
Supplementary material – HMD2: Environment-aware Motion Generation from
Single Egocentric Head-Mounted Device

1. Technical details

Architecture and motion inference.
Our conditional motion diffusion model follows the

Transformer-based architectures presented in EDGE [14]
and DiT [11] with additional MLP encoder layers to grad-
ually reduce the input dimension (which is bigger due to
added CLIP and PC features) to the token latent space
size. Our input consists of the motion input (as a trans-
lation, rotation, and linear and angular velocities) and PC
and CLIP features, all concatenated together, representing
one sequence token per frame. Following AvatarPoser [4],
the model only predicts local joint rotations but not global
translation. The global movement of the character is cre-
ated during test time by “stitching” the predicted body mo-
tion to the ground-truth head motion, and the head motion
can be directly obtained through real HMD motion obtained
through SLAM, offset by a constant calibration matrix pro-
vided by the dataset. The motion output of the diffusion
model is denoted as x ∈ RT×F , where T = 240 and
F = 23×6. The skeleton following Xsens definition has 23
ball-and-socket joints, and for each joint, the output rotation
is represented as the first two columns of its local rotation
matrix. Note that the definition of Xsens human skeleton
is very similar to SMPL [6], with the main difference be-
ing the ordering of joints. The model is not conditioned
on body size information, but during training, it is forced
to see HMD input motions from different subjects covering
highly diverse demographics. As such, the trained model
is able to handle body size variation implicitly. However,
providing size information as an explicit condition might
further improve model performance and reduce visual arti-
facts such as floor penetration and foot sliding. To create the
motion visualizations and compute position error metrics,
we used ground truth body sizes (skeleton bone lengths) for
each subject.

Image encoder. We use CLIP [13] variation ViT-L/14
for our experiments and compute embeddings from the
timestamp-synchronized 30 FPS camera; to get the 60 FPS
image feature condition, we duplicate every frame one more
time. We also tried other image encoders and found that
CLIP features perform best for our task – please refer to

Sec. 3.2 for experimental results.

Pointcloud encoder. As mentioned in the main paper, the
pointcloud encoder considers only SLAM points within the
2m x 2m x 2m volume centered around the head with 1m
offset downward. The points are voxelized in a 10x10x10
voxel grid in the following way: for each voxel center, the
closest point is selected and the distance is stored as a voxel
value. All the distances are truncated at 10cm (so the value
is clipped between 0 and 0.1). The voxel volume is rotated
with the head orientation but only along the Z (gravity) axis.

The PC autoencoder consists of the encoder and decoder
parts; the encoder consists of 4 convolution layers with 3×3
kernel, channel sizes 16,32,64,128 correspondingly, ReLU
in between, with the average pooling in the end to produce
one feature vector of size 128. Decoder is an inversion of
that, consisting of 4 transposed convolution layers. It is
trained on the volumes extracted using our train set’s point
clouds and head trajectories. We train with Adam [5] opti-
mizer and learning rate of 10−3 for 10 epochs.

System runtime. Our current implementation assumes that
point cloud encodings and CLIP features are precomputed
or computed in parallel on a separate device. The perfor-
mance will be affected if all computations need to happen
on the same device. However, we observed that even in this
situation, we could achieve a throughput of ∼ 61 FPS for
our low-latency variant, therefore keeping up with real-time
speed: CLIP embeddings take around 5 ms to compute per
image (2.5 ms per motion frame since we are duplicating
every frame), and point cloud encoder taking around 0.1
ms per motion frame. Note that the runtime performance is
evaluated on a powerful GPU, which indicates a gap for our
system to work in real-time on board of the HMD itself. Ad-
ditionally, our current implementation assumes the access
of all SLAM feature points in the around 15min window of
the whole motion sequence. In a true real-time setting, this
simplification would require a warm-up phase in the same
environment of similar time length.

2. Dataset details

The Nymeria dataset we used [7] is captured from Project
Aria glasses [12] paired with XSens [16] IMU motion cap-
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MPJPE ↓ Hand PE ↓ FID ↓ Diversity → Physicality → Floor Pen. ↓
Ground-truth 0 0 0 16.13 0.56 0

Ours w/ DINOv2 8.72±0.07 17.24±0.18 2.45±0.02 15.38±0.19 0.91±0.00 1.42±0.07

Ours w/ VC-1 8.54±0.11 16.64±0.22 4.34±0.06 15.00±0.42 0.92±0.01 1.26±0.10

Ours w/ CLIP (current) 8.36±0.08 16.64±0.21 2.16±0.02 15.74±0.29 1.03±0.01 1.03±0.06

Table 1. Comparison between different image feature encoders. MPJPE, Hand PE and Floor penetration are in cm.

ture suit. The Project Aria glasses are set to record 30fps
color video at 1408×1408 pixel resolution. Data captured
from the glasses are further processed with its machine per-
ception service (MPS) [2] to output the head transformation
and point clouds. The XSens motion data is recorded on-
board at 1KHz and processed with Analyse Pro as 240Hz
full-body motion, downsampled to 60Hz for our input. The
body motion from XSens is synchronized with Aria data to
high accuracy using a custom timecode device. The body
motion is further calibrated to the Aria head transformation
to reduce spatial drift.

The full dataset contains 1200 motion sequences total-
ing 300 hours of daily activities of 264 participants across
50 locations, from which we used 1040 due to spatial syn-
chronization problems in some sequences. Participants are
recruited to cover uniform demographics along the axes of
gender, age, height, and weight. The locations include 47
AirBnbs, where 31 are multi-floor houses. There is also a
cafeteria with an outdoor patio, a multistory office building,
and a campus with a parking lot and multiple biking/hiking
trails.

The dataset covers a wide range of daily activities. The
highest occurrences are cooking (13.5%), searching objects
(11.0%), free-form activity improvise (10.4%), and play-
ing games (10.1%), whereas the lowest occurrences include
working at a desk (1.6%), locomotion (2.2%), activities in
the office (2.3%), and creating a messy home (2.3%). Out-
door activities consist approximately 15% of the data. For
additional details of the dataset, we refer readers to the
Nymeria paper [7].

We split the dataset for training/validation/testing as
806/10/224 sequences, corresponding to 202/3/56 hours.
The testing split does not contain any locations or sub-
jects that appear in the training set to ensure no data leak-
age. We also strive to maintain a similar distribution of ac-
tivities between the training set and the test set.

3. Additional experiments

3.1. Metrics – units of measure and symbols

All the metrics shown here and in the main paper, that have
units of measure, namely positional errors (MPJPE, Hand
PE, Low. PE, Up. PE) and Floor Penetration, are presented
in cm. The down arrow ↓ means that lower value is always
better for this metric, and the right arrow → means that the

value closer to Ground-truth is better.

3.2. Comparison between different images feature
encoders

To explain our choice of CLIP [13] feature as a feature en-
coder, we additionally trained two versions of our method
with image features produced by DINOv2 [10] and VC-
1 [8] feature encoders. For VC-1, we chose the best per-
forming ViT-L model, with embedding size of 1024 and
input size of 250 × 250 (cropped to 224 × 224 during
preprocessing); for DINOv2, we chose second to largest
model ViT-L/14, providing it with the input of the same
size (padded to 252 × 252) and taking the class token of
the output (size 1024), which corresponds to the global im-
age description as it gathers the information from all the
image patches. The comparison is presented in Tab. 1. We
found that, while methods VC-1 and DINOv2 have close
generation precision and a slight advantage in Physicality
(correlated to foot sliding), the model with CLIP features
shows the best results on most metrics, proving our choice
of the image feature encoder.

3.3. Ablation study on h parameter values and dif-
fusion steps

In Tab. 2, we show how the error metrics change depend-
ing on the latency (h) parameter. Because experiments with
h = 1, 3, and 5 take a long time to process on our large test
split, we performed this ablation on a 9% (20 out of 224
sequences) subset of test data. To keep the subset informa-
tive and maintain the diversity of activities, we picked one
random sequence from each activity scenario. The results
in the table demonstrate that the top performance in terms
of MPJPE is achieved at h = 180, which we chose as our
default value. While it is not the best on all the metrics,
the difference is not as significant. Our low-latency method
(h = 10) demonstrates some performance drop, but not as
big compared to the next value h = 5, keeping a balance
between the quality and the output lag.

We also measured metrics change w.r.t. the amount of
diffusion steps we taking during inference. Tab. 3 shows
that FID score increases with the amount of steps – visu-
ally, this corresponds to less jittery and more realistic mo-
tion. However, the precision of the motion, measured by
MPJPE metric, peaks at 5 steps for full body and 3 steps
for hands. Therefore, our choice of 20 steps is a balance



MPJPE ↓ Hand PE ↓ FID ↓ Diversity → Physicality → Floor Pen. ↓
Ground-truth 0 0 0 16.95 0.04 0

h = 230 9.53±0.01 16.15±0.04 13.44±0.01 15.28±0.01 0.32±0.00 1.47±0.02

h = 220 9.49±0.02 16.07±0.06 13.61±0.01 15.30±0.01 0.25±0.00 1.46±0.01

h = 200 9.44±0.01 16.03±0.04 13.74±0.01 15.32±0.01 0.23±0.00 1.45±0.02

h = 180 (Ours) 9.42±0.02 16.05±0.02 13.76±0.01 15.43±0.01 0.22±0.00 1.44±0.01

h = 120 9.43±0.03 16.05±0.05 14.02±0.01 15.22±0.01 0.26±0.00 1.43±0.01

h = 60 9.49±0.06 16.19±0.03 14.23±0.01 15.20±0.01 0.30±0.00 1.33±0.03

h = 30 9.61±0.04 16.42±0.07 14.39±0.03 15.57±0.03 0.40±0.00 1.26±0.03

h = 20 9.75±0.10 16.51±0.08 16.46±0.04 15.36±0.04 0.45±0.00 1.18±0.05

h = 10 (Ours low-lat.) 10.19±0.12 17.13±0.14 17.00±0.10 15.66±0.10 0.73±0.03 1.41±0.14

h = 5 13.13±0.46 21.28±0.45 20.36±0.33 16.71±0.33 0.94±0.02 1.84±0.43

h = 3 21.10±1.08 29.80±1.15 72.63±0.82 20.35±0.82 1.29±0.12 4.49±0.51

h = 1 28.96±1.68 38.13±1.54 129.94±1.37 22.74±1.37 2.22±0.17 3.75±0.72

Table 2. Ablation study on the latency (h) parameter. Test is performed on a subset (9%) of the current test split. MPJPE, Hand PE and
Floor penetration are in cm.

MPJPE ↓ Hand PE ↓ FID ↓ Diversity → Physicality → Floor Pen. ↓
Ground-truth 0 0 0 16.95 0.04 0

2 steps 9.54±0.01 15.94±0.02 15.04±0.00 15.45±0.00 0.50±0.00 1.87±0.02

3 steps 9.27±0.01 15.52±0.03 15.28±0.01 14.85±0.01 0.32±0.00 1.64±0.01

5 steps 9.26±0.01 15.57±0.03 14.94±0.01 14.97±0.01 0.25±0.00 1.54±0.02

10 steps 9.34±0.02 15.81±0.03 14.25±0.01 15.50±0.01 0.24±0.00 1.47±0.01

20 steps (Ours) 9.42±0.02 16.05±0.02 13.76±0.01 15.43±0.01 0.22±0.00 1.44±0.01

40 steps 9.52±0.02 16.21±0.02 13.40±0.01 15.71±0.01 0.22±0.00 1.43±0.02

80 steps 9.60±0.03 16.38±0.02 13.11±0.01 15.77±0.01 0.23±0.00 1.41±0.01

Table 3. Ablation study on the amount of steps in reverse diffusion process. Test is performed on a subset (10%) of the current test split.

between motion precision and realism.

3.4. More results on error distribution

In Tab. 4, we present additional metrics, splitting per-joint
average error into average error across upper (Up. PE) and
lower (Low. PE) body regions. The upper region is defined
as all the joints that are higher than the pelvis for the sub-
ject standing in a T-pose, namely the spine, shoulders, arms,
hands, neck, and head. The lower body region is defined as
the rest of the joints, excluding the root joint (hips, legs,
feet). From these metrics, we can directly observe the ef-
fect of adding pointcloud and image encoders to our data.
When the PC encoder is added, the lower body error is re-
duced significantly, and the upper body gets slightly worse
(most likely due to noisy points near the upper body re-
gion). This suggests that pointcloud helps to disambiguate
the lower body by providing landscape information (floor
level, nearby objects, etc.). On the other hand, when CLIP
image encoding is added, we notice a major reduction in the
upper body error, suggesting that image features help the
method better understand interactions and localize hands.
At the same time, lower body error also decreases - most
likely, the error is reduced when parts of the lower body are
visible on camera. HMD2, denoted as “Ours, w/ PC, w/
CLIP” in the table, combines both strengths of the methods

above and achieves the lowest mean per-joint error.

3.5. More top 5% error results and metric compu-
tation algorithm

The error reduction effect discussed above can also be noted
in Tab. 5, showing the top 5% error for upper and lower
body error metrics. Here, we want to clarify our top error
selection strategy. As shown in Sec. 3.8 and Fig. 2, the av-
erage error on the sequence greatly depends on the activity
performed in that sequence. If we were to sort all the per-
frame joint errors and select the top 5% (95% percentile)
among them, we would only select the frames from sev-
eral worse-performing sequences. To avoid such behavior,
we compute the 95% error percentile within each sequence
separately and average those results across all sequences.

3.6. Effects of the input variation on the generation
performance

In Tab. 4, we also present a study of another, much more
challenging baseline – a 3-point input method. For that, we
chose the original implementation AvatarPoser [4], which
takes not only the head position and orientation as an input
but also the positions and orientations of the hands. With
more input information, this baseline achieves better per-
formance on average. However, we highlight that even with



MPJPE ↓ Hand PE ↓ Low. PE ↓ Up. PE ↓ Floor Pen. ↓
EgoEgo 16.61±1.49 34.64±1.64 26.58±3.57 11.31±0.54 2.43±1.54

AvatarPoser (Head) 10.64 21.51 17.70 6.90 2.94
AvatarPoser (Head & Hands) 7.74 6.29 16.10 3.11 4.63
Ours, w/o PC, w/o CLIP 9.28±0.23 19.47±0.36 15.04±0.53 6.21±0.11 3.29±0.31

Ours, w/ PC, w/o CLIP 8.97±0.10 20.38±0.28 13.59±0.21 6.53±0.07 0.99±0.07

Ours, w/o PC, w/ CLIP 8.57±0.11 16.32±0.22 14.02±0.25 5.64±0.06 2.15±0.15

Ours, w/ PC, w/ CLIP 8.36±0.08 16.64±0.21 13.23±0.16 5.75±0.06 1.03±0.06

Table 4. Lower and upper body error depending on the input variations. We are beating a 3-point input baseline on a lower body error and
achieve close performance on average. All the metrics are in cm.

MPJPE ↓ Hand PE ↓ Low. PE ↓ Up. PE ↓ Floor Pen. ↓
EgoEgo 30.91±4.82 60.81±2.98 58.63±12.17 19.26±1.16 10.33±5.90

AvatarPoser (Head) 22.09 43.19 44.18 13.01 18.96
AvatarPoser (Head & Hands) 16.48 11.23 37.91 5.63 18.15
Ours, w/o PC, w/o CLIP 18.31±0.89 40.15±1.17 34.35±2.20 11.75±0.37 12.91±1.75

Ours, w/ PC, w/o CLIP 16.65±0.44 41.68±1.05 28.72±1.02 12.29±0.30 3.97±0.32

Ours, w/o PC, w/ CLIP 16.30±0.55 34.25±0.90 29.98±1.35 10.58±0.26 8.28±0.78

Ours, w/ PC, w/ CLIP 15.49±0.38 34.86±0.92 27.35±0.81 10.80±0.26 4.22±0.28

Table 5. Lower and upper body error study on top 5% errors (mean of 95% percentiles across all sequences). Here, we are beating 3-point
error baseline on mean per-joint positional error. All the metrics are in cm.

additional motion input, it is worse than Ours at generat-
ing lower body motion, as Lower body PE is higher. It is
important to note that HMD2 achieves best performance on
the most challenging frames of the sequences even when
compared to a 3-point input baseline, as shown in the top
5% error study in Tab. 5.

3.7. Diversity of results given the same input

Fig. 1 shows 4 random motion samples given the same input
for two sequences (1st sequence indoor, 2nd sequence out-
door). A few observations worth highlighting: 1. EgoEgo
is also capable of generating diverse predictions, sometimes
more diverse than Ours; 2. However, EgoEgo generations
tend to be of lower quality - possibly due to model archi-
tecture not being as scalable to a massive dataset as Ours
and autoregressive long sequence inference not working as
well; 3. Moreover, EgoEgo samples often do not satisfy
floor height constraints (1st seq. 3rd frame; 2nd seq. 1st
frame), and cannot utilize image observation when certain
body parts are visible (1st seq., see the right arm in 1st frame
and left arm in 2nd frame); 4. Samples from Our method are
”conditionally diverse”. This is unseen in previous papers.
E.g. when the egocentric camera sees only one arm, Ours
will generate samples with this arm doing the motion seen
(not perfectly accurate partially due to CLIP) and gener-
ate motions for the unseen arm and legs with diversity (see
arms in 1st&2nd frames on the 1st sequence, see legs in all
frames on the second sequence).

3.8. Variation of an error depending on the activity

Our test dataset consists of diverse activities, and each se-
quence is dedicated to a certain type of activity according
to the assigned scenario. In total, there are 20 scenarios,
with indoor and outdoor activities featuring walking, sit-
ting, laying, exercising, interacting with household objects,
playing sports games, and more. If we group the sequences
and measure the MPJPE in each group (Fig. 2), we can ob-
serve that the error is not distributed evenly – while for most
scenarios the error does not exceed 8cm, there is a chunk
of challenging scenarios that have an error almost twice as
high. To understand the reasons behind this, we selected
and studied different metrics for the scenario, including the
best, the worst, and median MPJPE. Results are presented
in tables 6, 7, 8.

The best-performing scenario (Tab. 6) consists of multi-
terrain outdoor walking (hiking up and downhill) but does
not feature any interactions. Small lower body error demon-
strates that multi-level motion is, in general, not a signifi-
cant challenge for our method – in contrast to AvatarPoser,
whose lower body error is higher on this scenario than on
the mostly flat scenario from Tab. 7.

The scenario with the median method performance
(Tab. 7) consists of mostly flat-ground indoor multi-room
interactions with the objects in the house (grabbing clothes,
throwing pillows, opening doors). The subject often stays in
the standing position, occasionally bending to reach some
objects. As interactions with the objects appear more of-
ten here, we notice higher hand positional errors for our
method. This can be explained by the inability of the CLIP-
encoded image features to localize the hands precisely dur-



Figure 1. Range of possible results given the same input for HMD2 and EgoEgo. Colors denote different runs, sequence frame time is
increasing from top to bottom.

ing the interactions. Occasional bending can also be misin-
terpreted for a different motion sometimes, which explains
higher floor penetration error.

The worst performing scenario (Tab. 8) consists mainly
of yoga and body stretching motions, which proved to be the
most challenging for all the methods. While the upper body
error is higher than usual, the error is primarily increasing
due to very high lower body error. This is caused by a high
position uncertainty: most of the time, lower body parts
are not observed by the camera, and the floor estimation
from a SLAM point cloud might be noisy. Future work on
improving the performance in such scenarios might benefit
from: enhancing the reconstructed SLAM pointcloud qual-
ity to provide reliable terrain information; including more
of these challenging motions in the dataset; using cameras
with a higher field of view, like fisheye cameras, to increase
the body parts visibility.

4. Limitations, future work and ethical impli-
cations

As mentioned in the main paper, our system is limited by
the data encoded in the features - the limbs localization pre-
cision is less than desired sometimes. Features that con-
tain more precise positional information than CLIP may im-
prove performance: one potential direction for future work
is to additionally condition the method on the results of the
hand-tracking algorithm. However, even without explicit

positional information, CLIP-encoded images improve up-
per body tracking. The effect on the lower body is less ap-
parent. This, of course, can be explained by the fact that the
lower body is much less visible from the camera, especially
since we use a camera with the standard FOV looking out-
wards. Additional information from the downward-looking
wide-angle cameras can improve the performance, as shown
in e.g. [15].

Even with the point cloud context provided, our method
can sometimes produce visual artifacts such as floor pene-
tration (as measured by the Floor. Pen. metric in tables).
This means that the network occasionally misses or ignores
the PC context. It can happen due to the noise presented in
the pointcloud data and large distances between the points,
especially in untextured regions like floors or walls. One
way to improve the performance here is to use the more
advanced point cloud/mesh reconstruction solution, poten-
tially using the depth sensor (e.g. Depth-based fusion [3]).
Another way is to use a more advanced point cloud encoder;
such an encoder can be trained on a different task, e.g.,
point-to-mesh [1]. Note that we only capture static point
clouds and do not yet handle dynamic environment changes
such as opening doors, moving a chair, etc. – this is a great
future work direction.

Our method is not aware of the shape of the body and,
therefore, does not correct self-interpenetration of body
parts, which can happen sometimes. That can be fixed dur-
ing the postprocessing stage with self-contact optimization



Figure 2. MPJPE depending on the action scenario (sorted in increasing order).

MPJPE ↓ Hand PE ↓ Low. PE ↓ Up. PE ↓ Floor Pen. ↓
EgoEgo 12.06±0.33 31.31±1.13 17.24±0.75 9.40±0.30 0.01±0.00

AvatarPoser (Head) 7.39 14.81 12.58 4.64 0.11
Ours (h = 180) 5.75±0.03 11.98±0.13 8.84±0.07 4.06±0.03 0.02±0.00

Ours (h = 10) 6.19±0.04 12.16±0.07 9.97±0.10 4.13±0.01 0.02±0.00

Table 6. Results for the scenario with the best HMD2 performance. Scenario is consisting of the multi-terrain outdoor walking (hiking up-
and downhill), mostly sightseeing. All the metrics are in cm.

MPJPE ↓ Hand PE ↓ Low. PE ↓ Up. PE ↓ Floor Pen. ↓
EgoEgo 12.29±0.25 32.32±0.50 16.40±0.64 10.16±0.16 0.31±0.14

AvatarPoser (Head) 8.39 20.94 11.44 6.78 0.80
Ours (h = 180) 6.53±0.06 15.66±0.17 8.86±0.10 5.29±0.05 0.42±0.05

Ours (h = 10) 7.32±0.05 17.30±0.17 10.05±0.10 5.87±0.04 0.45±0.02

Table 7. Results for the scenario with the median across all 20 scenarios HMD2 performance. Scenario is consisting of flat-ground indoor
multi-room interactions with the objects in the house (grabbing clothes, throwing pillows, opening doors), mostly upright standing with
occasional bending (to reach for the next object). All the metrics are in cm.

MPJPE ↓ Hand PE ↓ Low. PE ↓ Up. PE ↓ Floor Pen. ↓
EgoEgo 28.67±1.97 42.85±1.46 52.11±4.52 15.75±0.64 12.76±3.55

AvatarPoser (Head) 23.30 31.11 45.01 11.32 21.79
Ours (h = 180) 17.21±0.20 24.39±0.36 31.27±0.50 9.45±0.13 3.32±0.24

Ours (h = 10) 18.74±0.65 26.28±0.50 33.37±1.41 10.55±0.27 5.01±0.39

Table 8. Results for the scenario with the worst HMD2 performance. Scenario is consisting of challenging body stretching and yoga
motions, mostly on done the floor, recorded indoors. All the metrics are in cm.

methods like TUCH [9]. Another problem that affects the
visual quality is motion jitter, which can be observed mostly
during online low-latency inference – this can be smoothed
during motion postprocessing. However, we decided not to
apply the smoothing to show the raw performance of the
method.

As our method uses the head-mounted first-person view
camera, there are privacy concerns related to that; one of the
major ones is the leaking of the raw video frames. Our cur-
rent effort to mitigate this involves using the built-in func-

tionality of Aria glasses [2] to blur the faces during the data
capture. We can improve the privacy aspect even more by
moving CLIP and PC encoding computation on the captur-
ing device itself. As our method uses only the encoded im-
age and pointcloud features instead of raw data, on-device
precomputed features would work just as well. We also be-
lieve that after some optimization efforts, there is a potential
to perform the full inference pipeline on the mobile device
itself, therefore eliminating the potential data leak problem
completely.
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