
A Supplementary Materials for Section 3 - Methodology451

This supplementary section contains missing proofs from Section 3.452

Theorem 1. When a piecewise function Lt is defined for every value of K0 2 [K] on l, such that453

0.0  l < 1.0, we claim, under Assumption 2, that the following is a subgradient of f(xt) at454

Kt = K0:455

@Lt

@l
= rf(xt) ·

�
� ⌘L,t

mX

i=1

gi(x
i,Kt�1
t�1 )

⌫i

⌫

�
(6)

where l represents the marginal fraction of local steps beyond K0. We leave the proof (with an456

illustration in Figure 2) in the Appendix section beginning in eq(20).457

Proof. We clarify this quantity by re-writing LK0(l) = Lt and its definition (with some abuse of458

notation):459

LK0(l) = f(xt)

����
K=K0+l

= f

⇣
xt�1 � ⌘L,t

mX

i=1

⌫i

⌫

K0�2X

k=0

�
gi(x

i,k
t�1) + lgi(x

i,K0�1
t�1 )

�⌘
(20)

for K0 � 2, and LK0(l) = f
�
xt�1 � ⌘L,t

Pm
i=1 lgi(x

i,k=0
t�1 ) ⌫i

⌫

�
for K0 = 1, where l represents the460

marginal fraction of local steps K0. Then, by convexity from Assumption 2, and by recalling that l461

represents the marginal fraction of local steps, we claim that:462

@LK0(l)

@l


hf(xt)
��
K=K0+l

� f(xt)
��
K=K0

l

i
(21)

From this result, we conclude that @LK0 (l)
@l is a subgradient of f(xt) at K = K0. With abuse of463

notation by setting K0 = Kt and therefore Lt = LK0(l), we further derive @Lt
@l by breaking it down464

similarly as eq(4), leads us to:465

@Lt

@l
= rf(xt) ·

@
�
� ⌘L,t

Pm
i=1

⌫i
⌫

PKt�2
k=0 lgi(x

i,Kt�1
t�1 )

�

@l
(22)

= rf(xt) ·
�
�

⌘L,t

m

mX

i=1

gi(x
i,Kt�1
t�1 )

�
(23)

The above result concludes the proof for Theorem 1.466

Figure 2: Illustration of piecewise function LK0(l) and f(K), where f(K) = f(x, c) from eq 3,
and where we ignore ⌘L and xt for this discussion. Notice K is only defined on {I | K � 1}. Hence
f(K) are illustrated as red dots. However, since 0.0  l < 1.0, LK0(l) extends from f(K0) to
f(K0 + 1).

467

13



Theorem 2. When a piecewise function Jt is defined for every value of K0 2 [K] on l, such that468

0.0  l < 1.0, we claim, under Assumption 2, that the following is a subgradient of
Pm

i=1 fi(x
i,Kt
t )469

at Kt = K0:470

@Jt

@l
= �⌘L,t

mX

i=1

⌫i

⌫
E
⇥
gi(x

i,K0�1
t )

⇤
· gi(x

i,Kt
t ) ⇡ �⌘L,t

mX

i=1

⌫i

⌫

Kt�1X

k=0

gi(x
i,k
t ) · gi(x

i,Kt
t ) (10)

where l represents the marginal fraction of local steps beyond K0. We leave the proof in the Appendix471

section beginning in eq(24).472

Proof. We clarify this quantity by re-writing JK0(l) = Jt and its definition (with some abuse of473

notation):474

JK0(l) =
mX

i=1

⌫i

⌫
fi(x

i,K�1
t )

����
K=K0+l

=
mX

i=1

⌫i

⌫
fi

⇣
x
i,K0�1
t � l

�
⌘L,tgi(x

i,K0
t )

�⌘
(24)

for K0 � 1, where l represents the marginal fraction of local steps K0. Then, by convexity from475

Assumption 2, and by recalling that l represents the marginal fraction of local steps, we claim that:476

@JK0(l)

@l


hPm
i=1

⌫i
⌫

�
fi(x

i,K�1
t )

��
K=K0+l

� fi(x
i,K�1
t )

��
K=K0

�

l

i
(25)

From this result, we conclude that @JK0 (l)
@l is a subgradient of f(xt) at K = K0. With abuse of477

notation by setting K0 = Kt and therefore Lt = LK0(l), we further derive @Jt
@l by breaking it down478

similarly as eq(4), leads us to:479

@Jt

@l
=

mX

i=1

⌫i

⌫
rfi(x

i,Kt�1
t ) ·

@
�
� l⌘L,tgi(x

i,Kt
t )

�

@l
(26)

(J1)
= �⌘L,t

mX

i=1

⌫i

⌫
E
⇥
gi(x

i,K0�1
t )

⇤
· gi(x

i,Kt
t ) (27)

(J2)
⇡ �⌘L,t

mX

i=1

⌫i

⌫

Kt�1X

k=0

gi(x
i,k
t ) · gi(x

i,Kt
t ) (28)

where J1 follows from Assumption 1, and J2 crudely assumes rfi(x
i,Kt�1
t ) ⇡

PKt�1
k=0 gi(x

i,k
t )480

from the additional averaging. The above result concludes the proof for Theorem 2.481

B Supplementary Materials for Section 4 - Theoretical Convergence482

This supplementary section contains all the missing proofs from Section 4.483

Theorem 3. Under Assumptions 1-5 and with full client participation, when FATHOM as shown484

in Algorithm 1 is used to find a solution x⇤ to the unconstrained problem defined in eq(1), the485

sequence of outputs {xt} satisfies the following upper-bound, where, with slight abuse of notation,486

E = mint2[T ] Etkrf(xt)k22:487

Efathom = O

✓s
�
2
L +G2

mKT
+

3

s
�
2
L

KT 2
+

3

r
G2

T 2

◆
(16)

with the following conditions: ⌘L = min

 
q

2�0mD
�1KLT (�2

L+G2)
, 3

q
�0D

2.5�2K
2
L2�2

LT
, 3

q
�0D

2.5�3K
3
L2G2T

!
488

and ⌘L,t  1/L for all t, where489

⌘L , 1

T

TX

t=1

⌘L,t and K , 1

T

TX

t=1

Kt (17)

14



and where490

�0 =

P
t ⌘L,tKt

T [ 1T
P

t ⌘L,t][
1
T

P
t Kt]

, �1 =

P
t ⌘L,tKt

⇥
1
T

P
t ⌘L,t

⇤
P

t ⌘
2
L,tKt

(18)

�2 =

P
t ⌘L,tKt

⇥
1
T

P
t ⌘L,t

⇤2⇥ 1
T

P
t Kt

⇤
P

t ⌘
3
L,tK

2
t

, �3 =

P
t ⌘L,tKt

⇥
1
T

P
t ⌘L,t

⇤2⇥ 1
T

P
t Kt

⇤2
P

t ⌘
3
L,tK

3
t

(19)

We leave the proof in the Appendix beginning in eq(29).491

Proof. We begin by first defining the following:492

By re-writing eq(38) from Lemma 1 with adaptive ⌘L,t and Kt, we end up with:493

T�1X

t=0

⌘L,tKt

2
Et

��rf(xt)
��2  f(x0)�f(xT )+

T�1X

t=0

⌘L,tKt

⇥⌘L,tL

2m

�
�
2
L+G

2
�
+
5⌘2L,tKtL

2

2

�
�
2
L+KtG

2
�⇤

(29)
After re-arranging:494

min
t2[T ]

Etkrf(xt)k
2


2DP
t ⌘L,tKt| {z }
progress

+
L
P

t ⌘
2
L,tKt

m
P

t ⌘L,tKt

�
�
2
L +G

2
�

| {z }
deviation 1

+
5L2

P
t ⌘

3
L,tK

2
tP

t ⌘L,tKt
�
2
L

| {z }
deviation 2

+
5L2

P
t ⌘

3
L,tK

3
tP

t ⌘L,tKt
G

2

| {z }
deviation 3

(30)
which is followed by:495

Efathom 
2�0D

⌘LKT| {z }
progress

+
�1⌘LL

m

�
�
2
L +G

2
�

| {z }
deviation 1

+5�2⌘
2
LKL

2
�
2
L| {z }

deviation 2

+5�3⌘
2
LK

2
L
2
G

2

| {z }
deviation3

(31)

We have one progress term, and three deviation terms, similar to the labeling scheme in the convex496

result from Wang et al. [2021]. Typically, one of these terms dominates during the course of the497

optimization process, where it is desirable to never let one of the deviation terms to become dominant.498

When we set each of the deviation terms to be equal to the progress term, we recover the bound499

shown in eq(16 when the conditions are met. This concludes the proof for Theorem 3.500

Lemma 1. Under Assumptions 1-5 and with full client participation, when FedAvg with constant501

hyperparameters is used to find a solution x⇤ to the unconstrained problem defined in eq(1), the502

sequence of outputs {xt} satisfies the following upper-bound, where, with slight abuse of notation,503

E = mint2[T ] Etkrf(xt)k22:504

min
t2[T ]

Etkrf(xt)k
2


2D

⌘LKT| {z }
progress

+
⌘LL

m

�
�
2
L +G

2
�

| {z }
deviation 1

+5⌘2LKL
2
�
2
L| {z }

deviation 2

+5⌘2LK
2
L
2
G

2

| {z }
deviation3

(32)

where D = f(x0) � f(xT ) = f(x0) � f(x⇤) with x⇤ being the fixed point solution discussed in505

Section 4.1. Eq(32) has one progress term and three deviation terms, where ⌘L 
1
L needs to hold506

for client local gradient descent to guarantee local progress.507

Proof. We start proving convergence of the non-convex problem by bounding the progress made508

in the loss function within a single round, loosely following the beginning steps from the Proof of509

Theorem 1 in Yang et al [2021]:510

Et[f(xt+1]  Et[f(xt] + hrf(xt),Et(xt+1 � xt)i+
L

2
Etkxt+1 � xtk

2 (33)

= Et[f(xt] + hrf(xt),Et[�t + ⌘LKrf(xt)� ⌘LKrf(xt)])i+
L

2
Etk�tk

2 (34)

= Et[f(xt]� ⌘LKkrf(xt)k
2 + hrf(xt),Et[�t + ⌘LKrf(xt)]i| {z }

A1

+
L

2
Etk�tk

2

| {z }
A2

(35)

15



By using results from Lemma 2 and Lemma 3, we have what follows:511

Et[f(xt+1]  Et[f(xt]�
⌘LK

2
krf(xt)k

2 +
5⌘3LK

2
L
2

2

⇣
�
2
L +KG

2
⌘
+

L⌘
2
LK

2m

⇣
�
2
L +G

2
⌘

(36)

Therefore, in order to guarantee progress in each round, the following condition is required to hold512

true:513

krf(xt)k
2
� 5⌘2LKL

2
⇣
�
2
L +KG

2
⌘
+

L⌘L

m

⇣
�
2
L +G

2
⌘

(37)

Continuing from eq(36), and summing telescopically, we end up with:514

T�1X

t=0

⌘LK

2
Et

��rf(xt)
��2  f(x0)�f(xT )+T⌘LK

⇥⌘LL
2m

�
�
2
L+G

2
�
+
5⌘2LKL

2

2

�
�
2
L+KG

2
�⇤

(38)

where D = f(x0) � f(xT ) = f(x0) � f(x⇤) with x⇤ being the fixed point solution discussed in515

Section 4.1. This concludes the proof of Lemma 1.516

Lemma 2. Under Assumptions 1-5 and with full client participation, we claim the following is true:517

A1 
⌘LK

2
krf(x)k2 +

5K2
⌘
3
LL

2

2

�
�
2
L +KG

2
�

(39)

Proof. We start by following most of the initial steps from the Proof of Theorem 1 in Yang et al518

[2021]:519

A1 = hrf(xt),Et[�t + ⌘LKrf(xt)]i (40)

=
D
rf(xt),Et

h
�

1

m

mX

i=1

K�1X

k=0

⌘Lgi(x
i,k
t ) + ⌘LKrf(xt)

iE
(41)

=
D
rf(xt),Et

h
�

1

m

mX

i=1

K�1X

k=0

⌘Lrfi(x
i,k
t ) + ⌘LK

1

m

mX

i=1

rfi(xt)
iE

(42)

=
Dp

⌘LKrf(xt),�

p
⌘L

m
p
K

Et

mX

i=1

K�1X

k=0

(rfi(x
i,k
t )�rfi(xt))

E
(43)

(a1)
=

⌘LK

2
krf(xt)k

2 +
⌘L

2Km2
Et

���
mX

i=1

K�1X

k=0

rfi(x
i,k
t )�rfi(xt)

���
2
�

⌘L

2Km2
Et

���
mX

i=1

K�1X

k=0

rfi(x
i,k
t )
���
2

(44)

(a2)


⌘LK

2
krf(xt)k

2 +
⌘L

2m

mX

i=1

K�1X

k=0

Et

��rfi(x
i,k
t )�rfi(xt)

��2 � ⌘L

2Km2

mX

i=1

K�1X

k=0

Et

���rfi(x
i,k
t )
���
2

(45)

(a3)


⌘LK

2
krf(xt)k

2 +
⌘LL

2

2m

mX

i=1

K�1X

k=0

Et

��xi,k
t � xt

��2 � ⌘L

2m
G

2 (46)

(a4)


⌘LK

2
krf(xt)k

2 +
5K2

⌘
3
LL

2

2

�
�
2
L +KG

2
�

(47)

where, from Yang et al [2021], (a1) follows from that hx, yi = 1
2 [kxk

2 + kyk
2
� kx � yk

2] for520

x =
p
⌘LKrf(xt) and y = �

p
⌘L

m
p
K

Pm
i=1

PK�1
k=0 (rfi(x

i,k
t ) � rfi(xt)), (a2) is due to Ekx1 +521

x2 + · · · + xnk
2
 nE[kx1k

2 + kx2k
2 + · · · + kxnk

2] and E[kx1k
2 + kx2k

2 + · · · + kxnk
2] 522

Ekx1 + x2 + · · ·+ xnk
2, (a3) is due to Assumption 3, which is where we start to diverge from Yang523

et al [2021]. Our result from Lemma 4 by using Assumption 5, combined with removal of the last524

term, justifies (a4) above, and thus concludes the proof for Lemma 2. The last term of eq(46) could525

have remained for a tighter final bound in the theorems, but would require to restrict K such that526

⌘LK 
1
L which we try to avoid.527

528

16



Lemma 3. Under Assumptions 1-5 and with full client participation, we claim the following is true:529

A2 
⌘LK

2

m

⇥
�
2
L +G

2
⇤

(48)

Proof. We start with the following definition of �t =
1
m

Pm
i=1 �

i
t =

�
�

⌘L

m

Pm
i=1

PKt�1
k=0 gi(x

i,k
t )
�
:530

Et

���t

��2 = Et

���
1

m

mX

i=1

�i
t

���
2

(49)

=
1

m2
Et

���
mX

i=1

�i
t

���
2
=

⌘
2
L

m2
Et

���
mX

i=1

K�1X

k=0

gi(x
i,k
t )
���
2

(50)

=
⌘
2
L

m2
Et

���
mX

i=1

K�1X

k=0

(gi(x
i,k
t )�rf(xi,k

t ))
���
2
+

⌘
2
L

m2
Et

���
mX

i=1

K�1X

k=0

rf(xi,k
t )
���
2

(51)


⌘LK

2

m

⇥
�
2
L +G

2
⇤

(52)

which completes the proof of Lemma 3.531

Lemma 4. Under Assumptions 3-5 and with full client participation, we claim the following is true:532

1

m

mX

i=1

Et

��xi,k
t � xt

��2  5K
⇥
K⌘

2
LG

2 + ⌘
2
L�

2
L

⇤
(53)

Proof. We start by loosely following Lemma 3 from Reddi et al [2020]:533

Etkx
i,k
t � xtk

2 = Etkx
i,k�1
t � xt � ⌘Lgi(x

i,k�1
t )k2 (54)

= Etkx
i,k�1
t � xt � ⌘L(gi(x

i,k�1
t )�rfi(x

i,k�1
t ) +rfi(x

i,k�1
t ))k2 (55)


�
1 +

1

K � 1

�
Et

��xi,k�1
t � xt)

��2 +K⌘
2
LEt

��rfi(x
i,k�1
t

��2 + ⌘
2
L(gi(x

i,k�1
t )�rfi(x

i,k�1
t )

(56)


�
1 +

1

K � 1

�
Et

��xi,k�1
t � xt)

��2 +K⌘
2
LG

2 + ⌘
2
L�

2
L (57)

The last two inequalities follows Assumption 4 and Assumption 5, which yields a looser bound and534

which diverges from Lemma 3 from Reddi et al [2020]. Unrolling the recursion over k and summing535

over clients i 2 [m]:536

1

m

mX

i=1

Et

��xi,k
t � xt

��2 

K�1X

p=0

�
1 +

1

K � 1

�p⇥
K⌘

2
LG

2 + ⌘
2
L�

2
L

⇤
(58)

 K
�
1 +

1

K � 1

�K⇥
K⌘

2
LG

2 + ⌘
2
L�

2
L

⇤
(59)

 5K
⇥
K⌘

2
LG

2 + ⌘
2
L�

2
L

⇤
(60)

where
�
1 + 1

K�1

�K
 5 for K > 1. This concludes the proof of Lemma 4.537

C Supplementary Materials for Section 5 - Empirical Evaluation and538

Numerical Results539

This section summarizes the missing details from Section 5. As mentioned, the datasets, models540

and tasks are exactly the same as the "EMNIST CR" task and the "SO NWP" task from Reddi el541

al [2020], such that we can use their optimized FedAvg results as baseline. However, Reddi el al542

[2020] implement their algorithms on the Tensorflow Federated framework (Ingerman et al. [2019]),543

whereas for our work, we build our algorithms on the FedJAX framework (Ro et al. [2021]) which is544

under the Apache License.545

17



Table 2: EMNIST character recognition model architecture.

Layer Output Shape # of Trainable Parameters Activation Hyperparameters

Input (28, 28, 1) 0
Conv2d (26, 26, 32) 320 kernel size = 3; strides = (1, 1)
Conv2d (24, 24, 64) 18496 ReLU kernel size = 3; strides = (1, 1)

MaxPool2d (12, 12, 64) 0 pool size = (2, 2)
Dropout (12, 12, 64) 0 p = 0.25
Flatten 9216 0
Dense 128 1179776

Dropout 128 0 p = 0.5
Dense 62 7998 softmax

Table 3: Stack Overflow next word prediction model architecture.

Layer Output Shape # of Trainable Parameters

Input 20 0
Embedding (20, 96) 960384

LSTM (20, 670) 2055560
Dense (20, 96) 64416
Dense (20, 10004) 970388

C.1 Datasets, Models, and Tasks546

We train a CNN to do character recognition (EMNIST CR) on the federated EMNIST-62 dataset547

(Cohen et al. [2017]). Next, we train a RNN to do next-word-prediction (SO NWP) on the federated548

Stack Overflow dataset (Authors [2019]).549

Federated EMNIST-62 with CNN EMNIST consists of images of digits and upper and lower case550

English characters, with 62 total classes. The federated version of EMNIST (Caldas et al., 2018)551

partitions the digits by their author. The dataset has natural heterogeneity stemming from the writing552

style of each person. See Table 4 for more on the statistics of the federated EMNIST-62 dataset.553

On our select task of character recognition for this dataset (EMNIST CR), a Convolutional Neural554

Network (CNN) is used. The network has two convolutional layers (with 3⇥ 3 kernels), max pooling,555

and dropout, followed by a 128 unit dense layer. A full description of the model is in Table 2.556

Federated Stack Overflow with RNN Stack Overflow is a language modeling dataset consisting of557

question and answers from the question and answer site, Stack Overflow. The questions and answers558

also have associated metadata, including tags. The dataset contains 342,477 unique users which we559

use as clients. See Table 4 for more on the statistics of the federated Stack Overflow dataset. We560

perform next-word prediction (Stack Overflow NWP, SO NWP for short) on this dataset. We restrict561

the task to the 10,000 most frequently used words, and each client to the first 128 sentences in their562

dataset. We also perform padding and truncation to ensure that sentences have 20 words. We then563

represent the sentence as a sequence of indices corresponding to the 10,000 frequently used words, as564

well as indices representing padding, out-of-vocabulary words, beginning of sentence, and end of565

sentence. We perform next-word-prediction on these sequences using a Recurrent Neural Network566

(RNN) that embeds each word in a sentence into a learned 96-dimensional space. It then feeds the567

embedded words into a single LSTM layer of hidden dimension 670, followed by a densely connected568

softmax output layer. A full description of the model is in Table 3. The metric used in the main body569

is the top-1 accuracy over the proper 10,000-word vocabulary; that is, it does not include padding,570

out-of-vocab, or beginning or end of sentence tokens.571

18



Table 4: Data statistics.

Dataset Train Clients Train Examples Test Clients Test Examples

EMNIST-62 3,400 671,585 3,400 77,483
STACKOVERFLOW 342,477 135,818,730 204,088 16,586,035

C.2 Client Sampling572

In all our experiments, we do not include updates from all clients in each communication round.573

Instead, client sampling is done, where clients are sampled uniformly at random from all training574

clients, without replacement within a given round, but with replacement across rounds. In our575

EMNIST CR experiments, 10 out of a total of 3,400 clients are sampled in each communication576

round, and in our SO NWP experiments, 50 out of a total of 342,477 clients are sampled in each577

round.578

C.3 Additional Results579

Below, we provide additional results from our experiments conducted in Section 5 and whose580

test accuracy performance results shown in Figure 1. The baseline values were selected for best581

performance from Reddi et al. [2020].582

Figure 3: Adaptive client learning rate from the same experiments conducted in Section 5 and
in Figure 1. Top row: FSO sims. Bottom row: FEMNIST sims. Baseline values for FEMNIST:
LR_0=0.1, BatchSize_0=20, NumClients=10. Baseline values for FSO: LR_0=0.32, BatchSize_0=16,
NumClients=50.

19



Figure 4: Adaptive number of epochs from the same experiments conducted in Section 5, and in
Figures 1 and 3. Top row: FSO sims. Bottom row: FEMNIST sims. Baseline values for FEMNIST:
LR_0=0.1, BatchSize_0=20, NumClients=10. Baseline values for FSO: LR_0=0.32, BatchSize_0=16,
NumClients=50.

Figure 5: Adaptive batch size from the same experiments conducted in Section 5, and in Figures
1, 3 and 4. Top row: FSO sims. Bottom row: FEMNIST sims. Baseline values for FEMNIST:
LR_0=0.1, BatchSize_0=20, NumClients=10. Baseline values for FSO: LR_0=0.32, BatchSize_0=16,
NumClients=50.

References for the Appendix583

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist to584

handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pages585

2921–2926. IEEE, 2017.586

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan587

McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings, 2018.588

20



Alex Ingerman and Krzys Ostrowski. Introducing tensorflow federated, 2019.589

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,590

Sanjiv Kumar, and H. Brendan McMahan. Adaptive federated optimization, 2020.591

Jae Hun Ro, Ananda Theertha Suresh, and Ke Wu. Fedjax: Federated learning simulation with jax.592

arXiv preprint arXiv:2108.02117, 2021.593

TensorFlow-Federated-Authors. Tensorflow federated stack overflow dataset, 2019.594

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Aguera y Arcas,595

Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, Suhas596

Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis, Filip Hanzely,597

Andrew Hard, Chaoyang He, Samuel Horvath, Zhouyuan Huo, Alex Ingerman, Martin Jaggi, Tara598

Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecny, Sanmi Koyejo,599

Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtarik, Karan Singhal,600

Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh, Sebastian U. Stich,601

Ameet Talwalkar, Hongyi Wang, Blake Woodworth, Shanshan Wu, Felix X. Yu, Honglin Yuan,602

Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen Zhu, and Wennan Zhu. A field603

guide to federated optimization, 2021.604

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation605

in non-iid federated learning, 2021.606

21


	Introduction
	Related Work and Justifications for FATHOM
	Methodology
	Problem Definition
	Federated Optimization and Tuning of Hyperparameters
	Our Method: FATHOM
	Hypergradient for Client Learning Rate
	Hypergradient for Number of Local Steps
	Regularization for Number of Local Steps
	Normalized Exponentiated Gradient Updates
	Client Sampling


	Theoretical Convergence
	Assumptions
	Convergence Results

	Empirical Evaluation and Numerical Results
	Conclusion and Future Work
	Supplementary Materials for Section 3 - Methodology
	Supplementary Materials for Section 4 - Theoretical Convergence
	Supplementary Materials for Section 5 - Empirical Evaluation and Numerical Results
	Datasets, Models, and Tasks
	Client Sampling
	Additional Results


