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1.	Introduction	
				Understanding	how	different	types	of	instructional	
content	impact	student	learning	and	arousal	is	critical	
in	this	era	of	advanced	artificial	intelligence	(AI).	
Rochelle	et	al.	[1]	have	highlight-ed	the	potential	of	
LLMs	to	provide	tailored	learning	experiences	for	
individual	students,	allowing	students	to	learn	at	
their	own	pace.		
However,	most	studies	study	the	effect	of	LLMs	on	
learning	over	long	periods	of	time	(e.g.	over	months	
at	a	time).	As	such,	there	exists	a	lack	of	research	into	
the	in	situ	effect	of	LLMs	on	learning	performance.	
Studying	the	effect	of	LLMs	in	situ	allows	more	
extensive	data	to	be	collected	from	participants,	
opening	avenues	for	greater	study	into	the	intricacies	
of	learning	aided	by	LLMs.	
In	the	study,	we	investigated	the	effect	of	LLMs	on	
learning	performance	via	the	analysis	of	
Electrodermal	Activity	(EDA)	over	the	short	term.	
EDA,	which	measures	the	electrical	conductance	of	
the	skin	in	response	to	sweat	secretion,	is	linked	to	
the	sympathetic	nervous	system	and	offers	valuable	
data	on	mental	and	physiological	states	[2].																																									
In	addition,	EDA	is	tightly	intertwined	with	one’s	
emotions	[2],	which	are	involved	every	aspect	of	the	
learning	process	[3].	Positive	emotions,	such	as	joy,	
encourage	the	learning	process,	while	negative	
emotions,	like	fear,	inhibit	the	learning	process	[4].	As	
such,	investigation	of	EDA	during	learning	provides	
real-time	insights	into	the	cognitive	and	emotional	
stresses	of	learning	in	situ	for	a	deeper	understanding	
of	the	learning	process	when	using	LLMs.	
	
2.	Methodology	
				In	August	2024,	a	total	of	seven	participants	
volunteered	in	the	experiment.	The	participants	were	
16-	to	17-year-old	males,	recruited	by	convenience	
through	the	peer	network	of	the	authorial	team.	
Various	topics	drawn	from	the	disciplinary	domains	
in	both	the	humanities	and	STEM	fields	chosen	as	the	
topic	to	be	learned	via	the	two	learning	methods	as	
this	covered	a	large	spectrum	of	topics	and	expertise.	
This	reduces	bias	which	could	occur	if	participants	
had	prior	knowledge	about	the	topic.	
A	human-written	curated	text	about	the	topic	was	
prepared	prior	to	the	experiment.	It	was	prepared	in	
the	tone	of	an	academic	article.		
For	the	LLM,	we	used	the	official	ChatGPT-3.5	
interface.	We	used	the	CO-STAR	framework	[5]	when	
designing	the	prompt	such	that	the	response	given	by	
the	LLM	would	be	helpful	and	relevant	to	the	topic.	
The	curated	text	was	included	in	the	prompt	as	a	
guide.	
DIY	EDA	sensors,	first	introduced	in	Lim	et	al.	[6],	
were	used	for	the	collection	of	EDA	data	from	the	
participants.	The	EDA	sensors	were	designed	and	
assembled	following	work	by	Zangróniz	et	al.	[7]	and	

verified	against	research-grade	equipment	by	Lim	et	
al.	[6].		
All	data	was	anonymized,	and	no	personally	
identifiable	information	was	collected.	
The	quiz	varied	according	to	the	topic,	and	was	
administered	online	via	a	form.		
Before	the	start	of	the	experiment,	the	sensors	were	
attached	the	fingers	of	the	participant’s	non-
dominant	hand.	The	sensors	would	only	be	removed	
at	the	end	of	the	experiment.	
The	experiment	included	baseline	measurements	at	
the	start	of	the	experiment,	after	the	quiz,	and	at	the	
end	of	the	experiment.	This	was	to	allow	for	
normalization	of	the	EDA	data	between	individuals.		
The	experiment	included	two	10-minute	learning	
windows	for	participants	to	learn	about	the	topic	via	
one	of	the	two	learning	methods	(LLM	/	curated	text).	
For	curated	text,	participants	used	a	laptop	to	view	an	
online	copy	of	the	file.	For	LLM,	participants	were	
given	a	laptop	with	access	to	the	LLM	with	the	
prompt	and	were	encouraged	to	ask	the	LLM	further	
questions	in	addition	to	the	content	generated	by	the	
prompt.	Participants	had	the	sensors	measuring	their	
EDA	throughout	to	allow	for	the	analysis	of	changes	
in	EDA	during	learning.	
All	participants	had	to	learn	from	both	methods.	The	
order	of	which	the	participants	learned	from	the	
different	learning	methods	were	randomized	among	
participants.	
After	the	first	learning	window,	the	quiz	was	given	to	
participants	via	an	online	form,	regardless	of	the	
learning	method	they	used.		
The	EDA	data	collected	was	processed	in	Python.	The	
data	was	first	resampled	to	25Hz.	We	then	performed	
outlier	detection	via	the	z-score	method,	removing	
outliers	with	an	absolute	z-score	greater	than	3.	The	
data	was	then	normalised	and	filtered	using	a	low-
pass	filter	(1.5Hz	Butterworth,	8th	Order)	to	remove	
artifacts.	We	per-formed	further	artifact	detection	
and	removal	using	the	LSTM-CNN	model	provided	by	
Llanes-Jurado	et	al.	[8].	
Afterwards,	windowing	of	the	data	was	performed,	
with	a	window	length	of	2-3	minutes	corresponding	
to	baseline	length.	This	is	done	to	ensure	the	changes	
in	the	indicators	of	EDA	studied	are	sustained	during	
the	learning	phase.	
Within	each	window,	five	indicators	of	EDA	were	
calculated:	NSSCR	per	minute,	mean	SCR,	mean	SCL,	
TVSymp,	and	EDASymp.	
NSSCR	per	minute	was	calculated	through	the	peak	
detection	algorithm	introduced	by	Taylor	et	al.	[9].	
For	mean	SCR	and	SCL,	we	used	the	convex	
optimization	approach	(cvxEDA)	by	Greco	et	al.	[10]	
to	decompose	the	EDA	data	into	tonic	and	phasic	
components,	corresponding	to	SCL	and	SCR	
respectively.	TVSymp	was	calculated	according	to	
processes	by	Posada-Quintero	et	al.	[11].	Finally,	for	
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EDASymp,	we	downsampled	the	EDA	data	to	2	Hz	
and	implemented	the	methods	in	Posada-Quintero	et	
al.	[12]	to	obtain	the	value	of	the	indicator.		
Indicator	values	from	the	LLM	and	Text	learning	
phases	were	then	normalized	by	subtracting	the	
value	of	the	indicator	from	the	learning	session	with	
that	of	the	baseline.	A	clustered	Wilcoxon	signed-rank	
test	was	then	performed	on	each	indicator.	The	test	
was	chosen	to	account	for	the	effects	of	clustering	
due	to	segmentation.	
	
3.	Results	and	Discussion	
				Clustered	Wilcoxon	signed-rank	tests	showed	that	
individuals	using	LLM	did	not	elicit	any	statistically	
significant	(p	<	0.1)	increase	in	any	of	the	five	
indicators	in	comparison	to	individuals	using	Text.	
For	the	test	(post-learning	quiz	results),	on	average,	
individuals	performed	better	(Median	=	7.0)	for	those	
who	used	LLM,	compared	to	those	who	used	Text	
(Median	=	6.0).	A	Wilcoxon	signed-rank	test	showed	
that	this	improvement	is	statistically	insignificant	(W	
=	3.0,	z	=	0.0,	p-value	=	0.5).	
Through	this	study,	we	have	analysed	the	differences	
in	EDA	between	LLM	and	Text	in	learning,	aiming	to	
find	differences	in	learner’s	cognitive	and	emotional	
stresses.	
According	to	a	study	in	2025	by	Gerlich	on	AI	reliance	
and	critical	thinking,	as	people	rely	more	on	AI	
technology,	they	are	less	likely	to	engage	in	critical	
thinking	and	could	resort	to	AI	for	cognitively	
demanding	tasks.	This	phenomenon,	termed	
"cognitive	offloading,"	is	detrimental	to	learners'	
efficacy	[13].	This	is	congruent	with	the	results	
indicated	negligible	differences	across	EDA	features	
and	test	results,	suggesting	that	participating	in	
pedagogical	activities	which	involve	gleaning	
information	from	Generative	AI	may	not	significantly	
enhance	learning.	
	
4.	Concluding	remarks	
				This	paper	reports	a	recent	iteration	of	
investigation	in	the	science	of	learning,	arising	from	a	
trajectory	of	work	by	the	authors	dating	from	2021	at	
the	intersection	of	neuroergonomics	and	data	
science.		
The	work	applied	a	frame	of	making	and	citizen	
science	to	the	design	of	learning	environments	in	
which	students	sought	to	understand	their	own	
physiological	responses	as	they	participate	in	
activities	of	learning	in	contexts	authentic	to	them-
selves,	as	opposed	to	lab-based	studies.	
We	acknowledge	that	the	preceding	analyses	of	the	
results	from	this	small-scale	pilot	study	do	not	
suggest	there	to	be	significant	differences	between	
learning	from	LLMs	as	opposed	to	learning	from	
more	traditional	pedagogical	means	such	as	from	
texts	curated	by	domain	experts	or	peers.	

Since	ChatGPT	became	widely	available	to	the	general	
public	in	November	2022,	it	–	and	similar	LLMs	–	
have	polarized	opinions	regarding,	inter	alia,	their	
use	in	contexts	of	teaching	and	learning.	Curriculum	
developers,	school	administrators	and	policy	makers	
have	had	two	years	to	develop,	iterate	and	defend	
their	respective	stances,	and	a	number	of	frameworks	
–	not	least	being	the	UNESCO	frameworks	for	both	
teachers	and	students	launched	in	the	summer	of	
2024	–	have	served	to	structure	these	sometimes	
heated	conversations.	The	UNESCO	frameworks	in	
particular	call	for	more	moderate	and	nuanced	
approaches	to	the	application	of	Generative	AI	and	
LLMs	to	teaching	and	learning,	with	their	
distinguishing	hallmark	being	student-centricity.	
Notwithstanding	its	inherent	limitations	which	we	
readily	acknowledge,	we	see	the	present	study	–	with	
its	ambivalent	suggestions	as	to	the	efficacies	of	LLMs	
in	teaching	and	learning	–	as	a	small	part	of	a	nascent	
but	rapidly	growing	body	of	literature	which	has	
been	emerging	over	the	past	two	years	to	inform	
policy	and	to	suggest	ways	forward	as	school	leaders	
and	teachers	seek	to	navigate	this	evolving	landscape.	
We	also	acknowledge	the	limited	generalizability	of	
this	small-scale	study.	The	work	described	in	this	
paper	was	conducted	under	the	relevant	IRB	of	the	
Nanyang	Technological	University,	Singapore.	The	
authors	plan	to	continue	extending	this	line	of	study,	
resources	permitting.	
	
References	
	
[1]	Rochelle,	S.,	&	Sushith.	(2024).	Exploring	the	AI	
era:	A	comparative	analysis	of	AI-driven	education	
and	traditional	teaching	methods.	International	
Journal	For	Multi-disciplinary	Research,	6(4).	
https://doi.org/10.36948/ijfmr.2024.v06i04.24635	
[2]	Rahma,	O.	N.,	Putra,	A.	P.,	Rahmatillah,	A.,	Putri,	Y.	
S.	K.	A.,	Fajriaty,	N.	D.,	Ain,	K.,	&	Chai,	R.	(2022).	
Electrodermal	Activity	for	Measuring	Cognitive	and	
Emotional	Stress	Level.	Journal	of	medical	signals	and	
sensors,	12(2),	155–162.	
https://doi.org/10.4103/jmss.JMSS_78_20		
[3]	Schutz,	Paul	&	Lanehart,	S.L.(Eds.).	(2002).	
Emotions	in	education	[special	issue].	Educational	
Psychologist.	37.	67-134.	
[4]	Osika,	A.,	MacMahon,	S.,	Lodge,	J.	M.,	&	Caroll,	A.	
(2024,	October	1).	Emotions	and	learning:	What	role	
do	emotions	play	in	how	and	why	students	learn?.	
THE	Campus	Learn,	Share,	Connect.	
https://www.timeshighereducation.com/campus/em
otions-and-learning-what-role-do-emotions-play-
how-and-why-students-learn		
[5]	Prompt	engineering	playbook.	(2023,	August	30).	
https://www.developer.tech.gov.sg/products/collect
ions/data-science-and-artificial-
intelligence/playbooks/prompt-engineering-



Exploratory	investigation	of	electrodermal	activity	in	learning	from	a	large	language	model	
versus	from	curated	texts	

Kenneth	Y	T	Lim a,	Yue	Heng	Wongb,	Duc	Nam	Tranb,	Edrik	K	X	Leeb,	Minh	Tuan	Nguyen	Thienb,Minh	Anh	
Nguyen	Ducb,	Alan	J	H	Tanb	

a	National	Institute	of	Education,	Singapore	kenneth.lim@nie.edu.sg	
b	 independent	scholar,	Singapore	

  
playbook-beta-v3.pdf	
[6]	Lim,	K.	Y.	T.,	Nguyen	Thien,	M.	T.,	Nguyen	Duc,	M.	
A.,	&	Posada-Quintero,	H.	F.	(2024).	Application	of	
DIY	Electrodermal	Activity	Wristband	in	Detecting	
Stress	and	Affective	Responses	of	Students.	
Bioengineering	(Basel,	Switzerland),	11(3),	291.	
https://doi.org/10.3390/bioengineering11030291	
[7]	Zangróniz,	R.,	Martínez-Rodrigo,	A.,	Pastor,	J.	M.,	
López,	M.	T.,	&	Fernández-Caballero,	A.	(2017).	
Electrodermal	Activity	Sensor	for	Classification	of	
Calm/Distress	Condition.	Sensors	(Basel,	
Switzerland),	17(10),	2324.	
https://doi.org/10.3390/s17102324	
[8]	Llanes-Jurado,	J.,	Carrasco-Ribelles,	L.	A.,	Alcañiz,	
M.,	Soria-Olivas,	E.,	&	Marín-Morales,	J.	(2023).	
Automatic	artifact	recognition	and	correction	for	
electrodermal	ac-tivity	based	on	LSTM-CNN	Models.	
Expert	Systems	with	Applications,	230,	120581.	
https://doi.org/10.1016/j.eswa.2023.120581	
[9]	Taylor,	S.,	Jaques,	N.,	Weixuan	Chen,	Fedor,	S.,	
Sano,	A.,	&	Picard,	R.	(2015).	Auto-matic	identification	
of	artifacts	in	Electrodermal	Activity	Data.	2015	37th	
Annual	In-ternational	Conference	of	the	IEEE	
Engineering	in	Medicine	and	Biology	Society	(EMBC),	
1934–1937.	
https://doi.org/10.1109/embc.2015.7318762	
[10]	Greco,	A.,	Valenza,	G.,	Lanata,	A.,	Scilingo,	E.,	&	
Citi,	L.	(2016).	Cvxeda:	A	convex	optimization	
approach	to	electrodermal	activity	processing.	IEEE	
Transactions	on	Biomedical	Engineering,	1–1.	
https://doi.org/10.1109/TBME.2015.2474131Autho
r,	F.:	Article	title.	Journal	2(5),	99–110	(2016)	
[11]	Posada-Quintero,	H.	F.,	Florian,	J.	P.,	Orjuela-
Cañón,	Á.	D.,	&	Chon,	K.	H.	(2016).	Highly	sensitive	
index	of	sympathetic	activity	based	on	time-
frequency	spectral	analysis	of	electrodermal	activity.	
American	journal	of	physiology.	Regulatory,	inte-
grative	and	comparative	physiology,	311(3),	R582–
R591.	https://doi.org/10.1152/ajpregu.00180.2016		
[12]	Posada-Quintero,	H.	F.,	Florian,	J.	P.,	Orjuela-
Cañón,	A.	D.,	Aljama-Corrales,	T.,	Charleston-
Villalobos,	S.,	&	Chon,	K.	H.	(2016).	Power	Spectral	
Density	Analysis	of	Electrodermal	Activity	for	
Sympathetic	Function	Assessment.	Annals	of	
biomedical	engineering,	44(10),	3124–3135.	
https://doi.org/10.1007/s10439-016-1606-6		
[13]	Gerlich,	M.	(2025).	AI	Tools	in	Society:	Impacts	
on	Cognitive	Offloading	and	the	Fu-ture	of	Critical	
Thinking.	Societies,	15(1),	6.	
https://doi.org/10.3390/soc15010006	
	


