑡
)︀
− 𝛾

⟨
∇𝑓𝒟

(︀
𝑥𝑡
)︀
,∇𝑓S𝑡(𝑥𝑡)

⟩
+

𝐿𝑓𝛾
2

2

⟨
E
[︁(︀
S𝑡+1

)︀⊤
S𝑡+1

]︁
∇𝑓S𝑡(𝑥𝑡),∇𝑓S𝑡(𝑥𝑡)

⟩
≤ 𝑓𝒟

(︀
𝑥𝑡
)︀
− 𝛾

⟨
∇𝑓𝒟

(︀
𝑥𝑡
)︀
,∇𝑓S𝑡(𝑥𝑡)

⟩
+

𝐿𝑓𝐿𝒟𝛾
2

2

⃦⃦
∇𝑓S𝑡(𝑥𝑡)

⃦⃦2
.

Conditioned on 𝑥𝑡, take expectation with respect to S𝑡 :

E
[︀
𝑓𝒟
(︀
𝑥𝑡+1

)︀
|𝑥𝑡
]︀
≤ 𝑓𝒟

(︀
𝑥𝑡
)︀
− 𝛾

⃦⃦
∇𝑓𝒟

(︀
𝑥𝑡
)︀⃦⃦2

+
𝐿𝑓𝐿𝒟𝛾

2

2
E
[︁⃦⃦

∇𝑓S𝑡(𝑥𝑡)
⃦⃦2]︁

.

From Lemma 4, we obtain that

E
[︀
𝑓𝒟
(︀
𝑥𝑡+1

)︀
|𝑥𝑡
]︀
≤ 𝑓𝒟

(︀
𝑥𝑡
)︀
− 𝛾

⃦⃦
∇𝑓𝒟

(︀
𝑥𝑡
)︀⃦⃦2

+
𝐿𝑓𝐿𝒟𝛾

2

2

(︀
2𝐿𝑓𝐿

max
S

(︀
𝑓𝒟(𝑥)− 𝑓 inf

𝒟
)︀
+ 2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀)︀
.

Subtract 𝑓 inf
𝒟 from both sides, take expectations on both sides, and use the tower property:

E
[︀
𝑓𝒟
(︀
𝑥𝑡+1

)︀
− 𝑓 inf

𝒟
]︀
≤
(︀
1 +𝐷2𝛾2

)︀
E
[︀
𝑓𝒟
(︀
𝑥𝑡
)︀
− 𝑓 inf

𝒟
]︀
− 𝛾E

[︁⃦⃦
∇𝑓𝒟

(︀
𝑥𝑡
)︀⃦⃦2]︁

+𝐷2𝛾2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

We obtain that

𝛾𝑟𝑡 ≤
(︀
1 +𝐷2𝛾2

)︀
𝛿𝑡 − 𝛿𝑡+1 +𝐷𝛾2

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Notice that the iterates {𝑥𝑡}𝑡≥0 of Algorithm 1 satisfy condition (27) of Lemma 14 with 𝑀1 = 𝐷2,

and 𝑀2 = 𝐷2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
. Therefore, we can conclude that, for any 𝑇 ≥ 1, the iterates {𝑥𝑡}𝑇−1

𝑡=0
of Algorithm 1 satisfy

𝑇−1∑︁
𝑡=0

𝑤𝑡𝑟
𝑡 ≤ 𝑤−1

𝛾
𝛿0 − 𝑤𝑇−1

𝛾
𝛿𝑇 +𝐷2𝛾

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀ 𝑇−1∑︁
𝑡=0

𝑤𝑡.

Divide both sides by
∑︀𝑇−1

𝑡=0 𝑤𝑡. From
∑︀𝑇−1

𝑡=0 𝑤𝑡 ≥ 𝑇𝑤𝑇−1 = 𝑇𝑤−1

1+𝐷2𝛾2 , we can conclude that

min
0≤𝑡<𝑇

𝑟𝑡 ≤
(︀
1 +𝐷2𝛾2

)︀𝑇
𝛾𝑇

𝛿0 +𝐷2𝛾
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.
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Corollary 2. Fix 𝜀 > 0. Choose the stepsize 𝛾 > 0 as

𝛾 = min

{︃
1

𝐷
√
𝑇
,

𝜀2

2𝐷2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀}︃ .

Then, provided that

𝑇 ≥ 12𝛿0𝐷2

𝜀4
max

{︀
3𝛿0, 𝑓 inf

𝒟 − 𝑓 inf
}︀
,

we have
min

0≤𝑡<𝑇
E
[︁⃦⃦

∇𝑓𝒟(𝑥
𝑡)
⃦⃦2]︁ ≤ 𝜀2.

Proof. Since 𝛾 ≤ 𝜀2

2𝐷2(𝑓 inf
𝒟 −𝑓 inf)

, we obtain

𝐷2𝛾
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
≤ 𝜀2

2
.

Since 𝛾 ≤ 1
𝐷
√
𝑇
, (︀

1 +𝐷2𝛾2
)︀𝑇 ≤ exp

(︀
𝑇𝐷2𝛾2

)︀
≤ exp(1) ≤ 3.

If 𝛾 = 1
𝐷
√
𝑇
, then, since

𝑇 ≥
36
(︀
𝛿0
)︀2

𝐷2

𝜀4
,

we have 3𝛿0

𝛾𝑇 ≤ 𝜀2

2 . Further, if 𝛾 = 𝜀2

2𝐷2(𝑓 inf
𝒟 −𝑓 inf)

, then, since

𝑇 ≥
12𝛿0𝐷2

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝜀4

,

we have 3𝛿0

𝛾𝑇 ≤ 𝜀2

2 . Combining it with (28), we arrive at min0≤𝑡<𝑇 E
[︁
‖∇𝑓𝒟(𝑥

𝑡)‖2
]︁
≤ 𝜀2.

D.2 STRONGLY CONVEX ANALYSIS: PROOF OF THEOREM 2

Theorem 9. Let Assumptions 1, 2, and 3 hold. Let 𝑟𝑡
def
= 𝑥𝑡 − 𝑥⋆

𝒟, 𝑡 ≥ 0. Choose a stepsize
0 < 𝛾 ≤ 1

𝐿𝑓𝐿max
S

. Then the iterates {𝑥𝑡}𝑡≥0 of Algorithm 1 satisfy

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )E

[︁⃦⃦
𝑟𝑡
⃦⃦2]︁

+ 2𝛾2𝐿𝑓𝐿
max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
. (29)

Proof. Let 𝑟𝑡 def
= 𝑥𝑡 − 𝑥⋆

𝒟. We get⃦⃦
𝑟𝑡+1

⃦⃦2
=
⃦⃦(︀

𝑥𝑡 − 𝛾∇𝑓S𝑡(𝑥𝑡)
)︀
− 𝑥⋆

𝒟
⃦⃦2

=
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟 − 𝛾∇𝑓S𝑡(𝑥𝑡)
⃦⃦2

=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡,∇𝑓S𝑡(𝑥𝑡)

⟩︀
+ 𝛾2

⃦⃦
∇𝑓S𝑡(𝑥𝑡)

⃦⃦2
.

Now we compute expectation of both sides of the inequality, conditional on 𝑥𝑡 :

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2 |𝑥𝑡

]︁
=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡,E[∇𝑓S𝑡(𝑥𝑡)|𝑥𝑡]

⟩︀
+ 𝛾2E

[︁⃦⃦
∇𝑓S𝑡(𝑥𝑡)

⃦⃦2 |𝑥𝑡
]︁
.

Taking the expectation with respect to S𝑡, using the fact that 𝑓 is continuously differentiable and
using Lemma 4, we obtain that

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2]︁ ≤ ⃦⃦𝑟𝑡⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)
⟩︀
+ 2𝛾2𝐿𝑓𝐿

max
S

(︀(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
+
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀)︀
.

Since 𝑓𝒟 is 𝜇𝒟𝜇𝑓 -convex, we conclude that
⟨︀
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)
⟩︀
≥ 𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟 +

𝜇𝒟𝜇𝑓

2 ‖𝑟𝑡‖2 . There-
fore,

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
(1− 𝛾𝐿𝑓𝐿

max
S )

+ 2𝛾2𝐿𝑓𝐿
max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.
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Since 𝛾 ≤ 1
𝐿𝑓𝐿max

S
, taking expectation and using the tower property we get

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )E

[︁⃦⃦
𝑟𝑡
⃦⃦2]︁

+ 2𝛾2𝐿𝑓𝐿
max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Unrolling the recurrence, we get

E
[︁⃦⃦

𝑟𝑡
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ⃦⃦
𝑟0
⃦⃦2

+
2𝛾𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝜇𝒟𝜇𝑓

.

Corollary 3. Fix 𝛿 > 0. Choose the stepsize 𝛾 > 0 as

𝛾 = min

{︃
1

𝐿𝑓𝐿max
S

,
𝜇𝒟𝜇𝑓𝛿

⃦⃦
𝑟0
⃦⃦2

2𝐿𝑓𝐿max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀}︃ .

Then, provided that

𝑡 ≥ 𝐿𝑓𝐿
max
S

𝜇𝒟𝜇𝑓

{︃
1,

2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝜇𝒟𝜇𝑓𝛿 ‖𝑟0‖2

}︃
log

1

𝛿
,

we have E
[︁
‖𝑟𝑡‖2

]︁
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.

Proof. Since 𝛾 ≤ 𝜇𝒟𝜇𝑓 𝛿‖𝑟0‖2

2𝐿𝑓𝐿max
S (𝑓 inf

𝒟 −𝑓 inf)
, we have that

2𝛾𝐿𝑓𝐿
max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝜇𝒟𝜇𝑓

≤ 𝛿
⃦⃦
𝑟0
⃦⃦2

.

If 𝛾 =
𝜇𝒟𝜇𝑓 𝛿‖𝑟0‖2

2𝐿𝑓𝐿max
S (𝑓 inf

𝒟 −𝑓 inf)
, then, since

𝑡 ≥
2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝜇2
𝒟𝜇

2
𝑓𝛿 ‖𝑟0‖

2 log
1

𝛿
,

we obtain that
(1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ≤ exp (−𝛾𝜇𝒟𝜇𝑓 𝑡) ≤ 𝛿.

Further, if 𝛾 = 1
𝐿𝑓𝐿max

S
, then, since

𝑡 ≥ 𝐿𝑓𝐿
max
S

𝜇𝒟𝜇𝑓
log

1

𝛿
,

we obtain that
(1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ≤ exp (−𝛾𝜇𝒟𝜇𝑓 𝑡) ≤ 𝛿.

Thus, combining it with (29), we arrive at E
[︁
‖𝑟𝑡‖2

]︁
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.

D.3 CONVEX ANALYSIS

Assumption 4. A set 𝒳 = {𝑥⋆
𝒟 | 𝑓𝒟 (𝑥⋆

𝒟) ≤ 𝑓𝒟 (𝑥) ∀𝑥 ∈ R𝑑} is nonempty.

Theorem 10. Let 𝑟𝑡
def
= 𝑥𝑡 − 𝑥⋆

𝒟. Let Assumptions 1, 2 and 4 hold. Let 𝑓 be convex. Choose a
stepsize 0 < 𝛾 ≤ 1

2𝐿𝑓𝐿max
S

. Fix 𝑇 ≥ 1 and let �̄�𝑇 be chosen uniformly from the iterates 𝑥0, . . . ,𝑥𝑇−1

of Algorithm 1. Then

E
[︀
𝑓𝒟(�̄�

𝑡)− 𝑓 inf
𝒟
]︀
≤
⃦⃦
𝑟0
⃦⃦2

𝛾𝑇
+ 2𝛾𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
, (30)

where 𝑟𝑡
def
= 𝑥𝑡 − 𝑥⋆

𝒟, 𝑡 ∈ {0, . . . ,𝑇 − 1}.
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Proof. Let us start by analyzing the behavior of ‖𝑥𝑡 − 𝑥⋆
𝒟‖

2. By developing the squares, we obtain⃦⃦
𝑥𝑡+1 − 𝑥⋆

𝒟
⃦⃦2

=
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2 − 2𝛾⟨∇𝑓S(𝑥

𝑡), 𝑥𝑡 − 𝑥⋆
𝒟⟩+ 𝛾2

⃦⃦
∇𝑓S(𝑥

𝑡)
⃦⃦2

Hence, after taking the expectation with respect to S conditioned on 𝑥𝑡, we can use the convexity of
𝑓 and Lemma 4 to obtain:

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥⋆
𝒟
⃦⃦2 |𝑥𝑡

]︁
=
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2

+ 2𝛾⟨∇𝑓𝒟(𝑥
𝑡), 𝑥⋆

𝒟 − 𝑥𝑡⟩+ 𝛾2E
[︁⃦⃦

∇𝑓S(𝑥
𝑡)
⃦⃦2]︁

≤
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2

+ 2𝛾 (𝛾𝐿𝑓𝐿
max
S − 1)

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀

+ 2𝛾2𝐿𝑓𝐿
max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Rearranging, taking expectation and taking into account the condition on the stepsize, we have

𝛾E
[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀
≤ E

[︁⃦⃦
𝑟𝑡
⃦⃦2]︁− E

[︁⃦⃦
𝑟𝑡+1

⃦⃦2]︁
+ 2𝛾2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Summing over 𝑡 = 0, . . . , 𝑇 − 1 and using telescopic cancellation gives:

𝛾

𝑇−1∑︁
𝑡=0

(︀
E
[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀)︀

≤
⃦⃦
𝑟0
⃦⃦2 − E

[︁⃦⃦
𝑟𝑇
⃦⃦2]︁

+ 2𝑇𝛾2𝐿𝑓𝐿
max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Since E
[︁⃦⃦

𝑟𝑇
⃦⃦2]︁ ≥ 0, dividing both sides by 𝛾𝑇 gives:

1

𝑇

𝑇−1∑︁
𝑡=0

(︀
E
[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀)︀

≤
⃦⃦
𝑟0
⃦⃦2

𝛾𝑇
+ 2𝛾𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

We treat the
(︀
1
𝑇 , . . . ,

1
𝑇

)︀
as if it is a probability vector. Indeed, using that 𝑓𝒟 is convex together with

Jensen’s inequality gives

E
[︀
𝑓𝒟(�̄�

𝑡)− 𝑓 inf
𝒟
]︀
≤
⃦⃦
𝑟0
⃦⃦2

𝛾𝑇
+ 2𝛾𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Corollary 4. Fix 𝛿 > 0. Choose the stepsize 𝛾 > 0 as

𝛾 = min

{︃
1

2𝐿𝑓𝜆S
𝑚

,
𝛿
⃦⃦
𝑟0
⃦⃦2

2𝐿𝑓𝜆S
𝑚

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀}︃ .

Then, provided that

𝑇 ≥ 2𝐿𝑓𝜆
S
𝑚

𝛿
max

{︃
1,

𝑓 inf
𝒟 − 𝑓 inf

𝛿 ‖𝑟0‖2

}︃
,

we have E
[︀
𝑓𝒟(�̄�

𝑡)− 𝑓 inf
𝒟
]︀
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.

Proof. Since 𝛾 ≤ 𝛿‖𝑟0‖2

2𝐿𝑓𝜆S
𝑚(𝑓 inf

𝒟 −𝑓 inf)
, we have that

2𝛾𝐿𝑓𝐿
max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
≤ 𝛿

⃦⃦
𝑟0
⃦⃦2

.

If 𝛾 =
𝛿‖𝑟0‖2

2𝐿𝑓𝜆S
𝑚(𝑓 inf

𝒟 −𝑓 inf)
, then, since

𝑇 ≥
2𝐿𝑓𝜆

S
𝑚

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝛿2 ‖𝑟0‖2

,

we obtain that ‖𝑟0‖2

𝛾𝑇 ≤ 𝛿
⃦⃦
𝑟0
⃦⃦2

. Further, if 𝛾 = 1
2𝐿𝑓𝜆S

𝑚
, then, since 𝑇 ≥ 2𝐿𝑓𝜆

S
𝑚

𝛿 , we have
‖𝑟0‖2

𝛾𝑇 ≤ 𝛿
⃦⃦
𝑟0
⃦⃦2

. Thus, combining it with (30), we arrive at E
[︀
𝑓𝒟(�̄�

𝑡)− 𝑓 inf
𝒟
]︀
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.
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E (STOCHASTIC) INEXACT GRADIENT

E.1 NONCONVEX ANALYSIS: PROOF OF THEOREM 4

We solve the problem (2) with the method

𝑥𝑡+1 = 𝑥𝑡 − 𝛾𝑔𝑡, (31)

where 𝑔𝑡 := 𝑔(𝑥𝑡) is the gradient estimator that satisfies

E [𝑔(𝑥)] = ∇𝑓S(𝑥), ∀𝑥 ∈ R𝑑, (32)

E
[︁
‖𝑔(𝑥)‖2

]︁
≤ 2𝐴

(︀
𝑓S(𝑥)− 𝑓 inf

S

)︀
+𝐵 ‖∇𝑓S(𝑥)‖2 + 𝐶, ∀𝑥 ∈ R𝑑. (33)

Recall that 𝐷𝐴,𝐵 = 𝐴+𝐵𝐿𝑓𝐿
max
S .

Theorem 11. Let Assumptions 1, 2, 15 and 16 hold. For every 𝑡 ≥ 0, put 𝛿𝑡
def
= E

[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀

and 𝑟𝑡
def
= E

[︁
‖∇𝑓𝒟(𝑥

𝑡)‖2
]︁
. Then, for any 𝑇 ≥ 1, the iterates {𝑥𝑡}𝑇−1

𝑡=0 of Algorithm 14 satisfy

min
0≤𝑡<𝑇

𝑟𝑡 ≤
(︀
1 +𝐷𝐴,𝐵𝐿𝑓𝐿𝒟𝛾

2
)︀𝑇

𝛾𝑇
𝛿0 +

𝐿𝑓𝐿𝒟𝛾

2

(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
. (34)

Proof. Due to 𝐿𝑓 -smoothness of 𝑓, we have that

𝑓(𝑠+ S𝑡+1(𝑥𝑡+1 − 𝑠)) ≤ 𝑓(𝑠+ S𝑡+1(𝑥𝑡 − 𝑠))

+

⟨
∇𝑓 (𝑦) |𝑦=𝑠+S𝑡+1(𝑥𝑡−𝑠),S

𝑡+1
(︀
𝑥𝑡+1 − 𝑠

)︀
− S𝑡+1

(︀
𝑥𝑡 − 𝑠

)︀⟩
+

𝐿𝑓

2

⃦⃦
S𝑡+1

(︀
𝑥𝑡+1 − 𝑠

)︀
− S𝑡+1

(︀
𝑥𝑡 − 𝑠

)︀⃦⃦2
= 𝑓(𝑠+ S𝑡+1(𝑥𝑡 − 𝑠))− 𝛾

⟨
∇𝑓 (𝑦) |𝑦=𝑠+S𝑡+1(𝑥𝑡−𝑠),S

𝑡+1𝑔𝑡
⟩

+
𝐿𝑓𝛾

2

2

⃦⃦
S𝑡+1𝑔𝑡

⃦⃦2
≤ 𝑓(𝑠+ S𝑡+1(𝑥𝑡 − 𝑠))− 𝛾

⟨
∇𝑓S𝑡+1

(︀
𝑥𝑡
)︀
, 𝑔𝑡
⟩

+
𝐿𝑓𝛾

2

2

⟨(︀
S𝑡+1

)︀⊤
S𝑡+1𝑔𝑡, 𝑔𝑡

⟩
.

Taking the expectation with respect to S𝑡+1, we obtain that

𝑓𝒟(𝑥
𝑡+1) ≤ 𝑓𝒟(𝑥

𝑡)− 𝛾

⟨
∇𝑓𝒟(𝑥

𝑡), 𝑔𝑡
⟩
+

𝐿𝑓𝛾
2

2

⟨
E
[︁(︀
S𝑡+1

)︀⊤
S𝑡+1

]︁
𝑔𝑡, 𝑔𝑡

⟩
≤ 𝑓𝒟(𝑥

𝑡)− 𝛾

⟨
∇𝑓𝒟(𝑥

𝑡), 𝑔𝑡
⟩
+

𝐿𝑓𝐿𝒟𝛾
2

2

⃦⃦
𝑔𝑡
⃦⃦2

.

Taking the expectation with respect to S𝑡, conditional on 𝑥𝑡, using Lemma 4 and (16) we have that

E
[︀
𝑓𝒟(𝑥

𝑡+1)|𝑥𝑡
]︀
≤ 𝑓𝒟(𝑥

𝑡)− 𝛾

⟨
∇𝑓𝒟(𝑥

𝑡),E
[︀
𝑔𝑡|𝑥𝑡

]︀⟩
+

𝐿𝑓𝐿𝛾
2

2
E
[︁⃦⃦

𝑔𝑡
⃦⃦2 |𝑥𝑡

]︁
= 𝑓𝒟(𝑥

𝑡)− 𝛾
⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

+
𝐿𝑓𝐿𝒟𝛾

2

2
E
[︁
2𝐴
(︀
𝑓S𝑡(𝑥

𝑡)− 𝑓 inf
S𝑡

)︀
+𝐵

⃦⃦
∇𝑓S𝑡(𝑥

𝑡)
⃦⃦2

+ 𝐶
]︁

≤ 𝑓𝒟(𝑥
𝑡)− 𝛾

⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

+𝐴𝐿𝑓𝐿𝒟𝛾
2
(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀

+
𝐿𝑓𝐿𝒟𝐵𝛾2

2

(︀
2𝐿𝑓𝐿

max
S

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
+ 2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀)︀
+

𝐿𝑓𝐿𝒟𝛾
2𝐶

2
+𝐴𝐿𝑓𝐿𝒟𝛾

2
(︀
𝑓 inf
𝒟 − E

[︀
𝑓 inf
S𝑡

]︀)︀
.
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Substitute 𝑓 inf
𝒟 from both sides, take expectation on both sides and use the tower property:

E
[︀
𝑓𝒟(𝑥

𝑡+1)− 𝑓 inf
𝒟
]︀
≤ E

[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀ (︀

1 +𝐷𝐴,𝐵𝐿𝑓𝐿𝒟𝛾
2
)︀
− 𝛾E

[︁⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2]︁

+
𝐿𝑓𝐿𝒟𝛾

2

2

(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
.

We obtain that

𝛾𝑟𝑡 ≤
(︀
1 +𝐷𝐴,𝐵𝐿𝑓𝐿𝒟𝛾

2
)︀
𝛿𝑡 − 𝛿𝑡+1 +

𝐿𝑓𝐿𝒟𝛾
2

2

(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
.

Notice that the iterates {𝑥𝑡}𝑡≥0 of Algorithm 14 satisfy condition (27) of Lemma 14 with 𝑀1 =
𝐷𝐴,𝐵𝐿𝑓𝐿𝒟,

𝑀2 =
𝐿𝑓𝐿𝒟

2

(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
.

Therefore, for any 𝑇 ≥ 1, the iterates {𝑥𝑡}𝑇−1
𝑡=0 of Algorithm 14 satisfy

𝑇−1∑︁
𝑡=0

𝑤𝑡𝑟
𝑡 ≤ 𝑤−1

𝛾
𝛿0 − 𝑤𝑇−1

𝛾
𝛿𝑇

+
𝐿𝑓𝐿𝒟𝛾

2

(︀
2𝐴
(︀
𝑓 inf
𝒟 − E

[︀
𝑓 inf
S𝑡

]︀)︀
+ 2𝐵𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
+ 𝐶

)︀ 𝑇−1∑︁
𝑡=0

𝑤𝑡.

Divide both sides by
∑︀𝑇−1

𝑡=0 𝑤𝑡. From
∑︀𝑇−1

𝑡=0 𝑤𝑡 ≥ 𝑇𝑤𝑇−1 = 𝑇𝑤−1

1+𝐷𝐴,𝐵𝐿𝑓𝐿𝒟𝛾2 we can conclude that

min
0≤𝑡<𝑇

𝑟𝑡 ≤
(︀
1 +𝐷𝐴,𝐵𝐿𝑓𝐿𝒟𝛾

2
)︀𝑇

𝛾𝑇
𝛿0 +

𝐿𝑓𝐿𝒟𝛾

2

(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
.

Corollary 5. Fix 𝜀 > 0. Choose the stepsize 𝛾 > 0 as

𝛾 = min

{︃
1√︀

𝐿𝑓𝐿𝒟𝐷𝐴,𝐵𝑇
,

𝜀2

𝐿𝑓𝐿𝒟
(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀}︃ .

Then, provided that

𝑇 ≥ 6𝛿0𝐿𝑓𝐿𝒟

𝜀4
max

{︀
6𝛿0𝐷𝐴,𝐵 , 2

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

}︀
,

we have
min

0≤𝑡<𝑇
E
[︁⃦⃦

∇𝑓𝒟(𝑥
𝑡)
⃦⃦2]︁ ≤ 𝜀2.

Proof. Since 𝛾 ≤ 𝜀2

𝐿𝑓𝐿𝒟(2(𝑓 inf
𝒟 −𝑓 inf)𝐷𝐴,𝐵+𝐶)

, we obtain

𝐿𝑓𝐿𝒟𝛾

2

(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
≤ 𝜀2

2
.

Since 𝛾 ≤ 1√
𝐿𝑓𝐿𝒟𝐷𝐴,𝐵𝑇

, we deduce that(︀
1 +𝐷𝐴,𝐵𝐿𝑓𝐿𝒟𝛾

2
)︀𝑇 ≤ exp

(︀
𝑇𝐿𝑓𝐿𝒟𝛾

2𝐷𝐴,𝐵

)︀
≤ exp(1) ≤ 3.

If 𝛾 = 1√
𝐿𝑓𝐿𝒟𝐷𝐴,𝐵𝑇

, then, since

𝑇 ≥
36
(︀
𝛿0
)︀2

𝐿𝑓𝐿𝒟𝐷𝐴,𝐵

𝜀4
,

we have 3𝛿0

𝛾𝑇 ≤ 𝜀2

2 . Further, if 𝛾 = 𝜀2

𝐿𝑓𝐿𝒟(2(𝑓 inf
𝒟 −𝑓 inf)𝐷𝐴,𝐵+𝐶)

, then, since

𝑇 ≥
6𝛿0𝐿𝑓𝐿𝒟

(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
𝜀4

,

we have 3𝛿0

𝛾𝑇 ≤ 𝜀2

2 . Combining it with (34), we arrive at min0≤𝑡<𝑇 E
[︁
‖∇𝑓𝒟(𝑥

𝑡)‖2
]︁
≤ 𝜀2.
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E.2 STRONGLY CONVEX ANALYSIS

Theorem 12. Let Assumptions 1, 2, 3, 15 and 16 hold. Let 𝑟𝑡
def
= 𝑥𝑡 − 𝑥⋆

𝒟, 𝑡 ≥ 0. Choose a stepsize
0 < 𝛾 ≤ 1

𝐷𝐴,𝐵
. Then the iterates {𝑥𝑡}𝑡≥0 of Algorithm 14 satisfy

E
[︁⃦⃦

𝑟𝑡
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ⃦⃦
𝑟0
⃦⃦2

+
𝛾
(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
𝜇𝒟𝜇𝑓

. (35)

Proof. We get ⃦⃦
𝑟𝑡+1

⃦⃦2
=
⃦⃦(︀

𝑥𝑡 − 𝛾𝑔𝑡
)︀
− 𝑥⋆

𝒟
⃦⃦2

=
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟 − 𝛾𝑔𝑡
⃦⃦2

=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡, 𝑔𝑡

⟩︀
+ 𝛾2

⃦⃦
𝑔𝑡
⃦⃦2

.

Now we compute expectation of both sides of the inequality with respect to S𝑡, conditioned on 𝑥𝑡,
use the fact that 𝑓 is continuously differentiable and use (16):

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2 |𝑥𝑡

]︁
=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡,E

[︀
𝑔𝑡|𝑥𝑡

]︀ ⟩︀
+ 𝛾2E

[︁⃦⃦
𝑔𝑡
⃦⃦2 |𝑥𝑡

]︁
≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡,E

[︀
∇𝑓S𝑡(𝑥𝑡)

]︀ ⟩︀
+ 𝛾2E

[︁(︁
2𝐴
(︀
𝑓S𝑡(𝑥

𝑡)− 𝑓 inf
S𝑡

)︀
+𝐵

⃦⃦
∇𝑓S𝑡(𝑥

𝑡)
⃦⃦2

+ 𝐶
)︁]︁

=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)
⟩︀
+ 2𝐴𝛾2

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
+ 𝛾2𝐵E

[︁⃦⃦
∇𝑓S𝑡(𝑥

𝑡)
⃦⃦2]︁

+ 𝛾2
(︀
𝐶 + 2𝐴

(︀
𝑓 inf
𝒟 − E

[︀
𝑓 inf
S𝑡

]︀)︀)︀
.

Since 𝑓𝒟 is 𝜇𝒟𝜇𝑓 -convex, we conclude that
⟨︀
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)
⟩︀
≥ 𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟 +

𝜇𝒟𝜇𝑓

2 ‖𝑟𝑡‖2 . There-
fore, taking the expectation and using the tower property, we obtain

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥)− 𝑓 inf

𝒟
)︀
(1− 𝛾𝐷𝐴,𝐵)

+ 𝛾2
(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
.

Since 𝛾 ≤ 1
𝐷𝐴,𝐵

, we get

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )E

[︁⃦⃦
𝑟𝑡
⃦⃦2]︁

+ 𝛾2
(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
.

Unrolling the recurrence, we get

E
[︁⃦⃦

𝑟𝑡
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ⃦⃦
𝑟0
⃦⃦2

+
𝛾
(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
𝜇𝒟𝜇𝑓

.

Corollary 6. Fix 𝛿 > 0. Choose the stepsize 𝛾 > 0 as

𝛾 = min

{︃
1

𝐷𝐴,𝐵
,

𝜇𝒟𝜇𝑓𝛿
⃦⃦
𝑟0
⃦⃦2

2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

}︃
.

Then, provided that

𝑡 ≥ 1

𝜇𝒟𝜇𝑓

{︃
𝐷𝐴,𝐵 ,

2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

𝜇𝒟𝜇𝑓𝛿 ‖𝑟0‖2

}︃
log

1

𝛿
,

we have E
[︁
‖𝑟𝑡‖2

]︁
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.

Proof. Since 𝛾 ≤ 𝜇𝒟𝜇𝑓 𝛿‖𝑟0‖2

2(𝑓 inf
𝒟 −𝑓 inf)𝐷𝐴,𝐵+𝐶

, we have that

𝛾
(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
𝜇𝒟𝜇𝑓

≤ 𝛿
⃦⃦
𝑟0
⃦⃦2

.
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If 𝛾 =
𝜇𝒟𝜇𝑓 𝛿‖𝑟0‖2

2(𝑓 inf
𝒟 −𝑓 inf)𝐷𝐴,𝐵+𝐶

, then, since

𝑡 ≥
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

𝜇2
𝒟𝜇

2
𝑓𝛿 ‖𝑟0‖

2 log
1

𝛿
,

we obtain that
(1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ≤ exp (−𝛾𝜇𝒟𝜇𝑓 𝑡) ≤ 𝛿.

Further, if 𝛾 = 1
𝐷𝐴,𝐵

, then, since

𝑡 ≥ 𝐷𝐴,𝐵

𝜇𝒟𝜇𝑓
log

1

𝛿
,

we obtain that
(1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ≤ exp (−𝛾𝜇𝒟𝜇𝑓 𝑡) ≤ 𝛿.

Thus, combining it with (35), we arrive at E
[︁
‖𝑟𝑡‖2

]︁
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.

E.3 CONVEX ANALYSIS

Theorem 13. Let Assumptions 1, 2, 4, 15 and 16 hold. Let 𝑓 be convex. Choose a stepsize
0 < 𝛾 ≤ 1

2𝐷𝐴,𝐵
. Fix 𝑇 ≥ 1 and let �̄�𝑇 be chosen uniformly from the iterates 𝑥0, . . . ,𝑥𝑇−1 of

Algorithm 14. Then

E
[︀
𝑓𝒟(�̄�

𝑡)− 𝑓 inf
𝒟
]︀
≤
⃦⃦
𝑟0
⃦⃦2

𝛾𝑇
+ 2𝛾

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝛾𝐶, (36)

where 𝑟𝑡
def
= 𝑥𝑡 − 𝑥⋆

𝒟, 𝑡 ∈ {0, . . . ,𝑇 − 1}.

Proof. We get ⃦⃦
𝑟𝑡+1

⃦⃦2
=
⃦⃦(︀

𝑥𝑡 − 𝛾𝑔𝑡
)︀
− 𝑥⋆

𝒟
⃦⃦2

=
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟 − 𝛾𝑔𝑡
⃦⃦2

=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡, 𝑔𝑡

⟩︀
+ 𝛾2

⃦⃦
𝑔𝑡
⃦⃦2

.

Now we compute expectation of both sides of the inequality with respect to S𝑡, conditioned on 𝑥𝑡,
use the fact that 𝑓 is continuously differentiable and use (16):

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2 |𝑥𝑡

]︁
=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡,E

[︀
𝑔𝑡|𝑥𝑡

]︀ ⟩︀
+ 𝛾2E

[︁⃦⃦
𝑔𝑡
⃦⃦2 |𝑥𝑡

]︁
≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡,E

[︀
∇𝑓S𝑡(𝑥𝑡)

]︀ ⟩︀
+ 𝛾2E

[︁(︁
2𝐴
(︀
𝑓S𝑡(𝑥

𝑡)− 𝑓 inf
S𝑡

)︀
+𝐵

⃦⃦
∇𝑓S𝑡(𝑥

𝑡)
⃦⃦2

+ 𝐶
)︁]︁

=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨︀
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)
⟩︀
+ 2𝐴𝛾2

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
+ 𝛾2𝐵E

[︁⃦⃦
∇𝑓S𝑡(𝑥

𝑡)
⃦⃦2]︁

+ 𝛾2
(︀
𝐶 + 2𝐴

(︀
𝑓 inf
𝒟 − E

[︀
𝑓 inf
S𝑡

]︀)︀)︀
.

We can use the convexity of 𝑓 and Lemma 4 to obtain:

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2]︁

=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
(1−𝐴𝛾) + 2𝛾2𝐵𝐿𝑓𝐿

max
S

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀

+ 2𝛾2𝐵𝐿𝑓𝐿
max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
+ 𝛾2

(︀
𝐶 + 2𝐴

(︀
𝑓 inf
𝒟 − E

[︀
𝑓 inf
S𝑡

]︀)︀)︀
≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
(1− 𝛾𝐷𝐴,𝐵)

+ 2𝛾2𝐵𝐿𝑓𝐿
max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
+ 𝛾2

(︀
𝐶 + 2𝐴

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀)︀
.

Rearranging and taking expectation, taking into account the condition on the stepsize, we have

𝛾
(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
≤ E

[︁⃦⃦
𝑟𝑡
⃦⃦2]︁− E

[︁⃦⃦
𝑟𝑡+1

⃦⃦2]︁
+ 2𝛾2

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝛾2𝐶.
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Summing over 𝑡 = 0, . . . , 𝑇 − 1 and using telescopic cancellation gives

𝛾

𝑇−1∑︁
𝑡=0

(︀
E
[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀)︀

≤
⃦⃦
𝑟0
⃦⃦2 − E

[︁⃦⃦
𝑟𝑇
⃦⃦2]︁

+ 2𝛾2𝑇
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝛾2𝑇𝐶.

Since E
[︁⃦⃦

𝑟𝑇
⃦⃦2]︁ ≥ 0, dividing both sides by 𝛾𝑇 gives:

1

𝑇

𝑇−1∑︁
𝑡=0

(︀
E
[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀)︀

≤
⃦⃦
𝑟0
⃦⃦2

𝛾𝑇
+ 2𝛾

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝛾𝐶.

We treat the
(︀
1
𝑇 , . . . ,

1
𝑇

)︀
as if it is a probability vector. Indeed, using that 𝑓𝒟 is convex together with

Jensen’s inequality gives

E
[︀
𝑓𝒟(�̄�

𝑡)− 𝑓 inf
𝒟
]︀
≤
⃦⃦
𝑟0
⃦⃦2

𝛾𝑇
+ 𝛾

(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
.

Corollary 7. Fix 𝛿 > 0. Choose the stepsize 𝛾 > 0 as

𝛾 = min

{︃
1

2𝐷𝐴,𝐵
,

𝛿
⃦⃦
𝑟0
⃦⃦2

2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

}︃
.

Then, provided that

𝑇 ≥ 2𝐿𝑓𝜆
S
𝑚

𝛿
max

{︃
1,

𝑓 inf
𝒟 − 𝑓 inf

𝛿 ‖𝑟0‖2

}︃
,

we have E
[︀
𝑓𝒟(�̄�

𝑡)− 𝑓 inf
𝒟
]︀
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.

Proof. Since 𝛾 ≤ 𝛿‖𝑟0‖2

2(𝑓 inf
𝒟 −𝑓 inf)𝐷𝐴,𝐵+𝐶

, we have that

𝛾
(︀
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

)︀
≤ 𝛿

⃦⃦
𝑟0
⃦⃦2

.

If 𝛾 =
𝛿‖𝑟0‖2

2(𝑓 inf
𝒟 −𝑓 inf)𝐷𝐴,𝐵+𝐶

, then, since

𝑇 ≥
2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝐷𝐴,𝐵 + 𝐶

𝛿2 ‖𝑟0‖2
,

we obtain that ‖𝑟
0‖2

𝛾𝑇 ≤ 𝛿
⃦⃦
𝑟0
⃦⃦2

. Further, if 𝛾 = 1
2𝐷𝐴,𝐵

, then, since 𝑇 ≥ 2𝐷𝐴,𝐵

𝛿 , we have ‖𝑟0‖2

𝛾𝑇 ≤
𝛿
⃦⃦
𝑟0
⃦⃦2

. Thus, combining it with (36), we arrive at E
[︀
𝑓𝒟(�̄�

𝑡)− 𝑓 inf
𝒟
]︀
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.
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F DISTRIBUTED SETTING

Consider 𝑓 being a finite sum over a number of machines, i.e., we consider the distributed setup:

min
𝑥∈R𝑑

[︃
𝑓𝒟(𝑥) =

1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖,𝒟𝑖
(𝑥)

]︃
,

where 𝑓𝑖,𝒟𝑖

def
= E [𝑓𝑖,S𝑖(𝑥)] = E [𝑓𝑖(𝑣 + S𝑖(𝑥− 𝑣))].

Recall that 𝐷max = max𝑖

{︁
𝐿2
𝑓𝑖
𝐿𝐷𝑖

𝐿max
S𝑖

}︁
.

F.1 NONCONVEX ANALYSIS: PROOF OF THEOREM 5

We solve the problem (2) with the method

𝑥𝑡+1 = 𝑥𝑡 − 𝛾

𝑛

𝑛∑︁
𝑖=1

(︀
S𝑡
𝑖

)︀⊤ ∇𝑓𝑖(𝑦
𝑡)|𝑦𝑡=𝑣+S𝑡

𝑖(𝑥
𝑡−𝑣). (37)

Theorem 14. Assume that each 𝑓𝑖, 𝑖 ∈ [𝑛], is differentiable, 𝐿𝑓𝑖 -smooth and bounded from below by

𝑓 inf
𝑖 . For every 𝑡 ≥ 0, put 𝛿𝑡

def
= E

[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀

and 𝑟𝑡
def
= E

[︁
‖∇𝑓𝒟(𝑥

𝑡)‖2
]︁
. Fix 𝑇 ≥ 1. Then the

iterates {𝑥𝑡}𝑇−1
𝑡=0 of Algorithm 19 satisfy

min
0≤𝑡<𝑇

𝑟𝑡 ≤
(︀
1 + 𝛾2𝐷max

)︀𝑇
𝛾𝑇

𝛿0 + 𝛾𝐷max

(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
. (38)

Proof. For 𝑖 ∈ [𝑛], due to 𝐿𝑓𝑖 -smoothness of 𝑓𝑖, we have that

𝑓𝑖(𝑠+ S𝑡+1
𝑖 (𝑥𝑡+1 − 𝑠)) ≤ 𝑓𝑖(𝑠+ S𝑡+1

𝑖 (𝑥𝑡 − 𝑠))− 𝛾

⟨
∇𝑓𝑖,S𝑡+1

𝑖

(︀
𝑥𝑡
)︀
,∇𝑓𝑖,S𝑡

𝑖
(𝑥𝑡)

⟩
+

𝐿𝑓𝑖𝛾
2

2

⟨(︀
S𝑡+1
𝑖

)︀⊤
S𝑡+1
𝑖 ∇𝑓𝑖,S𝑡

𝑖
(𝑥𝑡),∇𝑓𝑖,S𝑡

𝑖
(𝑥𝑡)

⟩
.

Taking the expectation with respect to S𝑡+1
𝑖 yields

𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡+1

)︀
≤ 𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀
− 𝛾

⟨
∇𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀
,∇𝑓S𝑡

𝑖
(𝑥𝑡)

⟩
+

𝐿𝑓𝑖𝐿𝒟𝑖
𝛾2

2

⃦⃦⃦
∇𝑓𝑖,S𝑡

𝑖
(𝑥𝑡)

⃦⃦⃦2
.

Conditioned on 𝑥𝑡, take expectation with respect to S𝑡
𝑖 :

E
[︀
𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡+1

)︀
|𝑥𝑡
]︀
≤ 𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀
− 𝛾

⃦⃦
∇𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀⃦⃦2

+
𝐿𝑓𝑖𝐿𝒟𝑖𝛾

2

2
E
[︂⃦⃦⃦

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⃦⃦⃦2]︂
.

From Lemma 4 we obtain that

E
[︀
𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡+1

)︀
|𝑥𝑡
]︀
≤ 𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀
− 𝛾

⃦⃦
∇𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀⃦⃦2

+ 𝐿2
𝑓𝑖𝐿𝒟𝑖

𝐿max
S𝑖

𝛾2
(︀
𝑓𝑖,𝒟𝑖

(𝑥)− 𝑓 inf
𝑖

)︀
.

For every 𝑖 ∈ [𝑛], sum these inequalities, divide by 𝑛 :

E
[︀
𝑓𝒟
(︀
𝑥𝑡+1

)︀
|𝑥𝑡
]︀
≤ 𝑓𝒟

(︀
𝑥𝑡
)︀
− 𝛾

𝑛

𝑛∑︁
𝑖=1

⃦⃦
∇𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀⃦⃦2

+
𝛾2𝐷max

𝑛

𝑛∑︁
𝑖=1

(︀
𝑓𝑖,𝒟𝑖(𝑥

𝑡)− 𝑓 inf
𝑖

)︀
= 𝑓𝒟

(︀
𝑥𝑡
)︀
− 𝛾

𝑛

𝑛∑︁
𝑖=1

⃦⃦
∇𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀⃦⃦2

+ 𝛾2𝐷max

(︃
𝑓𝒟(𝑥

𝑡)− 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃

= 𝑓𝒟
(︀
𝑥𝑡
)︀
− 𝛾

𝑛

𝑛∑︁
𝑖=1

⃦⃦
∇𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀⃦⃦2

+ 𝛾2𝐷max

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀

+ 𝛾2𝐷max

(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.
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Notice that by Jensen’s inequality

1

𝑛

𝑛∑︁
𝑖=1

⃦⃦
∇𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀⃦⃦2 ≥

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,𝒟𝑖

(︀
𝑥𝑡
)︀⃦⃦⃦⃦⃦

2

=
⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

.

Subtract 𝑓 inf
𝒟 from both sides, take expectation on both sides and use the tower property:

E
[︀
𝑓𝒟
(︀
𝑥𝑡+1

)︀
− 𝑓 inf

𝒟
]︀
≤
(︀
1 + 𝛾2𝐷max

)︀
E
[︀
𝑓𝒟
(︀
𝑥𝑡
)︀
− 𝑓 inf

𝒟
]︀
− 𝛾E

[︁⃦⃦
∇𝑓𝒟

(︀
𝑥𝑡
)︀⃦⃦2]︁

+ 𝛾2𝐷max

(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.

We obtain that

𝛾𝑟𝑡 ≤
(︀
1 + 𝛾2𝐷max

)︀
𝛿𝑡 − 𝛿𝑡+1 + 𝛾2𝐷max

(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.

Notice that the iterates {𝑥𝑡}𝑡≥0 of Algorithm 14 satisfy condition (27) of Lemma 14 with 𝑀1 =
𝐷max,

𝑀2 = 𝐷max

(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.

Divide both sides by
∑︀𝑇−1

𝑡=0 𝑤𝑡. From
∑︀𝑇−1

𝑡=0 𝑤𝑡 ≥ 𝑇𝑤𝑇−1 = 𝑇𝑤−1

1+𝛾2𝐷max
we can conclude that

min
0≤𝑡<𝑇

𝑟𝑡 ≤
(︀
1 + 𝛾2𝐷max

)︀𝑇
𝛾𝑇

𝛿0 + 𝛾𝐷max

(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.

Corollary 8. Fix 𝜀 > 0. Choose the stepsize 𝛾 > 0 as

𝛾 = min

{︃
1√

𝐷max𝑇
,

𝜀2

2𝐷max

(︀
𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓

inf
𝑖

)︀}︃ .

Then, provided that

𝑇 ≥ 12𝛿0𝐷max

𝜀4
max

{︃
3𝛿0, 𝑓 inf

𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

}︃
,

we have
min

0≤𝑡<𝑇
E
[︁⃦⃦

∇𝑓𝒟(𝑥
𝑡)
⃦⃦2]︁ ≤ 𝜀2.

Proof. Since 𝛾 ≤ 𝜀2

2𝐷max(𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓 inf

𝑖 )
, we obtain

𝛾𝐷max

(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
≤ 𝜀2

2
.

Since 𝛾 ≤ 1√
𝐷max𝑇

, we deduce that(︀
1 + 𝛾2𝐷max

)︀𝑇 ≤ exp
(︀
𝑇𝛾2𝐷max

)︀
≤ exp(1) ≤ 3.

If 𝛾 = 1√
𝐷max𝑇

, then, since

𝑇 ≥
36
(︀
𝛿0
)︀2

𝐷max

𝜀4
,

we have 3𝛿0

𝛾𝑇 ≤ 𝜀2

2 . Further, if 𝛾 = 𝜀2

2𝐷max(𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓 inf

𝑖 )
, then, since

𝑇 ≥
12𝛿0𝐷max

(︀
𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓

inf
𝑖

)︀
𝜀4

,

we have 3𝛿0

𝛾𝑇 ≤ 𝜀2

2 . Combining it with (38), we arrive at min0≤𝑡<𝑇 E
[︁
‖∇𝑓𝒟(𝑥

𝑡)‖2
]︁
≤ 𝜀2.
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F.2 STRONGLY CONVEX ANALYSIS

Theorem 15. Assume that each 𝑓𝑖, 𝑖 ∈ [𝑛], is differentiable, 𝐿𝑓𝑖-smooth and bounded from below
by 𝑓 inf

𝑖 , 𝑓 is 𝜇𝑓 -convex (Assumption 3 holds). Choose a stepsize 0 < 𝛾 ≤ 1

max𝑖

{︁
𝐿𝑓𝑖

𝐿max
S𝑖

}︁ . Then the

iterations {𝑥𝑡}𝑡≥0 of Algorithm 19 satisfy

E
[︁⃦⃦

𝑟𝑡
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ⃦⃦
𝑟0
⃦⃦2

+
2𝛾max𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀ (︀
𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓

inf
𝑖

)︀
𝜇𝜇𝑓

,

where 𝑟𝑡
def
= 𝑥𝑡 − 𝑥⋆

𝒟.

Proof. We get that

⃦⃦
𝑟𝑡+1

⃦⃦2
=

⃦⃦⃦⃦
⃦
(︃
𝑥𝑡 − 𝛾

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

)︃
− 𝑥⋆

𝒟

⃦⃦⃦⃦
⃦
2

=

⃦⃦⃦⃦
⃦𝑥𝑡 − 𝑥⋆

𝒟 − 𝛾

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⃦⃦⃦⃦
⃦
2

=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨
𝑟𝑡,

1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⟩
+ 𝛾2

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⃦⃦⃦⃦
⃦
2

≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨
𝑟𝑡,

1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⟩
+ 𝛾2 1

𝑛

𝑛∑︁
𝑖=1

⃦⃦⃦
∇𝑓𝑖,S𝑡

𝑖
(𝑥𝑡)

⃦⃦⃦2
.

Conditioned on 𝑥𝑡, take expectation with respect to S𝑡
𝑖, 𝑖 ∈ [𝑛] :

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2 |𝑥𝑡

]︁
≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)

⟩
+ 𝛾2 1

𝑛

𝑛∑︁
𝑖=1

E
[︂⃦⃦⃦

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⃦⃦⃦2
|𝑥𝑡

]︂
.

From Lemma 4 we obtain that

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2 |𝑥𝑡

]︁
≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)

⟩
+ 𝛾2 2

𝑛

𝑛∑︁
𝑖=1

𝐿𝑓𝑖𝐿
max
S𝑖

E
[︀(︀
𝑓𝑖
(︀
𝑠+ S𝑡

𝑖(𝑥
𝑡 − 𝑠)

)︀
− 𝑓 inf

𝑖

)︀]︀
=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)

⟩
+ 𝛾2 2

𝑛

𝑛∑︁
𝑖=1

𝐿𝑓𝑖𝐿
max
S𝑖

(︀
𝑓𝒟𝑖

(𝑥𝑡)− 𝑓 inf
𝑖

)︀
≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)

⟩
+

2𝛾2 max𝑖
{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀
𝑛

𝑛∑︁
𝑖=1

(︀
𝑓𝒟𝑖(𝑥

𝑡)− 𝑓 inf
𝑖

)︀
=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)

⟩
+ 2𝛾2 max

𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀ (︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀

+ 2𝛾2 max
𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.

Since 𝑓𝒟 is 𝜇𝒟𝜇𝑓 -convex, we conclude that
⟨︀
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)
⟩︀
≥ 𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟 +

𝜇𝒟𝜇𝑓

2 ‖𝑟𝑡‖2 . There-
fore,

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2 |𝑥𝑡

]︁
≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

(︁
1− 𝛾max

𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀)︁ (︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀

+ 2𝛾2 max
𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.

Since 𝛾 ≤ 1

max𝑖

{︁
𝐿𝑓𝑖

𝐿max
S𝑖

}︁ , taking expectation and using the tower property we get

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )E

[︁⃦⃦
𝑟𝑡
⃦⃦2]︁

+ 2𝛾2 max
𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.
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Unrolling the recurrence, we get

E
[︁⃦⃦

𝑟𝑡
⃦⃦2]︁ ≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ⃦⃦
𝑟0
⃦⃦2

+
2𝛾max𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀ (︀
𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓

inf
𝑖

)︀
𝜇𝒟𝜇𝑓

.

Corollary 9. Fix 𝛿 > 0. Choose the stepsize 𝛾 > 0 as

𝛾 = min

{︃
1

max𝑖
{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀ , 𝜇𝒟𝜇𝑓𝛿
⃦⃦
𝑟0
⃦⃦2

2max𝑖
{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀ (︀
𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓

inf
𝑖

)︀}︃ .

Then, provided that

𝑡 ≥ 𝐿𝑓𝐿
max
S

𝜇𝒟𝜇𝑓

{︃
1,

2
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝜇𝒟𝜇𝑓𝛿 ‖𝑟0‖2

}︃
log

1

𝛿
,

we have E
[︁
‖𝑟𝑡‖2

]︁
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.

Proof. Since 𝛾 ≤ 𝜇𝒟𝜇𝑓 𝛿‖𝑟0‖2

2max𝑖

{︁
𝐿𝑓𝑖

𝐿max
S𝑖

}︁
(𝑓 inf

𝒟 − 1
𝑛

∑︀𝑛
𝑖=1 𝑓 inf

𝑖 )
, we have that

2𝛾max𝑖
{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀ (︀
𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓

inf
𝑖

)︀
𝜇𝒟𝜇𝑓

≤ 𝛿
⃦⃦
𝑟0
⃦⃦2

.

If 𝛾 =
𝜇𝒟𝜇𝑓 𝛿‖𝑟0‖2

2max𝑖

{︁
𝐿𝑓𝑖

𝐿max
S𝑖

}︁
(𝑓 inf

𝒟 − 1
𝑛

∑︀𝑛
𝑖=1 𝑓 inf

𝑖 )
, then, since

𝑡 ≥
2max𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀ (︀
𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓

inf
𝑖

)︀
𝜇2
𝒟𝜇

2
𝑓𝛿 ‖𝑟0‖

2 log
1

𝛿
,

we obtain that
(1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ≤ exp (−𝛾𝜇𝒟𝜇𝑓 𝑡) ≤ 𝛿.

Further, if 𝛾 = 1

max𝑖

{︁
𝐿𝑓𝑖

𝐿max
S𝑖

}︁ , then, since

𝑡 ≥
max𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀
𝜇𝒟𝜇𝑓

log
1

𝛿
,

we obtain that
(1− 𝛾𝜇𝒟𝜇𝑓 )

𝑡 ≤ exp (−𝛾𝜇𝒟𝜇𝑓 𝑡) ≤ 𝛿.

Thus, we arrive at E
[︁
‖𝑟𝑡‖2

]︁
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.

F.3 CONVEX ANALYSIS

Theorem 16. Assume that each 𝑓𝑖, 𝑖 ∈ [𝑛], is differentiable, 𝐿𝑓𝑖-smooth and bounded from below
by 𝑓 inf

𝑖 , 𝑓 is convex. Let Assumptions 1 and 4 hold. Let 𝑓 be convex. Choose a stepsize 0 < 𝛾 ≤
1

2max𝑖

{︁
𝐿𝑓𝑖

𝐿max
S𝑖

}︁ . Fix 𝑇 ≥ 1 and let �̄�𝑇 be chosen uniformly from the iterates 𝑥0, . . . ,𝑥𝑇−1. Then

E
[︀
𝑓𝒟(�̄�

𝑇 )− 𝑓 inf
𝒟
]︀
≤
⃦⃦
𝑟0
⃦⃦2

𝛾𝑇
+ 2𝛾max

𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀
,

where 𝑟𝑡
def
= 𝑥𝑡 − 𝑥⋆

𝒟, 𝑡 = {0, . . . ,𝑇 − 1}.
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Proof. We get that

⃦⃦
𝑟𝑡+1

⃦⃦2
=

⃦⃦⃦⃦
⃦
(︃
𝑥𝑡 − 𝛾

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

)︃
− 𝑥⋆

𝒟

⃦⃦⃦⃦
⃦
2

=

⃦⃦⃦⃦
⃦𝑥𝑡 − 𝑥⋆

𝒟 − 𝛾

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⃦⃦⃦⃦
⃦
2

=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨
𝑟𝑡,

1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⟩
+ 𝛾2

⃦⃦⃦⃦
⃦ 1𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⃦⃦⃦⃦
⃦
2

≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨
𝑟𝑡,

1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⟩
+ 𝛾2 1

𝑛

𝑛∑︁
𝑖=1

⃦⃦⃦
∇𝑓𝑖,S𝑡

𝑖
(𝑥𝑡)

⃦⃦⃦2
.

Conditioned on 𝑥𝑡, take expectation with respect to S𝑡
𝑖, 𝑖 ∈ [𝑛] :

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2 |𝑥𝑡

]︁
≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

⟨
𝑟𝑡,∇𝑓𝒟(𝑥

𝑡)

⟩
+ 𝛾2 1

𝑛

𝑛∑︁
𝑖=1

E
[︂⃦⃦⃦

∇𝑓𝑖,S𝑡
𝑖
(𝑥𝑡)

⃦⃦⃦2
|𝑥𝑡

]︂
.

From Lemma 4 and from convexity of 𝑓𝒟 we obtain that

E
[︁⃦⃦

𝑟𝑡+1
⃦⃦2 |𝑥𝑡

]︁
≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀

+ 𝛾2 2

𝑛

𝑛∑︁
𝑖=1

𝐿𝑓𝑖𝐿
max
S𝑖

E
[︀(︀
𝑓𝑖
(︀
𝑠+ S𝑖,𝑡(𝑥

𝑡 − 𝑠)
)︀
− 𝑓 inf

𝑖

)︀]︀
=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
+ 𝛾2 2

𝑛

𝑛∑︁
𝑖=1

𝐿𝑓𝑖𝐿
max
S𝑖

(︀
𝑓𝒟⟩(𝑥

𝑡)− 𝑓 inf
𝑖

)︀
≤
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
+

2𝛾2 max𝑖
{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀
𝑛

𝑛∑︁
𝑖=1

(︀
𝑓𝒟⟩(𝑥

𝑡)− 𝑓 inf
𝑖

)︀
=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
+ 2𝛾2 max

𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀ (︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀

+ 2𝛾2 max
𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
=
⃦⃦
𝑟𝑡
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀ (︁

1− 𝛾max
𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀)︁
+ 2𝛾2 max

𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.

Rearranging and taking expectation, taking into account the condition on the stepsize, we have

𝛾
(︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
)︀
≤ E

[︁⃦⃦
𝑟𝑡
⃦⃦2]︁− E

[︁⃦⃦
𝑟𝑡+1

⃦⃦2]︁
+ 2𝛾2 max

𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.

Summing over 𝑡 = 0, . . . , 𝑇 − 1 and using telescopic cancellation gives

𝛾

𝑇−1∑︁
𝑡=0

(︀
E
[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀)︀

≤
⃦⃦
𝑟0
⃦⃦2 − E

[︁⃦⃦
𝑟𝑇
⃦⃦2]︁

+ 2𝑇𝛾2 max
𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.

Since E
[︁⃦⃦

𝑟𝑇
⃦⃦2]︁ ≥ 0, dividing both sides by 𝛾𝑇 gives:

1

𝑇

𝑇−1∑︁
𝑡=0

(︀
E
[︀
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟
]︀)︀

≤
⃦⃦
𝑟0
⃦⃦2

𝛾𝑇
+ 2𝛾max

𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.
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We treat the
(︀
1
𝑇 , . . . ,

1
𝑇

)︀
as if it is a probability vector. Indeed, using that 𝑓𝒟 is convex together with

Jensen’s inequality gives

E
[︀
𝑓𝒟(�̄�

𝑇 )− 𝑓 inf
𝒟
]︀
≤
⃦⃦
𝑟0
⃦⃦2

𝛾𝑇
+ 2𝛾max

𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
.

Corollary 10. Fix 𝛿 > 0. Choose the stepsize 𝛾 > 0 as

𝛾 =
1

2max𝑖
{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀ min

{︃
1,

𝛿
⃦⃦
𝑟0
⃦⃦2

𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓

inf
𝑖

}︃
.

Then, provided that

𝑇 ≥ 2𝐿𝑓𝜆
S
𝑚

𝛿
max

{︃
1,

𝑓 inf
𝒟 − 𝑓 inf

𝛿 ‖𝑟0‖2

}︃
,

we have E
[︀
𝑓𝒟(�̄�

𝑡)− 𝑓 inf
𝒟
]︀
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.

Proof. Since 𝛾 ≤ 𝛿‖𝑟0‖2

2max𝑖

{︁
𝐿𝑓𝑖

𝐿max
S𝑖

}︁
(𝑓 inf

𝒟 − 1
𝑛

∑︀𝑛
𝑖=1 𝑓 inf

𝑖 )
, we have that

2𝛾max
𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀(︃
𝑓 inf
𝒟 − 1

𝑛

𝑛∑︁
𝑖=1

𝑓 inf
𝑖

)︃
≤ 𝛿

⃦⃦
𝑟0
⃦⃦2

.

If 𝛾 =
𝛿‖𝑟0‖2

2max𝑖

{︁
𝐿𝑓𝑖

𝐿max
S𝑖

}︁
(𝑓 inf

𝒟 − 1
𝑛

∑︀𝑛
𝑖=1 𝑓 inf

𝑖 )
, then, since

𝑇 ≥
2max𝑖

{︀
𝐿𝑓𝑖𝐿

max
S𝑖

}︀ (︀
𝑓 inf
𝒟 − 1

𝑛

∑︀𝑛
𝑖=1 𝑓

inf
𝑖

)︀
𝛿2 ‖𝑟0‖2

,

we obtain that ‖𝑟
0‖2

𝛾𝑇 ≤ 𝛿
⃦⃦
𝑟0
⃦⃦2

. Further, if 𝛾 = 1

2max𝑖

{︁
𝐿𝑓𝑖

𝐿max
S𝑖

}︁ , then, since 𝑇 ≥ 2max𝑖{𝐿𝑓𝑖
𝐿max

S𝑖
}

𝛿 ,

we have ‖𝑟0‖2

𝛾𝑇 ≤ 𝛿
⃦⃦
𝑟0
⃦⃦2

. Thus, we arrive at E
[︀
𝑓𝒟(�̄�

𝑡)− 𝑓 inf
𝒟
]︀
≤ 2𝛿

⃦⃦
𝑟0
⃦⃦2

.
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Algorithm 3 Loopless Stochastic Variance Reduced Double Sketched Gradient (L-SVRDSG)

1: Parameters: learning rate 𝛾 > 0; probability 𝑝; sketches S1, . . . ,S𝑁 ; initial model and shift
𝑥0, 𝑣 ∈ R𝑑, sketch minibatch size 𝑏; initial sketch minibatch ℬ0 ⊂ [𝑁 ].

2: Initialization: 𝑤0 = 𝑥0, ℎ̂0 = 1
𝑏

∑︀
𝑖∈ℬ0

∇𝑓S𝑖
(𝑤0).

3: for 𝑡 = 0, 1, 2 . . . do
4: Sample a sketch: S𝑡 from {S1, . . . ,S𝑁}
5: Form a gradient estimator: ℎ𝑡 = ∇𝑓S𝑡(𝑥𝑡)−∇𝑓S𝑡(𝑤𝑡) + ℎ̂𝑡.
6: Perform a gradient-type step: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾ℎ𝑡

7: Sample a Bernoulli random variable 𝛽𝑝

8: if 𝛽𝑝 = 1 then
9: Sample ℬ𝑡 uniformly without replacement

10: 𝑤𝑡+1 = 𝑥𝑡, ℎ̂𝑡+1 = 1
𝑏

∑︀
𝑖∈ℬ𝑡

∇𝑓S𝑡
𝑖
(𝑥𝑡)

11: else
12: 𝑤𝑡+1 = 𝑤𝑡, ℎ̂𝑡+1 = ℎ̂𝑡

13: end if
14: end for

G VARIANCE REDUCTION

In Theorem 2, we established linear convergence toward a neighborhood of the solution 𝑥⋆
𝒟 for

Algorithm 1 (I). To reach the exact solution, the stepsize must decrease to zero, resulting in slower
sublinear convergence. The neighborhood’s size is linked to the variance of gradient estimator at
the solution. Various Variance Reduction (VR) techniques have been proposed to address this issue
(Gower et al., 2020). Consider the case when distribution 𝒟 is uniform and has finite support, i.e.,
{S1, . . . ,S𝑁} leading to a finite-sum modification of the MAST problem (2)

𝑓𝒟(𝑥) =
1

𝑁

𝑁∑︁
𝑖=1

E [𝑓(𝑣 + S𝑖(𝑥− 𝑣))] . (39)

In this situation, VR-methods can eliminate the neighborhood enabling linear convergence to the
solution. We utilize the L-SVRG (Kovalev et al., 2020; Hofmann et al., 2015) approach, which
requires computing the full gradient with probability 𝑝. For our formulation, calculating ∇𝑓S for all
possible S is rarely feasible. For instance, for Rand-𝐾, there are 𝑁 = 𝑑!/(𝐾!(𝑑−𝐾)!) possible
operators S𝑖. Therefore, in our Algorithm 3, we employ a sketch minibatch estimator ℎ̂𝑡 computed for
a subset ℬ ⊂ [𝑁 ] (sampled uniformly without replacement) of sketches instead of the full gradient.
Finally, we present the convergence results for the strongly convex case.
Theorem 17. Assume that 𝑓 is 𝐿𝑓 -smooth (2), 𝜇𝑓 -strongly convex (3), and S is sampled from finite
set {S1, . . . ,S𝑁}. Then, for stepsize 𝛾 ≤ 1/(20𝐿𝑓𝐿

max
S ) and sketch minibatch size 𝑏 ∈ (0, 𝑁 ], the

iterates of Algorithm 3 satisfy

E
[︀
Ψ𝑇
]︀
≤ (1− 𝜌)

𝑇
Ψ0 +

8𝛾2𝐿𝑓𝐿
max
S (𝑁 − 𝑏)

𝜌max {1, 𝑁 − 1} 𝑏
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
,

where 𝜌
def
= max {𝛾𝜇𝒟𝜇𝑓 , 𝑝/2} and Lyapunov function

Ψ𝑡 def
= ‖𝑥𝑡 − 𝑥⋆

𝒟‖2 +
16𝛾2

𝑝𝑁

𝑁∑︁
𝑖=1

⃦⃦
∇𝑓S𝑖

(𝑤𝑡)−∇𝑓S𝑖
(𝑥⋆

𝒟)
⃦⃦2

.

Note that the achieved result demonstrates linear convergence towards the solution’s neighborhood.
However, this neighborhood is roughly reduced by a factor of 1/𝑏 compared to Theorem 2, and it
scales with 𝑁 − 𝑏. Thus, when employing a full gradient for ℎ̂𝑡 with 𝑏 = 𝑁 , the neighborhood
shrinks to zero, resulting in a linear convergence rate to the exact solution.

G.1 L-SVRDSG: STRONGLY CONVEX ANALYSIS

The proof of Theorem 17 relies on the following Lemma:
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Lemma 15. Let Assumptions 1 and 3 hold. Then the following inequality holds:

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥⋆
𝒟
⃦⃦2]︁

= (1− 𝛾𝜇𝒟𝜇𝑓 )
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀
+ 𝛾2E

[︁⃦⃦
ℎ𝑡
⃦⃦2]︁

.

Proof. We start from expanding squared norm:

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥⋆
𝒟
⃦⃦2]︁

= E
[︁⃦⃦

𝑥𝑡 − 𝛾ℎ𝑡 − 𝑥⋆
𝒟
⃦⃦2]︁

= E
[︁⃦⃦

𝑥𝑡 − 𝑥⋆
𝒟
⃦⃦2]︁− 2𝛾⟨ℎ𝑡, 𝑥𝑡 − 𝑥⋆

𝒟⟩+ 𝛾2E
[︁⃦⃦

ℎ𝑡
⃦⃦2]︁

= E
[︁⃦⃦

𝑥𝑡 − 𝑥⋆
𝒟
⃦⃦2]︁− 2𝛾⟨∇𝑓𝒟(𝑥

𝑡), 𝑥𝑡 − 𝑥⋆
𝒟⟩+ 𝛾2E

[︁⃦⃦
ℎ𝑡
⃦⃦2]︁

= (1− 𝛾𝜇𝜇𝑓 )
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀
+ 𝛾2E

[︁⃦⃦
ℎ𝑡
⃦⃦2]︁

.

Lemma 16. Let Assumptions 1 and 2 hold. Then the following inequality holds:

E
[︁⃦⃦

ℎ𝑡
⃦⃦2]︁ ≤ 8𝐿𝑓𝐿

max
S𝑡

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓𝒟(𝑥
⋆
𝒟)
)︀
+ 8

1

𝑁

𝑁∑︁
𝑖=1

⃦⃦⃦
∇𝑓S𝑡

𝑖
(𝑤𝑡)−∇𝑓S𝑡

𝑖
(𝑥⋆

𝒟)
⃦⃦⃦2

+
8(𝑁 − 𝑏)

(𝑁 − 1)𝑏
𝐿𝑓𝐿

max
S𝑡

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Proof. We start the proof from the definition of ℎ𝑡:

E
[︁⃦⃦

ℎ𝑡
⃦⃦2]︁

= E

⎡⎣⃦⃦⃦⃦⃦∇𝑓S𝑡(𝑥𝑡)−∇𝑓S𝑡(𝑤𝑡) +
1

𝑏

∑︁
𝑖∈ℬ𝑡

∇𝑓S𝑡
𝑖
(𝑤𝑡)

⃦⃦⃦⃦
⃦
2
⎤⎦

= E

[︃⃦⃦⃦⃦
⃦∇𝑓S𝑡(𝑥𝑡)−∇𝑓S𝑡(𝑤𝑡) +

1

𝑏

∑︁
𝑖∈ℬ𝑡

∇𝑓S𝑡
𝑖
(𝑤𝑡)−∇𝑓S𝑡(𝑥⋆

𝒟) +∇𝑓S𝑡(𝑥⋆
𝒟)

−1

𝑏

∑︁
𝑖∈ℬ𝑡

∇𝑓S𝑡
𝑖
(𝑥⋆

𝒟) +
1

𝑏

∑︁
𝑖∈ℬ𝑡

∇𝑓S𝑡
𝑖
(𝑥⋆

𝒟)

⃦⃦⃦⃦
⃦
2
⎤⎦

≤ 4E
[︁⃦⃦

∇𝑓S𝑡(𝑥𝑡)−∇𝑓S𝑡(𝑥⋆
𝒟)
⃦⃦2]︁

+ 4E
[︁⃦⃦

∇𝑓S𝑡(𝑤𝑡)−∇𝑓S𝑡(𝑥⋆
𝒟)
⃦⃦2]︁

+ 4E

⎡⎣⃦⃦⃦⃦⃦1𝑏 ∑︁
𝑖∈ℬ𝑡

(︁
∇𝑓S𝑡

𝑖
(𝑤𝑡)−∇𝑓S𝑡

𝑖
(𝑥⋆

𝒟)
)︁⃦⃦⃦⃦⃦

2
⎤⎦+ 4E

⎡⎣⃦⃦⃦⃦⃦1𝑏 ∑︁
𝑖∈ℬ𝑡

∇𝑓S𝑡
𝑖
(𝑥⋆

𝒟)

⃦⃦⃦⃦
⃦
2
⎤⎦

(24)
≤ 8𝐿𝑓𝐿

max
S𝑡

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓𝒟(𝑥
⋆
𝒟)
)︀
+ 8

1

𝑁

𝑁∑︁
𝑖=1

⃦⃦⃦
∇𝑓S𝑡

𝑖
(𝑤𝑡)−∇𝑓S𝑡

𝑖
(𝑥⋆

𝒟)
⃦⃦⃦2

+ 4E

⎡⎣⃦⃦⃦⃦⃦1𝑏 ∑︁
𝑖∈ℬ𝑡

∇𝑓S𝑡
𝑖
(𝑥⋆

𝒟)

⃦⃦⃦⃦
⃦
2
⎤⎦ .

Using Lemma 5 we obtain

E
[︁⃦⃦

ℎ𝑡
⃦⃦2]︁ ≤ 8𝐿𝑓𝐿

max
S𝑡

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓𝒟(𝑥
⋆
𝒟)
)︀
+ 8

1

𝑁

𝑁∑︁
𝑖=1

⃦⃦⃦
∇𝑓S𝑡

𝑖
(𝑤𝑡)−∇𝑓S𝑡

𝑖
(𝑥⋆

𝒟)
⃦⃦⃦2

+ 4
𝑁 − 𝑏

max{1,𝑁 − 1}𝑏
1

𝑁

∑︁
𝑖∈ℬ𝑡

⃦⃦⃦
∇𝑓S𝑡

𝑖
(𝑥⋆

𝒟)
⃦⃦⃦2

≤ 8𝐿𝑓𝐿
max
S𝑡

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓𝒟(𝑥
⋆
𝒟)
)︀
+ 8

1

𝑁

𝑁∑︁
𝑖=1

⃦⃦⃦
∇𝑓S𝑡

𝑖
(𝑤𝑡)−∇𝑓S𝑡

𝑖
(𝑥⋆

𝒟)
⃦⃦⃦2

+
8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝐿𝑓𝐿

max
S𝑡

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.
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Lemma 17. Let Assumptions 1 and 2 hold. Let 𝐷𝑡 = 16𝛾2

𝑝𝑁

𝑁∑︀
𝑖=1

⃦⃦⃦
∇𝑓S𝑡

𝑖
(𝑥⋆

𝒟)−∇𝑓S𝑡
𝑖
(𝑤𝑡)

⃦⃦⃦2
. Then

the following inequality holds:

E
[︀
𝐷𝑡+1

]︀
≤ (1− 𝑝)𝐷𝑡 + 32𝛾2𝐿𝑓𝐿

max
S𝑡

(︀
𝑓𝒟(𝑤

𝑡)− 𝑓𝒟(𝑥
⋆
𝒟)
)︀
.

Proof. Using the smoothness property, we obtain

E
[︀
𝐷𝑡+1

]︀
= (1− 𝑝)𝐷𝑡 + 𝑝

16𝛾2

𝑝𝑁

𝑁∑︁
𝑖=1

E
[︂⃦⃦⃦

∇𝑓S𝑡
𝑖
(𝑥⋆

𝒟)−∇𝑓S𝑡
𝑖
(𝑤𝑡)

⃦⃦⃦2]︂
≤ (1− 𝑝)𝐷𝑡 + 32𝛾2𝐿𝑓𝐿

max
S𝑡

(︀
𝑓𝒟(𝑤

𝑡)− 𝑓𝒟(𝑥
⋆
𝒟)
)︀
.

Theorem 18. Assume that 𝑓 is 𝐿𝑓 -smooth (2), 𝜇𝑓 -strongly convex (3), and S is sampled from finite
set {S1, . . . ,S𝑁}. Then, for stepsize 𝛾 ≤ 1/(20𝐿𝑓𝐿

max
S ) and sketch minibatch size 𝑏 ∈ (0, 𝑁 ], the

iterates of Algorithm 3 satisfy

E
[︀
Ψ𝑇
]︀
≤ (1− 𝜌)

𝑇
Ψ0 +

8𝛾2𝐿𝑓𝐿
max
S (𝑁 − 𝑏)

𝜌max {1, 𝑁 − 1} 𝑏
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
,

where 𝜌
def
= max {𝛾𝜇𝒟𝜇𝑓 , 𝑝/2} and Lyapunov function Ψ𝑡 def

= ‖𝑥𝑡 − 𝑥⋆
𝒟‖2 +

16𝛾2

𝑝𝑁

𝑁∑︀
𝑖=1

‖∇𝑓S𝑖
(𝑤𝑡)−∇𝑓S𝑖

(𝑥⋆
𝒟)‖

2
.

Proof. We combine three previous lemmas 15,16, 17:

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥⋆
𝒟
⃦⃦2

+𝐷𝑡+1
]︁
≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀
+ 𝛾2E

[︁⃦⃦
𝑔𝑡
⃦⃦2]︁

+ (1− 𝑝)𝐷𝑡 + 32𝛾2𝐿𝑓𝐿
max
S

(︀
𝑓𝒟(𝑤

𝑡)− 𝑓𝒟(𝑥
⋆
𝒟)
)︀

≤ (1− 𝛾𝜇𝒟𝜇𝑓 )
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀
+ (1− 𝑝)𝐷𝑡

+ 32𝛾2𝐿𝑓𝐿
max
S

(︀
𝑓𝒟(𝑤

𝑡)− 𝑓𝒟(𝑥
⋆
𝒟)
)︀

+ 𝛾2

(︂
8𝐿𝑓𝐿

max
S

(︀
𝑓𝒟(𝑤

𝑡)− 𝑓𝒟(𝑥
⋆
𝒟)
)︀
+

𝑝

2𝛾2
𝐷𝑡

+
8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝐿𝑓𝐿

max
S𝑡

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀)︂
= (1− 𝛾𝜇𝒟𝜇𝑓 )

⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2

− 2𝛾
(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀
(1− 20𝛾𝐿𝑓𝐿

max
S )

+
(︁
1− 𝑝

2

)︁
𝐷𝑡 +

8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝛾2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Since 𝛾 ≤ 1
20𝐿𝑓𝐿max

S
, we get that

Ψ𝑡+1 ≤
(︁
1−max

{︁
𝛾𝜇𝒟𝜇𝑓 ,

𝑝

2

}︁)︁
Ψ𝑡 +

8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝛾2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Unrolling the recursion and using 𝜌 = max
{︀
𝛾𝜇𝒟𝜇𝑓 ,

𝑝
2

}︀
, we obtain

E
[︀
Ψ𝑇
]︀
≤ (1− 𝜌)

𝑇
Ψ0 +

8𝛾2𝐿𝑓𝐿
max
S (𝑁 − 𝑏)

𝜌max {1, 𝑁 − 1} 𝑏
(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
,
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G.1.1 CONVEX ANALYSIS

Now we formulate and prove theorem for the general (non-strongly) convex regime:
Theorem 19. Assume that 𝑓 is 𝐿𝑓 -smooth (2), convex, and S is sampled from finite set {S1, . . . ,S𝑁}.
Then, for stepsize 𝛾 ≤ 1/(40𝐿𝑓𝐿

max
S ) and sketch minibatch size 𝑏 ∈ (0, 𝑁 ] the iterates of Algorithm 3

satisfy

E
[︀
𝑓𝒟(�̄�

𝑡)
]︀
− 𝑓(𝑥⋆

𝒟) ≤
Ψ0

𝛾𝑇
+

8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝛾𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

where �̄�𝑇 = 1
𝑇

∑︀𝑇−1
𝑡=0 𝑥𝑡 and Lyapunov function Ψ𝑡 def

= ‖𝑥𝑡 − 𝑥⋆
𝒟‖2 +

16𝛾2

𝑝𝑁

𝑁∑︀
𝑖=1

‖∇𝑓S𝑖(𝑤
𝑡)−∇𝑓S𝑖(𝑥

⋆
𝒟)‖

2
.

Proof. We start from the recursion in Theorem 18:

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥⋆
𝒟
⃦⃦2

+𝐷𝑡+1
]︁
≤ (1− 𝛾𝜇𝒟𝜇𝑓 )

⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2

− 2𝛾
(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀
(1− 20𝛾𝐿𝑓𝐿

max
S )

+
(︁
1− 𝑝

2

)︁
𝐷𝑡 +

8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝛾2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Using 𝜇𝑓 = 0 and
(︀
1− 𝑝

2

)︀
≤ 1 we have

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥⋆
𝒟
⃦⃦2

+𝐷𝑡+1
]︁
≤
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2 − 2𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀
(1− 20𝛾𝐿𝑓𝐿

max
S )

+𝐷𝑡 +
8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝛾2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Since 𝛾 ≤ 1
40𝐿𝑓𝐿max

S
, we have (1− 20𝛾𝐿𝑓𝐿

max
S ) ≥ 1

2 and it leads to

E
[︁⃦⃦

𝑥𝑡+1 − 𝑥⋆
𝒟
⃦⃦2

+𝐷𝑡+1
]︁
≤
⃦⃦
𝑥𝑡 − 𝑥⋆

𝒟
⃦⃦2 − 𝛾

(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀

+𝐷𝑡 +
8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝛾2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.

Using the tower property, we have

E
[︀
Ψ𝑡+1

]︀
≤ E

[︀
Ψ𝑡
]︀
− 𝛾E

[︀(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀]︀

+
8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝛾2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝛾E
[︀(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀]︀

≤ E
[︀
Ψ𝑡
]︀
− E

[︀
Ψ𝑡+1

]︀
+

8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝛾2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
𝛾
1

𝑇

𝑇−1∑︁
𝑡=0

E
[︀(︀
𝑓𝒟(𝑥

𝑡)− 𝑓(𝑥⋆
𝒟)
)︀]︀

≤ 1

𝑇

𝑇−1∑︁
𝑡=0

(︀
E
[︀
Ψ𝑡
]︀
− E

[︀
Ψ𝑡+1

]︀)︀
+

8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝛾2𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
E
[︀
𝑓𝒟(�̄�

𝑇 )
]︀
− 𝑓(𝑥⋆

𝒟) ≤
Ψ0

𝛾𝑇
+

8(𝑁 − 𝑏)

max{1,𝑁 − 1}𝑏
𝛾𝐿𝑓𝐿

max
S

(︀
𝑓 inf
𝒟 − 𝑓 inf

)︀
.
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Algorithm 4 Sketched ProbAbilistic Gradient Estimator (S-PAGE)

1: Parameters: learning rate 𝛾 > 0; probability 𝑝; sketches S1, . . . ,S𝑁 ; initial model and shift
𝑥0, 𝑣 ∈ R𝑑, sketch minibatch sizes 𝑏 and 𝑏′ < 𝑏; initial sketch minibatch ℬ0 ⊂ [𝑁 ].

2: Initialization: ℎ0 = 1
𝑏

∑︀
𝑖∈ℬ0

∇𝑓S𝑖
(𝑥0).

3: for 𝑡 = 0, 1, 2 . . . do
4: Perform a gradient-type step: 𝑥𝑡+1 = 𝑥𝑡 − 𝛾ℎ𝑡

5: Sample a Bernoulli random variable 𝛽𝑝

6: if 𝛽𝑝 = 1 then
7: Sample minibatch ℬ𝑡 with size 𝑏 uniformly without replacement
8: Form a gradient estimator: ℎ𝑡+1 = 1

𝑏

∑︀
𝑖∈ℬ𝑡

∇𝑓S𝑡
𝑖
(𝑥𝑡+1)

9: else
10: Sample minibatch (ℬ𝑡)

′ with size 𝑏′ uniformly without replacement
11: Form a gradient estimator: ℎ𝑡+1 = ℎ𝑡 + 1

𝑏′

∑︀
𝑖∈(ℬ𝑡)′

(︁
∇𝑓S𝑡

𝑖
(𝑥𝑡+1)−∇𝑓S𝑡

𝑖
(𝑥𝑡+1)

)︁
12: end if
13: end for

G.2 S-PAGE: NONCONVEX ANALYSIS

In this section, we introduce a variant of the Probabilistic Gradient Estimator (PAGE) algorithm
applied to the MAST formulation as defined in Equation 2 for non-convex setting. Li et al. (Li et al.,
2021) showed that this method is optimal in the non-convex regime. We refer to this method as the
Sketched Probabilistic Gradient Estimator (S-PAGE). Calculating the full gradient is not efficient,
as the number of possible sketches when considering Rand-𝐾 is given by 𝑛!

(𝑛−𝑘)!𝑘! . Consequently,
we employ a minibatch estimator to achieve partial variance reduction, using a large minibatch size
where 𝑏 > 𝑏′. For the purpose of analysis, we assume that the variance of the sketch gradient is
bounded.

Assumption 5 (Bounded sketch variance). The sketched gradient has bounded variance if exists
𝜎𝒟 > 0, such that

E
[︁
‖∇𝑓S (𝑥)−∇𝑓𝒟 (𝑥)‖2

]︁
≤ 𝜎2

𝒟 ∀𝑥 ∈ R𝑑.

Lemma 18 (Lemma 2 from (Li et al., 2021)). Suppose that function 𝑓 is 𝐿-smooth and let 𝑥𝑡+1 :=
𝑥𝑡 − 𝛾𝑔𝑡. Then for any 𝑔𝑡 ∈ R𝑑 and 𝛾 > 0, we have

𝑓
(︀
𝑥𝑡+1

)︀
≤ 𝑓

(︀
𝑥𝑡
)︀
− 𝛾

2

⃦⃦
∇𝑓(𝑥𝑡)

⃦⃦2 − (︂ 1

2𝛾
− 𝐿

2

)︂ ⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
ℎ𝑡 −∇𝑓(𝑥𝑡)

⃦⃦2
(40)

Lemma 19. Suppose that function 𝑓 is 𝐿𝑓 -smooth and S satisfies Assumption 1 and let 𝑥𝑡+1 =
𝑥𝑡 − 𝛾ℎ𝑡. Then for any ℎ𝑡 ∈ R𝑑 and 𝛾 > 0, we have

𝑓𝒟
(︀
𝑥𝑡+1

)︀
≤ 𝑓𝒟

(︀
𝑥𝑡
)︀
− 𝛾

2

⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2−(︂ 1

2𝛾
− 𝐿𝑓𝐿𝒟

2

)︂ ⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
ℎ𝑡 −∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

.

(41)

Proof. Since 𝑓 is 𝐿𝑓 -smooth and S satisfies Assumption 1 the function 𝑓𝒟 is 𝐿𝑓𝒟 . Then using
Lemma 19, we obtain

𝑓𝒟
(︀
𝑥𝑡+1

)︀
≤ 𝑓𝒟

(︀
𝑥𝑡
)︀
− 𝛾

2

⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2 − (︂ 1

2𝛾
− 𝐿𝑓𝒟

2

)︂ ⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
ℎ𝑡 −∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

.

Using Lemma 1 we have 𝐿𝑓𝒟 ≤ 𝐿𝒟𝐿𝑓 . Plugging this into the inequality, we obtain

𝑓𝒟
(︀
𝑥𝑡+1

)︀
≤ 𝑓𝒟

(︀
𝑥𝑡
)︀
− 𝛾

2

⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2−(︂ 1

2𝛾
− 𝐿𝑓𝐿𝒟

2

)︂ ⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
ℎ𝑡 −∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

.

(42)
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Lemma 20. Suppose that Assumptions 1, 2 and 5 hold. If the gradient estimator ℎ𝑡+1 is defined
according to Algorithm 4, then we have

E
[︁⃦⃦

ℎ𝑡+1 −∇𝑓𝒟(𝑥
𝑡+1)

⃦⃦2]︁ ≤ (1− 𝑝)
⃦⃦
ℎ𝑡 −∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

+
𝑁 − 𝑏′

(𝑁 − 1)𝑏′
(1− 𝑝)𝐿2

𝑓𝐿
max
S 𝐿𝒟

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+ 𝑝

𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟

Proof. We start by considering two events:

𝐻 = E
[︁⃦⃦

ℎ𝑡+1 −∇𝑓𝒟(𝑥
𝑡+1)

⃦⃦2]︁
= 𝑝E

⎡⎣⃦⃦⃦⃦⃦1𝑏 ∑︁
𝑖∈ℬ𝑡

∇𝑓S𝑡
𝑖
(𝑥𝑡+1)−∇𝑓𝒟(𝑥

𝑡+1)

⃦⃦⃦⃦
⃦
2
⎤⎦

+ (1− 𝑝)E

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦ℎ𝑡 +

1

𝑏′

∑︁
𝑖∈(ℬ𝑡)′

(︁
∇𝑓S𝑡

𝑖
(𝑥𝑡+1)−∇𝑓S𝑡

𝑖
(𝑥𝑡)

)︁
−∇𝑓𝒟(𝑥

𝑡+1)

⃦⃦⃦⃦
⃦⃦
2
⎤⎥⎦ .

Using Assumption 5 and Lemma 5, we obtain

𝐻 = E
[︁⃦⃦

ℎ𝑡+1 −∇𝑓𝒟(𝑥
𝑡+1)

⃦⃦2]︁
≤ 𝑝

𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟 + (1− 𝑝)E

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦ℎ𝑡 +

1

𝑏′

∑︁
𝑖∈(ℬ𝑡)′

(︁
∇𝑓S𝑡

𝑖
(𝑥𝑡+1)−∇𝑓S𝑡

𝑖
(𝑥𝑡)

)︁
−∇𝑓S𝑡

𝑖
(𝑥𝑡+1)

⃦⃦⃦⃦
⃦⃦
2
⎤⎥⎦

≤ 𝑝
𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟

+ (1− 𝑝)

× E

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦ℎ𝑡 −∇𝑓𝒟

(︀
𝑥𝑡
)︀
+

1

𝑏′

∑︁
𝑖∈(ℬ𝑡)′

(︁
∇𝑓S𝑡

𝑖
(𝑥𝑡+1)−∇𝑓S𝑡

𝑖
(𝑥𝑡)

)︁
−∇𝑓𝒟

(︀
𝑥𝑡+1

)︀
+∇𝑓𝒟

(︀
𝑥𝑡
)︀⃦⃦⃦⃦⃦⃦

2
⎤⎥⎦

≤ 𝑝
𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟 + (1− 𝑝)

⃦⃦
ℎ𝑡 −∇𝑓𝒟

(︀
𝑥𝑡
)︀⃦⃦2

+ (1− 𝑝)E

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦ 1𝑏′ ∑︁

𝑖∈(ℬ𝑡)′

(︁
∇𝑓S𝑡

𝑖

(︀
𝑥𝑡+1

)︀
−∇𝑓S𝑡

𝑖

(︀
𝑥𝑡
)︀)︁

−∇𝑓𝒟
(︀
𝑥𝑡+1

)︀
+∇𝑓𝒟

(︀
𝑥𝑡
)︀⃦⃦⃦⃦⃦⃦

2
⎤⎥⎦

≤ 𝑝
𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟 + (1− 𝑝)

⃦⃦
ℎ𝑡 −∇𝑓𝒟

(︀
𝑥𝑡
)︀⃦⃦2

+ 𝑝
𝑁 − 𝑏′

(𝑁 − 1)𝑏′
E

⎡⎣ 1

𝑁

∑︁
𝑖∈(ℬ𝑡)′

⃦⃦⃦(︁
∇𝑓S𝑡

𝑖

(︀
𝑥𝑡+1

)︀
−∇𝑓S𝑡

𝑖

(︀
𝑥𝑡
)︀)︁

−
(︀
∇𝑓

(︀
𝑥𝑡+1

)︀
−∇𝑓

(︀
𝑥𝑡
)︀)︀⃦⃦⃦2⎤⎦

≤ 𝑝
𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟 + (1− 𝑝)

⃦⃦
ℎ𝑡 −∇𝑓𝒟

(︀
𝑥𝑡
)︀⃦⃦2

+ 𝑝
𝑁 − 𝑏′

(𝑁 − 1)𝑏′
E

⎡⎣ 1

𝑁

∑︁
𝑖∈(ℬ𝑡)′

⃦⃦⃦(︁
∇𝑓S𝑡

𝑖

(︀
𝑥𝑡+1

)︀
−∇𝑓S𝑡

𝑖

(︀
𝑥𝑡
)︀)︁⃦⃦⃦2⎤⎦ .
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Let us consider the last term:

E
[︂⃦⃦⃦

∇𝑓S𝑡
𝑖

(︀
𝑥𝑡+1

)︀
−∇𝑓S𝑡

𝑖

(︀
𝑥𝑡
)︀⃦⃦⃦2]︂

= E
[︁⃦⃦(︀

(S𝑡
𝑖)

⊤∇𝑓
(︀
𝑣 + S𝑡

𝑖(𝑥
𝑡+1 − 𝑣)

)︀
− (S𝑡

𝑖)
⊤∇𝑓

(︀
𝑣 + S𝑡

𝑖(𝑥
𝑡 − 𝑣)

)︀)︀⃦⃦2]︁
= E

[︁⃦⃦
(S𝑡

𝑖)
⊤ (︀∇𝑓

(︀
𝑣 + S𝑡

𝑖(𝑥
𝑡+1 − 𝑣)

)︀
−∇𝑓

(︀
𝑣 + S𝑡

𝑖(𝑥
𝑡 − 𝑣)

)︀)︀⃦⃦2]︁
≤ E

[︁
𝜆max

[︀
(S𝑡

𝑖)(S
𝑡
𝑖)

⊤]︀ ⃦⃦(︀∇𝑓
(︀
𝑣 + S𝑡

𝑖(𝑥
𝑡+1 − 𝑣)

)︀
−∇𝑓

(︀
𝑣 + S𝑡

𝑖(𝑥
𝑡 − 𝑣)

)︀)︀⃦⃦2]︁
≤ 𝐿max

S E
[︁⃦⃦(︀

∇𝑓
(︀
𝑣 + S𝑡

𝑖(𝑥
𝑡+1 − 𝑣)

)︀
−∇𝑓

(︀
𝑣 + S𝑡

𝑖(𝑥
𝑡 − 𝑣)

)︀)︀⃦⃦2]︁
.

Using Lipschitz continuity of gradient of function 𝑓 , we have

E
[︂⃦⃦⃦

∇𝑓S𝑡
𝑖

(︀
𝑥𝑡+1

)︀
−∇𝑓S𝑡

𝑖

(︀
𝑥𝑡
)︀⃦⃦⃦2]︂

≤ 𝐿max
S 𝐿2

𝑓E
[︁⃦⃦

S𝑡
𝑖(𝑥

𝑡+1 − 𝑥𝑡)
⃦⃦2]︁

≤ 𝐿max
S 𝐿2

𝑓𝜆max

[︀
E
[︀
S𝑡
𝑖(S

𝑡
𝑖)

⊤]︀]︀ ⃦⃦𝑥𝑡+1 − 𝑥𝑡
⃦⃦2

= 𝐿max
S 𝐿2

𝑓𝐿𝒟
⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
.

Plugging this inequality leads us to the final result:

E
[︁⃦⃦

ℎ𝑡+1 −∇𝑓𝒟(𝑥
𝑡+1)

⃦⃦2]︁ ≤ (1− 𝑝)
⃦⃦
ℎ𝑡 −∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

+
𝑁 − 𝑏′

(𝑁 − 1)𝑏′
(1− 𝑝)𝐿2

𝑓𝐿
max
S 𝐿𝒟

⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+ 𝑝

𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟.

Theorem 20. Assume that 𝑓 is 𝐿𝑓 -smooth (2) and S satisfy Assumptions 1 and 5. Then, for stepsize
𝛾 ≤ 1√︁

1−𝑝
𝑝𝑏′ 𝐿𝑓(𝐿𝒟+

√
𝐿max

S 𝐿𝒟)
, the iterates of Algorithm 4 satisfy

E
[︁
‖∇𝑓𝒟 (̂︀𝑥𝑇 )‖2

]︁
≤ 2E [Ψ0]

𝛾𝑇
+

𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟.

Proof.

E
[︀
Ψ𝑡+1

]︀
= E

[︂
𝑓𝒟(𝑥

𝑡+1)− 𝑓 inf
𝒟 +

𝛾

2𝑝

⃦⃦
𝑔𝑡+1 −∇𝑓𝒟(𝑥

𝑡+1)
⃦⃦2]︂

≤ E
[︂
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟 − 𝛾

2

⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2 − (︂ 1

2𝛾
− 𝐿𝑓𝒟

2

)︂ ⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+

𝛾

2

⃦⃦
𝑔𝑡 −∇𝑓𝒟(𝑥

𝑡)
⃦⃦2]︂

+ E
[︂
𝛾

2𝑝

(︂
(1− 𝑝)

⃦⃦
𝑔𝑡 −∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

+
(1− 𝑝)𝐿max

S 𝐿𝒟

𝑏′
⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2
+ 𝑝

𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟

)︂]︂
= E

[︂
𝑓𝒟(𝑥

𝑡)− 𝑓 inf
𝒟 − 𝛾

2

⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

+
𝛾

2𝑝

(︁
(1− 𝑝)

⃦⃦
𝑔𝑡 −∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

+ 𝑝
⃦⃦
𝑔𝑡 −∇𝑓𝒟(𝑥

𝑡)
⃦⃦2)︁]︂

+ E
[︂
𝛾

2

𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟 −

(︂
1

2𝛾
− 𝐿𝑓𝒟

2
− (1− 𝑝) 𝛾𝐿max

S 𝐿𝒟

2𝑝𝑏′

)︂ ⃦⃦
𝑥𝑡+1 − 𝑥𝑡

⃦⃦2]︂
.
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Using stepsize 𝛾 ≤ 1√︁
1−𝑝
𝑝𝑏′ 𝐿𝑓(𝐿𝒟+

√
𝐿max

S 𝐿𝒟)
and Lemma, we get

E
[︀
Ψ𝑡+1

]︀
≤ E

[︂
Ψ𝑡 − 𝛾

2

⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2

+
𝛾

2

𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟

]︂
(43)

𝛾

2

⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2 ≤ E

[︀
Ψ𝑡
]︀
− E

[︀
Ψ𝑡+1

]︀
+

𝛾

2

𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟 (44)

𝛾

2

𝑇−1∑︁
𝑡=0

⃦⃦
∇𝑓𝒟(𝑥

𝑡)
⃦⃦2 ≤ E

[︀
Ψ𝑇
]︀
− E

[︀
Ψ0
]︀
+

𝛾

2

𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟. (45)

Let ̂︀𝑥𝑇 be randomly chosen from {𝑥𝑡}𝑡∈[𝑇 ] , we have

E
[︁
‖∇𝑓𝒟 (̂︀𝑥𝑇 )‖2

]︁
≤ 2E [Ψ0]

𝛾𝑇
+

𝑁 − 𝑏

(𝑁 − 1)𝑏
𝜎2
𝒟.

H ADDITIONAL EXPERIMENTS AND DETAILS

First, we provide additional details on the experimental settings from Section 6.

H.1 EXPERIMENTAL DETAILS

In Section 6 and for all further experiments, the following problem is considered:

𝑓(𝑥)
def
=

1

𝑛

𝑛∑︁
𝑖=1

log
(︀
1 + exp(−A⊤

𝑖 𝑥 · 𝑏𝑖)
)︀
+

𝜆

2
‖𝑥‖2, (46)

where A𝑖 ∈ R𝑑, 𝑏𝑖 ∈ {−1,1} are the feature and label of 𝑖-th data point. The approximate “optimal”
𝑓⋆ solution of optimization problem (46) is obtained by running Accelerated Gradient Descent (Nes-
terov, 1983) until ‖∇𝑓⋆‖2 ≤ 10−30. Our implementation is based on the public Github repository of
Konstantin Mishchenko. Simulations were performed on a machine with 24 Intel(R)Xeon(R) Gold
6246 CPU @ 3.30 GHz.

Sketches. Problem (2) may not be easily solvable precisely for the most general sketches. Therefore,
we consider the scenario when 𝒟 is uniform and has finite support similar to Section G. We use a
special class of diagonal permutation sparsifiers formally introduced in the following example:

Example 3. Assume1 that 𝐾 divides 𝑑, let 𝑞
def
= 𝑑/𝐾 and 𝜋 = (𝜋1, . . . , 𝜋𝑑) be a random permutation

of [𝑑]. Then for all 𝑖 ∈ [𝐾], we define Permutation sparsification (in short Perm-K) operator as

S𝑖
def
= 𝐾 ·

𝑞𝑖∑︁
𝑗=𝑞(𝑖−1)+1

𝑒𝜋𝑗
𝑒⊤𝜋𝑗

, (47)

where 𝑒1, . . . , 𝑒𝑑 ∈ R𝑑 are standard unit basis vectors.

In simple words Perm-K sparsifiers require random shuffling and then dividing2 the set of indices
[𝑑] = {1, . . . , 𝑑} into 𝐾 non-overlapping subsets 𝐶𝑖 ⊂ 𝒢 of equal size such that ∪𝐶𝑖∈𝒢𝐶𝑖 = [𝑑].
Then, every sketch S𝑖 is formed from 𝑒𝑙 vectors based on indexes 𝑙 ∈ 𝐶𝑖, resulting in 𝒟 =
{S1, . . . ,S𝐾}. To ensure unbiasedness, sketches are sampled uniformly with probability 1/𝐾. This
class of sketches satisfies 𝐿𝒟 = 𝜇𝒟 = 𝐾 and 𝐿max

S = 𝐾2.

Details for Figure 1 (and 3, 4). Regularization parameter 𝜆 in (46) is set to guarantee that the
condition number of the loss function 𝜅𝑓 is equal to 102. The dataset is shuffled and split to train
and test in 0.75 to 0.25 proportions. Initial model weights 𝑥0 ∈ R𝑑 are generated from a standard

1This is done for simplicity of presentation and can be easily generalized (see Appendix I.1 from Szlendak et
al. (Szlendak et al., 2022)).

2We use array split method from NumPy (version 1.26.2) package (Harris et al., 2020).
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Gaussian distribution 𝒩 (0, 1). For every sparsity level Perm-K sketches 𝒟 = {S1, . . . ,S𝐾} are
generated leading to different MAST problem formulations. This process is repeated 10 times with
various permutations 𝜋 for changing random seeds. After ERM and MAST models 𝑥 are obtained
the accuracy of sparsified model S𝑖𝑥 is calculated for every 𝑖 ∈ [𝐾] on the test set. This results in
distributions of accuracies for every sparsity level.
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Figure 3: Accuracies distributions of sparsified solutions for the ERM (1) and MAST (2) formulations.
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Figure 4: Test accuracies of sparsified solutions for the ERM formulation (1) and MAST problem (2).

In Figure 3, we display complete results, including the accuracies lower than 0.5 (unlike in Section
6), which occurred only for the most aggressive sparsification of ERM models. In addition, the
median of accuracies (in white) is shown for every (ERM/MAST) approach and sparsification level.
Additional results for a1a and w8a datasets are consistent with those in Section 6 as MAST models’
performance is higher, less variable, and more resistant to sparsification. Figure 4 also shows the
swarmplots for the same experiments to represent accuracy values’ distributions better.

H.2 ADDITIONAL EXPERIMENTS

H.2.1 MAST LOSS TRAJECTORY

In the next experiment, we investigate the optimization efficacy of Double Sketched Gradient Descent
(Algorithm 1 (II)) with Perm-K sketches (47) for MAST formulation (2) with 𝑓 chosen as (46)
for several datasets. The model weights are divided into 𝐾 = 10 groups, which allows us to solve
the MAST problem, find 𝑓 inf

𝒟 , and evaluate 𝑓𝒟, ∇𝑓𝒟 precisely. Moreover, unlike the previous
experiment, the inexactness of the stochastic gradient estimator is introduced via uniform (single
element) random subsampling of data 𝑓𝑖 as the problem enjoys finite-sum representation (17).

Figure 5 shows the trajectory of a method which averages across all sketches S which results in
exact (w.r.t. 𝒟) gradient estimator ∇𝑓𝑖,𝒟 (right column on legend) and the same algorithm but with
uniform sketch subsampling ∇𝑓𝑖,S (left column). The methods are run with 3 different step sizes 𝛾.
Subsampling of data introduces oscillations preventing the algorithms from converging to the exact
optimum. Sketch subsampling leads to additional variance highlighted by the curves corresponding
to the same step size. Moreover, our results clearly indicate the necessity for decreasing the learning
rate 𝛾 for sparse/dropout training with SGD. The method with sketch subsampling and standard SGD
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step size (dotted blue curve) fluctuates around initialization, while full averaging across sketches
(dotted cyan curve) fixes the issue partially as the error floor is lower however, there is still almost
no convergence. Scaling 𝛾 inversely proportionally to sparsity level 𝐿𝒟 = 𝐾 results in clear linear
convergence to the neighborhood of the solution for ∇𝑓𝑖,𝒟 estimator. However, ∇𝑓𝑖,S requires
decreasing the step size by 𝐿max

S = 𝐾2 which well agrees with conclusions of Theorems 4 and 12.
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Figure 5: Finite-sum MAST loss (17) convergence for Algorithm 1 (II) with subsampling.
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H.2.2 RAND-K SKETCHES
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Figure 6: MAST loss (2) convergence for Algorithm 1 (I)
with varying step size and Rand-1 sketches.

In this experiment depicted in Fig-
ure 6, we validate the claims of The-
orem 2. We consider the same lo-
gistic regression optimization prob-
lem (46) with 𝜆 set to make sure
𝜅𝑓 = 103. We use the whole dataset
a1a and initialization 𝑥0 = 0. Con-
sider 𝒟 as a uniform distribution over
Rand-𝐾 sketches for 𝐾 = 1. Then,
MAST stochastic optimization for-
mulation (2) leads to a finite-sum
problem over sketches S𝑖, as defined
in (17). This allows us to evaluate
the performance of Algorithm 1 (I),
which converges linearly for the ex-
act MAST loss (2). Note that apply-
ing Gradient Descent requires com-
puting double sketched gradient for
all possible (𝑁 = 𝑑) sketches. We
denote step sizes as ̂︀𝛾0 = 1/(𝐿𝑓𝐿𝒟)
and 𝛾0 = 1/(𝐿𝑓𝐿

max
S ) according to

theory.

Our findings accentuate the pivotal role of the appropriate step size 𝛾 in steering the trajectory of
sparse training. Guided by the proposed theoretical framework, this step size must be adjusted in
proportion to 𝐾2/𝑑2 for Rand-𝐾. Notably, for this particular problem at hand, a larger 𝛾 (e.g.,
𝛾 = 10𝛾0) can accelerate convergence. Yet, surpassing a delineated boundary can result in stagnation
of the progress (e.g., 𝛾 = 20𝛾0) and, in specific scenarios, even derail the convergence altogether
(e.g., 𝛾 = 50𝛾0). Such observations underscore the imperative of modulating the learning rate,
especially within the realms of sparse and Dropout training.

H.2.3 NEURAL NETWORKS

This section presents our deep learning experimental results. Figure 7 illustrates the loss behavior
of the distributed Algorithm 2 (for 𝑀 = 10 clients) using Bernoulli sketches (6) for 𝑝𝑖 ≡ 𝑝 on the
standard loss (18) (for S𝑖 ≡ I). Our experimental setup closely follows that of Liao & Kyrillidis
(2022), and for completeness, we reiterate key details. We employ a ResNet-50 model (He et al., 2016)
pre-trained on ImageNet as a feature extractor, concatenated with two fully connected layers. This
combined model is then fine-tuned on the CIFAR-10 dataset (Krizhevsky et al., 2009). The outputs of
the re-trained ResNet-50 serve as input embeddings, while the logit outputs of the combined model
are used as labels.

The first column of Figure 7 shows how the method’s performance is affected by the sparsity level (𝑝)
and step size (𝛾). Specifically, for high sparsity 𝑝 = 0.5, Figure 7(a) illustrates that an excessively
large step size (𝛾 = 1) may even lead to divergence of the method for ERM loss. Across all sparsity
levels, we observe a “sweet spot” for the step size, beyond which increasing 𝛾 results in slower
convergence. Furthermore, training with high sparsity (𝑝 = 0.5) leads to a quick stagnation of the
loss in contrast to 𝑝 ∈ {0.7, 0.9}. The second column of Figure 7 displays the subsequent divergence
(for 𝑝 = 0.5), indicating that high sparsity significantly alters the minimized loss, confirming that
Sparse/Dropout training indeed optimizes a different formulation than standard ERM.

In general, larger step sizes and more aggressive sparsification (lower 𝑝) result in increased loss
variance, aligning with our theoretical predictions from Sections 2 and 4. Interestingly, figs. 7(d)
and 7(f) reveal that Dropout training can outperform non-sparse optimization for small step sizes
(𝛾 = 0.01) or initial iterations (up to ∼ 1200 for 𝛾 = 0.1). However, the largest step size (𝛾 = 0.5)
is the most efficient in terms of minimizing canonical loss.
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One of the key practical insights derived from our theoretical analysis is that the step size 𝛾 (learning
rate) must be decreased for sparse optimization and Dropout training. Our neural network training
results demonstrate that this insight extends to a broader range of models.
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Figure 7: Performance of Algorithm 2 with Bernoulli sketches (6) on standard loss (18) (for S𝑖 ≡ I).
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H.2.4 STANDARD VS UNBIASED DROPOUT

We supplement the results from Section H.2.3, by comparing unbiased scaled (6) and biased Dropout
sketches in the same setup by running distributed Algorithm 2 on standard loss (18) (for S𝑖 ≡ I)).
Figure 8 shows the training loss curves for different sparsity levels (𝑝 = 0.7, 0.9) and learning rates
(𝛾 = 0.05, 0.5, 1.0). The unbiased estimator includes a 1/𝑝 scaling factor, while the biased version
omits this scaling as in the original Dropout (Hinton et al., 2012).

The results demonstrate that the unbiased estimator (solid purple lines) consistently achieves lower
loss values compared to the biased estimator (red lines with markers). This effect is particularly
pronounced at lower sparsity (𝑝 = 0.7), while at higher sparsity (𝑝 = 0.9) the difference becomes
less dramatic. Higher learning rates lead to increased variance in both estimators, though the unbiased
approach maintains better overall performance, which aligns with our previous observations about
the impact of sparsity and learning rates on optimization dynamics.
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Figure 8: Comparison of the unbiased sketches (6) and original (biased) Dropout.
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