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Abstract
Multi-modality physiological signal-based emotion recognition has
attracted increasing attention as its capacity to capture human af-
fective states comprehensively. Due to multi-modality heterogene-
ity and cross-subject divergence, practical applications strugglewith
generalizingmodels across individuals. Effectively addressing both
issues requiresmitigating the gap betweenmultimodal signalswhile
acquiring generalizable representations across subjects. However,
existing approaches often handle these dual challenges separately,
resulting in suboptimal generalization.This study introduces a novel
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framework, termed Correlation-Driven Multi-Modality Graph De-
composition (CMMGD). The proposed CMMGD initially captures
adaptive cross-modal correlations. It connects each unimodal graph
to a multimodal mixed graph. To simultaneously address the dual
challenges, it incorporates a correlation-driven graph decomposi-
tionmodule that decomposes themixed graph into concordant and
discrepant subgraphs based on the correlations. The decomposed
concordant subgraph encompasses consistently activated features
across modalities and subjects during emotion elicitation, unveil-
ing a generalizable subspace. Additionally, we design aMulti-Modality
Graph Regularized Transformer (MGRT) backbone specifically tai-
lored for multimodal physiological signals. The MGRT can allevi-
ate the over-smoothing issue and mitigate over-reliance on any
single modality. Extensive experiments demonstrate that CMMGD
outperforms the state-of-the-art methods by 1.79% and 2.65% on
DEAP and MAHNOB–HCI datasets, respectively, under the leave-
one-subject-out cross-validation strategy.
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1 Introduction
Multimodal physiological signals, such as electroencephalography
(EEG) and peripheral physiological signals (PPS), reflect the cogni-
tive processes of the human [11, 62]. Recognizing emotions from
these modalities has attracted increasing attention for various sce-
narios [15, 67] since humans find it hard to conceal genuine emo-
tions reflected by these signals [61]. Although these signals have
been widely used in emotion recognition, capturing generalizable
multimodal patterns across diverse subjects remains a grand chal-
lenge which hinders their practical applications in real life [29, 48].
Principal Challenges. As depicted in Figure 1(a), the distribu-
tions of different modalities within the same individual are incon-
sistent, highlighting the primary aspect of intrinsicmulti-modality
heterogeneity. Furthermore, Figure 1(b) demonstrates that the dis-
tributions of multi-modality signals are inconsistencies across in-
dividuals, defining the secondary aspect of cross-subject divergence.

To effectively tackle these challenges, bridging the gap between
multi-modality signals and establishing a generalizable represen-
tation across individuals is crucial. Unfortunately, the coupled na-
ture of these dual challenges exacerbates the complexity of devis-
ing isolated solutions. As a result, singular approaches aimed at
addressing either the heterogeneity or the divergence fail in the
context of cross-subject emotion recognition utilizing multimodal
physiological signals, leading to suboptimal performance.

Previous studies have primarily relied upon shared represen-
tational spaces to obtain subject-independent features for cross-
subject scenarios, including robust feature decomposition [10, 25,
50], and selection [29, 66, 76]. However, these approaches necessi-
tate specialized expertise and may not be optimal for diverse tasks.
Prior or late fusion of multimodal signals through deep networks
have shown progress [2, 5, 20], but cannot wholly resolve issues of
multi-modality heterogeneity and cross-subject divergence, limit-
ing their generalizability. Moreover, they also fail to fully lever-
age the inherent structural information within physiological sig-
nals. Recently, transfer learning-based approaches concentrate on
generalizability [21–24]. Nevertheless, most methods necessitate
calibration data from the target subject, often unavailable in real-
world scenarios. Overall, simultaneously and effectively address-
ing multi-modality heterogeneity and cross-subject divergence re-
mains an open challenge that this work aims to tackle.
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Figure 1: An illustration of the dual challenges: multi-
modality heterogeneity and cross-subject divergence, and
the proposed multi-modality graph decomposition method.

The Proposed Solution. This study introduces a novel unified
framework, namely the Correlation-Driven Multi-Modality Graph
Decomposition (CMMGD). In detail, the CMMGD initiallymaps phys-
iological signals within each modality onto graphs. Subsequently,
fine-grained adaptive cross-modal correlations betweenmodalities
are developed, forming a multi-modality mixed graph.

A pivotal step in this framework involves the decomposition of
the mixed graph into concordant and discrepant subgraphs driven
by the learned correlations.The concordant subgraph contains chan-
nels activated consistently across modalities and subjects during
emotion elicitation, thereby delineating a generalizable subspace.
Specifically, this subspace is devised to address the primary mul-
timodal heterogeneity while mitigating cross-subject divergence.
Additionally, the discrepant subgraph conveys modality-intrinsic
activations, such as muscle activity and respiration patterns. Fi-
nally, a cross-rebalance fusion mechanism is devised to fuse fea-
tures from the concordant and discrepant subgraphs in a balanced
manner, realizing precise emotional state prediction.

Within the CMMGD framework, we design a novel backbone
specifically for multimodal physiological signals, termed theMulti-
Modality Graph Regularized Transformer (MGRT). More precisely,
the MGRT incorporates a strategy of localized graph regulariza-
tion, which is applied in parallel with global multi-modality at-
tention. Such a concurrent methodology effectively addresses the
problem of over-smoothing [26] —a known challenge arising from
the sequential application of graph convolution and attention lay-
ers [4, 14, 26], as well as issues related to small graph scales in phys-
iological signals [18, 49]. Furthermore, integrating local and global
features minimizes the risk of excessive reliance on any modality
and in turn, significantly augments the generalizability.
Contributions.The principal contributions are detailed as follows:

(1) We propose a novel multi-modality correlation-driven graph
decomposition module to learn a generalizable space that simul-
taneously addresses the dual challenges of multi-modality hetero-
geneity and cross-subject divergence.
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(2) We develop a novel MGRT backbone specifically for multi-
modal physiological signals, mitigating the over-smoothing issue
and avoiding over-reliance on any single modality, thus further
promoting generalizability.

(3) We establish the CMMGD framework to integrate the above
innovations. Comprehensive experiments on two benchmark datasets
demonstrate the superiority of the CMMGD framework over the
state-of-the-art methods.

2 Related Work
Physiological signal-based emotion recognition has a longstanding
history [33, 41, 42], aiming to identifying human affective states
using the dimensional model [46], which conceptualizes emotions
along the dimensions of arousal and valence. The valence dimen-
sion describes whether an emotion is positive or negative, whereas
arousal refers to its intensity.
Multi-modality Emotion Recognition. Previous studies have
synergistically integratedmulti-modal data like EEG and PPS to en-
hance emotion recognition performance [39, 68]. Compared to uni-
modal approaches, these multimodal methods have shown supe-
rior performance [32, 37, 53, 74]. Existing fusionmethods adopt the
concatenation or attention mechanisms to combine features from
different modalities [8, 55, 64]. However, these methods do not ex-
plicitly address the correlations among modalities and the varia-
tions within each modality, potentially leading to suboptimal per-
formance [12]. To learn inter-modality relationships, correlation-
based fusion [70, 71], canonical correlation analysis [73] and graph-
based models [13] have been proposed. However, their character-
izations of cross-modal correlations remain coarse. The proposed
CMMGD represents each modality as an unimodal graph, captur-
ing adaptive and fine-grained cross-modal correlation to build a
mixed graph. It further decomposes this graph into concordant and
discrepant subgraphs, providing a more precise representation.
Cross-Subject Emotion Recognition. There are two basic vali-
dation strategies: subject-dependent and subject-independent. The
former is more common and has shown better performance [8, 55,
64]. The latter requires generalization across subjects, remaining
a challenge [2, 5, 20]. Robust feature selection methods, including
feature decomposition [10, 25, 50] and channel selection [29, 66, 76]
partially mitigate cross-subject divergence but require domain ex-
pertise. Recently, transfer learning improves generalizability [21–
24]. However, most of them operate within domain adaptation [19],
which necessitates calibration data from the target subject. More-
over, the above methods fail to address multi-modality heterogene-
ity explicitly. In comparison, the proposed CMMGD framework re-
veals a generalizable subspace across modalities and subjects with-
out additional target data, providing a unified solution to multi-
modal heterogeneity and cross-subject divergence.
Graph Transformer Architecture. Representing physiological
signals as graphs have gained popularity since graph structures
can preserve natural spatial and functional connectivity among
electrodes [13, 43, 65]. The graph-based methods serve as the foun-
dation [51]. Among these, graph transformers are recent advance-
ments that have shown promise in capturing dependencies within
and across modalities [4, 47, 63]. Rampasek et al. [44] introduce
a robust and versatile graph transformer with linear complexity.

Jiang et al. [14] propose a graph transformer specifically for emo-
tion recognition. Nevertheless, the utilization of small-scale graphs
in emotion recognition [18, 49] exacerbates the challenge of over-
smoothing [26], a concern that most existing graph transformer
methodologies do not explicitly address.We introduce aMulti-Modality
Graph Regularized Transformer (MGRT) backbone designed tomit-
igate over-smoothing while enhancing generalizability.

3 Preliminaries
Problem Formulation. The CMMGD model MCMMGD aims to
predict emotional states leveraging multimodal physiological sig-
nals, specifically, EEG and PPS: Ŷ = MCMMGD

(
𝑋𝑒 , 𝑋𝑝

)
. The nota-

tion Ŷ signifies the emotional states on the valence or arousal di-
mension. The pair

(
𝑋𝑒 , 𝑋𝑝

)
alludes to a multimodal sample, where

𝑋𝑒 ∈ R𝑐𝑒×𝑇 and 𝑋𝑝 ∈ R𝑐𝑝×𝑇 denote the EEG and PPS data. Here,
𝑐𝑒 and 𝑐𝑝 represent the number of EEG and PPS channels, while𝑇
signifies the temporal duration. To enhance clarity, the subscripts
𝑒 and 𝑝 in the following paragraphs specifically pertain to EEG and
PPS, respectively.
Theoretical Insights. In the domain of cross-subject emotion recog-
nition, involving 𝐾 + 1 subjects, it requires to adopt the leave-one-
subject-out (LOSO) cross-validation strategy [16], which trains the
model on𝐾 visible subjectswith set of distributions {P𝑖 |𝑖 = 1, . . . , 𝐾},
and validates it on the left-out Q. We aim at minimizing the error
on the left-out subject 𝜀Q (ℎ), by leveraging the distributions of vis-
ible subjects. To this end, we provide theoretical insights into the
generalization error of cross-subject emotion recognition:

TheoRem 3.1. Let Q and {P𝑖 |𝑖 = 1, . . . , 𝐾} be distributions over
space X,H be a class of hypotheses corresponding to this space, and
{𝜑𝑖 }𝐾𝑖=1 be a collection of non-negative coefficients with

∑
𝑖 𝜑𝑖 = 1.

Let O be a set of distributions, such that for every S ∈ O, we have:∑
𝑖

𝜑𝑖𝑑HΔH (P𝑖 , S) ≤ max
𝑖, 𝑗

𝑑HΔH (P𝑖 , P𝑗 ) . (1)

Then, for any ℎ ∈ H :

𝜀Q (ℎ) ≤ 𝜆𝜑 +
∑
𝑖

𝜑𝑖𝜀P𝑖 (ℎ)

+ 1
2
min
S∈O

𝑑HΔH (S,Q) + 1
2
max
𝑖, 𝑗

𝑑HΔH (P𝑖 , P𝑗 ),
(2)

where the 𝜀Q (ℎ) is the error for a hypothesis ℎ on the left-out subject,
𝜆𝜑 is the error of an ideal joint hypothesis which could be neglected.
𝑑HΔH (P,Q) isH -divergence whichmeasures the difference between
two distributions. The proof of this theorem has been given in [1, 36].

The above Theorem 3.1 explores the generalization error 𝜀Q (ℎ)
of the cross-subject emotion recognition. The reduction of the sec-
ond term

∑
𝑖 𝜑𝑖𝜀P𝑖 (ℎ) can be accomplished through supervised emo-

tional state recognition loss Lemo introduced in Section 4.3. The
last term 1

2 max𝑖, 𝑗 𝑑HΔH (P𝑖 , P𝑗 ) entails aligning the distributions
from visible subjects. Note that, we focus on multimodal signals
where P is the distribution of multimodal samples. We leverage an
alignment loss Laln introduced in Section 4.2 to jointly align mul-
timodal features, thus minimizing the last term in (2).
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In the subsequent phase, taking into account prior works [1, 7],
and (1), it is essential to acquire a diverse distribution of visible sub-
jects to minimize the third term 1

2 minS∈O 𝑑HΔH (S,Q). We pro-
pose achieving this by learning diverse concordant and discrepant
representations of multimodal physiological signals using an aux-
iliary diverse loss Ldiv detailed in Section 4.2.

4 The proposed CMMGD Framework
The proposed Correlation-Driven Multi-Modality Graph Decomposi-
tion (CMMGD) framework is designed to jointly address the dual
challenges of multi-modality heterogeneity and cross-subject di-
vergence. We subsequently detail each component in conjunction
with the overall architecture in Figure 2.

4.1 The MGRT Backbone
Encoding Spatial and Functional Connectivity.TheMGRT ini-
tially represents each modality as graphs [13, 64], and further cap-
tures both intra- and inter-modality dependencies. Two types of
connection encoding are considered to maintain prior EEG and
PPS structures: (1) Spatial encoding: It is established based on
the physical proximity of the electrodes within the standard 10-20
system of EEG [18]. The linear distances Ω ∈ R𝑐×𝑐 between 𝑐 elec-
trodes can be computed as Ω𝑖, 𝑗 = ∥𝜔𝑖 − 𝜔 𝑗 ∥2, where 𝜔 ∈ R𝑐×3

denotes the 3D coordinates of the electrodes. (2) FC encoding:
The functional connection is constructed using the mutual infor-
mation [12, 13], which captures both linear and non-linear relation-
ships. The functional connection matrix Φ ∈ R𝑐×𝑐 is determined

byΦ𝑖, 𝑗 =
∑
𝑚∈𝑋𝑖

∑
𝑛∈𝑋 𝑗

log 𝑝 (𝑚,𝑛)
𝑝 (𝑚)𝑝 (𝑛) . We form the EEG adjacency

matrix 𝐴𝑒 = 𝜆ΩΩ + (1 − 𝜆Ω)Φ, where 𝜆Ω is a hyperparameter. For
PPS, only the functional connection is utilized 𝐴𝑝 = Φ, since the
spatial encoding is not applicable. To ensure sparsity and robust-
ness, we further reserve merely the top 30% strong connections.
Embedding Temporal Dynamics. Deriving from previous study
[28], one-dimensional convolutional network 𝑓 𝑡 is incorporated to
capture the temporal patterns. The temporal features are 𝐻 (0)

𝑒 ∈
R𝑐𝑒×𝑑 and 𝐻 (0)

𝑝 ∈ R𝑐𝑝×𝑑 , where 𝑑 is the hidden size.
Multi-Modality Self-Attention (MMSA).The self-attentionmech-
anism is employed to capture the inter-modality global dependen-
cies between EEG and PPS. Let 𝐻 (ℓ−1)

𝑒𝑝 =
[
𝐻

(ℓ−1)
𝑒



𝐻 (ℓ−1)
𝑝

]
∈

R(𝑐𝑒+𝑐𝑝 )×𝑑 represent the stacked hidden features at the (ℓ − 1)-
th layer. [·∥·] signifies concatenation. The ℓ-th multi-heads MMSA
is computed following Vaswani et al. [59] with output 𝐻 (ℓ )

𝑒𝑝 .
Intra-Modality Graph Regularization (GR). Incorporating re-
cent advancements in graph transformers facilitates the compre-
hensive perception of both localized and global features within
and across modalities.The graph transformer integrates graph con-
volution and self-attention layers sequentially [14, 56]. However,
this sequential application is not optimal for small-scale graphs de-
rived from physiological signals. To explain, We revisit the struc-
ture of the typical graph convolution layer [17]. A typical GCN
layer is 𝐻gcn = 𝜎

(
�̃�− 1

2 �̃��̃�− 1
2𝐻𝑊gcn

)
, where the normalized ad-

jacent matrix �̃� = 𝐴 + 𝐼 , the degree matrix �̃�𝑖𝑖 =
∑
𝑗 �̃�𝑖 𝑗 , and
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𝜎 denotes the activation function. The matrix𝑊gcn ∈ R𝑑×𝑑 sig-
nifies the linear transformation. For small-scale graphs, the GCN
layer might oversmooth features [26] or excessively suppress lo-
cal features, creating a bottleneck. The sequential application of
GCN and self-attention layers further exacerbates these issues as
the self-attention layer partially smooths the features.

To address these issues, we devise a novel GR operation, where
the ℓ-th GR operation for EEG is defined as:

𝐻
(ℓ )
𝑒,gr = GR

(
𝐻

(ℓ−1)
𝑒 , 𝐴𝑒

)
= 𝜎

(
�̃�
− 1

2
𝑒 𝐴𝑒 �̃�

− 1
2

𝑒 𝐻
(ℓ−1)
𝑒

)
. (3)

ThePPS graph regularization operation is defined analogously, yield-
ing output𝐻 (ℓ )

𝑝,gr. Subsequently, GR and MMSA are simultaneously
employed to derive the final output of the ℓ-th MGRT layer as:

𝐻
(ℓ )
𝑒 = 𝜎

(
𝑓 Θffn
𝑒

(
𝐻

(ℓ )
𝑒,gr + 𝐻

(ℓ )
𝑒,att

))
, 𝐻

(ℓ )
𝑝 = 𝜎

(
𝑓 Θffn
𝑝

(
𝐻

(ℓ )
𝑝,gr + 𝐻

(ℓ )
𝑝,att

))
,

(4)
where 𝑓 Θffn

𝑒 and 𝑓 Θffn
𝑝 are feed-forward layers for EEG and PPS. Dif-

ferent GRs are applied for EEG and PPS to prevent overreliance
on any single modality, thereby enhancing model generalizabil-
ity. The parallel operation of GR and MMSA helps alleviate the
bottleneck issue, with the GR operation serving as a regularizer
for global MMSA, ensuring a balanced fusion of local and global
features. With a total of 𝐿𝑑 layers, the final vertex features of the
MGRT backbones are 𝐻 (𝐿𝑑 )

𝑒 , and 𝐻 (𝐿𝑑 )
𝑝 .

4.2 Multi-Modality Graph Decomposition
To further reveal a generalizable space that can address the multi-
modality heterogeneity and cross-subject divergence, this section
elucidates the decomposition of multimodal physiological signals
into concordant and discrepant subgraphs driven by correlations.
Learning Multi-modality Mixed Graph. We first construct a
mixed graph to connect EEG and PPS modalities, aiming at cap-
turing intricate adaptive cross-modal relationships. Γ ∈ R𝑐𝑒×𝑐𝑝×2

denotes cross-modal correlation between the 𝑖-th EEG and the 𝑗-
th PPG channel, where each Γ𝑖 𝑗 ∼ 𝑝

(
Γ𝑖 𝑗

��𝐻 (𝐿𝑑 )
𝑒,𝑖 , 𝐻

(𝐿𝑑 )
𝑝,𝑗

)
is sampled

from their vertex features:

Γ𝑖 𝑗 = Softmax
(𝑝𝑖 𝑗 + 𝑔

𝜏

)
, where 𝑝𝑖 𝑗 =

[
𝐻

(𝐿𝑑 )
𝑒,𝑖




𝐻 (𝐿𝑑 )
𝑝,𝑗

]
𝑊𝑐 + 𝑏𝑐 .

(5)
The 𝑊𝑐 ∈ R2𝑑×2, 𝑏𝑐 ∈ R2 are learnable parameters. 𝑔 ∈ R2 is
a vector of independent and identically distributed (i.i.d.) samples
drawn from a standard Gumbel distribution, and 𝜏 is the temper-
ature parameter that governs the smoothness of Γ. The entire cor-
relation process is differentiable [12, 38]. We adopt a curriculum
learning approach by gradually annealing 𝜏 after each epoch to
facilitate the convergence [69].

We assign the first dimension of Γ𝑖 𝑗 to signify the presence of
correlation between the 𝑖-th EEG channel and the 𝑗-th PPS channel,
denoted as𝑍𝑖 𝑗 , and the cross-modal correlationmatrix𝑍 ∈ R𝑛𝑒×𝑛𝑐 .
Larger values indicate stronger cross-modal correlation.

The multi-modality mixed graph Gmixed amalgamates the EEG
and PPS graphs based on their correlation matrix 𝑍 . Gmixed con-
sists of 𝑐𝑒 + 𝑐𝑝 vertices with features 𝑋mixed =

[
𝐻

(𝐿𝑑 )
𝑒



𝐻 (𝐿𝑑 )
𝑝

]
∈

R(𝑐𝑒+𝑐𝑝 )×𝑑 . The adjacency matrix 𝐴mixed ∈ R(𝑐𝑒+𝑐𝑝 )×(𝑐𝑒+𝑐𝑝 ) is
constructed by concatenating 𝐴𝑒 , 𝐴𝑝 , and 𝑍 as described above.

Correlation-Driven Channel Ranking. As elucidated in Sec-
tion 1, the primary challenges in cross-subject multimodal emo-
tion recognition arise from the multi-modality heterogeneity and
cross-subject divergence. We aim to address these challenges con-
currently by decomposing the mixed graph into concordant and
discrepant subgraphs driven by the cross-modal correlations.

The decomposition commences by ranking the channels. We as-
sess the overall significance of each channel with all other chan-
nels in the opposing modality, represented as 𝜉𝑒,𝑖 =

∑
𝑗 𝑍𝑖 𝑗 and

𝜉𝑝,𝑗 =
∑
𝑖 𝑍

T
𝑖 𝑗 , where 𝜉𝑒,𝑖 and 𝜉𝑝,𝑗 denote the score of the 𝑖-th EEG

and the 𝑗-th PPS channel, respectively, with 𝜉𝑒 ∈ R𝑐𝑒 and 𝜉𝑝 ∈ R𝑐𝑝 .
The top-𝜌 channels are selected for the concordant subgraph, while
the remaining channels are categorized as discrepant channels:

idxcon =
[
argsort(𝜉𝑒 )1:𝜌𝑐𝑒



argsort(𝜉𝑝 )1:𝜌𝑐𝑝 ] ,
idxdis =

[
argsort(𝜉𝑒 )𝜌𝑐𝑒+1:𝑐𝑒



argsort(𝜉𝑝 )𝜌𝑐𝑝+1:𝑐𝑝 ] , (6)

where idxcon denotes the index of the concordant channels, while
idxdis pertains to the discrepant channels. Here, 𝜌 functions as a
hyperparameter.
Concordant and Discrepant Subgraph Decomposition. The
concordant subgraph Gcon and the discrepant subgraph Gdis are
subsequently derived from Gmixed. The adjacency matrices 𝐴con
and𝐴dis can be obtained from𝐴𝑢 by extracting the rows and columns
corresponding to the concordant and discrepant subgraphs. Simi-
larly, the features 𝑋con and 𝑋dis can be derived from 𝑋𝑢 .

𝑋con = 𝑋𝑢 [idxcon, :] , 𝐴con = 𝐴𝑢 [idxcon, idxcon] ,
𝑋dis = 𝑋𝑢 [idxdis, :] , 𝐴dis = 𝐴𝑢 [idxdis, idxdis] ,

(7)

where [·, ·] denotes the row and column selection by indices. The
whole decomposition process is describedwith pictures in Figure 2,
where the outside circle represents the discrepant subgraph, while
the circular area inside represents the concordant subgraph.
TheDivergence Loss. A divergence loss is introduced to promote
the acquisition of diverse representations, as elaborated in Section 3
The distance correlation (dCor) [52, 75] is utilized since it can quan-
tify the dependencies between the concordant and discrepant sub-
graphs with no assumption of linearity or normality. We randomly
sample 𝑛𝑠 vertices from the concordant and discrepant subgraphs,
𝑛𝑠 ≤ min

(
𝑐𝑒 , 𝑐𝑝

)
. The features of the sampled vertices are denoted

as 𝑆con, 𝑆dis ∈ R𝑛𝑠×𝑑 respectively. The divergence loss Ldiv is:

Ldiv =
V2
𝑛𝑠 (𝑆con, 𝑆dis)√

V2
𝑛𝑠 (𝑆con, 𝑆con) V2

𝑛𝑠 (𝑆dis, 𝑆dis) + 𝜖
. (8)

V2
𝑛𝑠 (𝑆con, 𝑆dis) is the empirical distance covariance.V2

𝑛𝑠 (𝑆con, 𝑆con)
andV2

𝑛𝑠 (𝑆dis, 𝑆dis) are the empirical variances.
The Alignment Loss. Furthermore, we follow Section 3 to intro-
duce an auxiliary alignment loss Laln aimed at aligning the dis-
tributions of the visible subjects. We represent the features of the
mixed graph of the 𝑖-th sample as 𝑋<𝑖>

mixed. In the model implemen-
tation, each batch contains samples from all visible subjects. The
alignment loss within a batch B can be expressed as:

Laln =
1
|B|

| B |∑
𝑖=1



GMP
(
𝑋<𝑖>
mixed

)
− 𝜇




1, (9)
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where 𝜇 = 1
| B |

∑ | B |
𝑗=1 GMP

(
𝑋
< 𝑗>
mixed

)
∈ R𝑑 . The GMP(·) ∈ R𝑑 repre-

sents adopting the global mean pooling operation.

4.3 Cross-Rebalance Mechanism and Fusion
Emotional State Prediction. Naturally, the concordant and dis-
crepant subgraphs are not equally noteworthy since the former
providesmore generalizable features. A cross-rebalancemechanism
is introduced to assess the importance of these two subgraphs pre-
cisely, assigning weight factors 𝛼1 and 𝛼2 to the two subgraphs,
respectively. The final prediction of emotional states is given by:

𝑅con = 𝜛
(
𝐻

(𝐿𝑓 )
con

)
, 𝑅dis = 𝜛

(
𝐻

(𝐿𝑓 )
dis

)
. (10)

Ŷ = Softmax
(
𝛼1 𝑓

𝑐
con (𝛼1𝑅con) + 𝛼2 𝑓 𝑐dis (𝛼2𝑅dis)

)
, (11)

where𝜛 (·) denotes the readout function implemented by the Equi-
librium aggregationmethod [3].The classifiers 𝑓 𝑐con and 𝑓 𝑐dis consist

of two linear layers. The 𝐻 (𝐿𝑓 )
con and 𝐻 (𝐿𝑓 )

dis are the final high-level
features of the concordant and discrepant subgraphs after 𝐿𝑓 fea-
ture extractors. We adopt a weak version of MGRT as the feature
extractor, where treating the multi-modality channels as a single
modality reduces the model complexity, namely the GRT layers.
Cross-Rebalance Mechanism. The unresolved issue pertains to
the computation of the weight factors 𝛼1 and 𝛼2 through the cross-
rebalance mechanism. We balance theie significance as follows:

𝜓1 = tanh
(
𝑓
𝑔
con (𝑅con)

)
, 𝜓2 = tanh

(
𝑓
𝑔
dis (𝑅dis)

)
, (12)

where the vector 𝜓1 ∈ R2 evaluates the importance from the con-
cordant perspective, and 𝜓2 ∈ R2 does so from the discrepant
perspective. 𝑓 𝑔con and 𝑓 𝑔dis are two-layer linear layers. The vector
𝛼 = 1

2 (𝜓1 +𝜓2) ∈ R2 is the ultimate cross-rebalance weight. The
weight factors 𝛼1 and 𝛼2 are the first and the second dimension of
𝛼 . A cross-rebalance loss Lcross is introduced to ensure the consis-
tency of the significance assessments between two perspectives:

Lcross =
1
2

(
𝐷KL (𝜓1,𝜓2) + 𝐷KL (𝜓2,𝜓1)

)
, (13)

where 𝐷KL (𝑥,𝑦) =
∑
𝑖 𝑥𝑖 log

𝑥𝑖
𝑦𝑖

is the Kullback-Leibler divergence.
Model Training. The final loss function L comprises the diver-
gence loss Ldiv, alignment loss Laln, cross-rebalance loss Lcross,
and supervised emotion recognition loss Lemo = −∑ | B |

𝑖=1 Y𝑖 log Ŷ𝑖 ,
where Y denotes the ground truth. L is formulated as:

L = Lemo + 𝜆divLdiv + 𝜆alnLaln + 𝜆crossLcross, (14)

where 𝜆div, 𝜆aln, and 𝜆cross denote the hyperparameters.

Table 1: Dataset Descriptions.

Dataset Subject Modality (channels) Rate Total time

DEAP 32 (16 female) EEG (32), PPS (8) 128 Hz 76,800 s
MAHNOB–HCI 27 (16 female) EEG (32), PPS (6) 256 Hz 43,350 s

5 Experimental Evaluation
5.1 Datasets and Experimental Setup
Table 1 presents the statistics of the DEAP [18] and MAHNOB–
HCI [49] datasets, which are two widely used benchmark mul-
timodal physiological datasets for emotion recognition. We split
each trial into 4-second segments with no overlap following [35].
This strategy increases the number of samples and forces themodel
to learn more robust short-time features. During all the experi-
ments, we leverage the leave-one-subject-out cross-validation.

5.2 Comparison Analysis
Comparison of CMMGD. Table 2 and Table 3 present the com-
parison results. From an overarching perspective, the CMMGD frame-
work attains superior performance on both datasets, surpassing
the state-of-the-art methods. It excels in nearly all emotion dimen-
sions. These outcomes substantiate the efficacy of the proposed
CMMGD framework in handlingmulti-modality heterogeneity and
cross-subject divergence. From the results, methods integrating
multimodal signals (Lower part of the Table 2 and 3) lead to supe-
rior performance compared to those relying solely on EEG (Middle
part of the Table 2 and 3).

The highest overall performance of EEG-onlymethods is 64.46%,
achieved by EEGFuseNet [31]. The multimodal methods demon-
strate enhanced performance. Among these multimodal methods,
the proposed CMMGD framework showcases the most superior
overall performance of 68.59% on DEAP and 66.88% onMAHNOB–
HCI, representing improvements of 1.76% and 2.65% over the second-
best method, respectively. These enhancements further emphasize
the effectiveness of the CMMGD framework.
Comparison of the MGRT Backbone. We proceed to evaluate
the effectiveness of the proposed MGRT backbone. The compara-
tive results are outlined in Table 4, encompassing two latest graph
transformers, namely GraphGPS [44] and EmoGTs [14], as well as
two traditional graph-only methods, GCN [17], GraphConv [40],
and Transformer [59]. EmoGTs is the latest graph transformer net-
work devised for multimodal emotion recognition.

FromTable 4, the graph transformer-basedmethods outperform
graph-only and transformer-only approaches. Among these archi-
tectures, our MGRT gains the highest overall performance. This
result is due to the parallel design of MMSA and GR, which allevi-
ates the over-smoothing issue and mitigates over-reliance on any
single modality, thereby enhancing generalizability.

5.3 Ablation Studies
Ablation Study of Dropping Discrepant Subgraph. It is accept-
able to discard the discrepant subgraphWang et al. [60] as they con-
vey less consistent information across modalities and subjects.The
results of utilizing only the concordant channels are presented in
Table 5. The performance decreases when discrepant features are
discarded, proveing that both the concordant and discrepant fea-
tures are essential. The concordant features alone are insufficient
to capture the full dynamics of emotion.
Ablation Study of Fusion Strategies.We introduce a cross-rebalance
schema for integrating concordant and discrepant subgraphs. To
validate the effectiveness of this fusion approach, we conduct an
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Table 2: Comparison of the proposed CMMGD with the high-level state-of-the-art methods on the DEAP dataset.

Method Publication Subject
Independent

Cross Validation
Mode

Arousal Valence Overall
MetricsAccuracy F1 Score Accuracy F1 Score

RBM [48] ICASSP’17 LOTO 64.6/- 51.2/- 60.7/- 54.1/- 57.65
LSVM-GSU [57] TPAMI’18 LOTO 65.9/- 55.1/- 65.0/- 60.9/- 61.73

MIL [45] TAFFC’19 LOTO 61.1/- 54.6/- 63.6/- 61.2/- 60.13
TSception [6] TAFFC’23 LOTO 63.75/- 63.35/- 62.27/- 65.37/- 63.64

ACRNN [55] TAFFC’20 ✓ LOSO 55.00/10.24 - 54.84/6.43 - 54.92
BiDANN [30] TAFFC’21 ✓ LOSO 61.04/6.48 - 58.70/11.16 - 59.87

EEGFuseNet [31] TNSRE’21 ✓ LOSO 58.55/- 72.00/- 56.44/- 70.83/- 64.46
AP-CapsNet [34] KBS’23 ✓ LOSO 63.51/- - 62.71/- - 63.11

TMLP+SRDANN [27] MEASUREMENT’23 ✓ LOSO 57.70/7.23 - 61.88/5.55 - 59.79
CAFNet [77] TAFFC’23 ✓ LOSO 62.25/11.47 69.28/16.72 63.61/9.35 61.23/13.87 64.09

MMResLSTM [37] MM’19 ✓ LOSO 63.25/12.38 67.32/15.92 64.67/10.57 68.36/11.50 66.15
RDFKM [72] TCYB’21 ✓ LOSO 63.1/- 70.1/- 64.5/- 69.6/- 66.83
CSDAMER [9] BIBM’22 ✓ LOSO 56.85/- 42.03/- 62.09/- 58.00/- 54.74
EmotionKD [35] MM’23 ✓ LOSO 62.88/- 60.23/- 66.61/- 66.54/- 64.07
RHPRNet [54] INFORM FUSION’24 ✓ LOSO 57.73/3.19 59.30/4.64 59.42/4.40 60.32/4.55 59.10
CMMGD (Ours) ✓ LOSO 64.18/10.15 70.75/16.25 66.89/6.34 72.55/6.81 68.59

*LOSO means leave-one-subject-out, and LOTO denotes subject-dependent leave-one-trial-out. Values are reported in mean/std format. Bold means the best result while
underline means the second-best among methods adopting the LOSO cross-validation strategy. The following tables are reported in the same format.

Table 3: Comparison of the proposedCMMGDwith the state-
of-the-art methods on the MAHNOB–HCI dataset.

Method
Cross

Validation
Mode

Arousal Valence Overall
MetricsAccuracy F1 Score Accuracy F1 Score

RBM [48] LOTO 65.9/- 65.4/- 59.1/- 54.2/- 61.15
TSception [6] T-10F 60.61/14.88 33.06/23.35 61.27/10.05 40.66/16.52 48.90

EEGFuseNet [31] LOSO 62.06/- 62.05/- 60.64/- 72.18/- 64.23

CSDAMER [9] LOSO 60.47/- 46.12/- 62.23/- 49.64/- 54.62
EmotionKD [35] LOSO 60.66/- 58.32/- 64.72/- 64.27/- 61.99
CMMGD (Ours) LOSO 66.41/11.00 62.61/23.19 65.86/7.15 72.65/6.77 66.88

*T-10F means subject-dependent trial-wise ten-fold cross-validation.

ablation study comparing it with three commonly used methods:
summation,maximum, and concatenation.The results are presented
in Table 6, and the proposed cross-rebalance fusion mechanism ex-
hibits superior performance by adaptive assigning weights to the
concordant and discrepant subgraphs.
Ablation Study of Auxiliary Losses. We proceed with an abla-
tion study to assess the effectiveness ofLdiv andLaln, which serve
as supplementary losses aimed at enhancing cross-subject gener-
alizability. Table 7 presents the detailed results and the findings
demonstrate that omitting either Ldiv or Laln results in a perfor-
mance decline, validating the effectiveness of the proposed auxil-
iary losses in enhancing cross-subject generalizability.

5.4 Sensitivity Analysis
A series of sensitivity analyses are performed to assess the influ-
ence of hyperparameters, including the number ofMGRT layer and
GRT layer, augmentation ratio, and hidden dimension. The hyper-
parameters can be determined based on results in Figure 3.

5.5 Visualization Analysis
We employ the t-SNE technique [58] to visualize the distribution
of both temporal and decomposed features, aiming to gain insights

into the feature space. In Figure 4 (a), the temporal features display
a dispersed distribution, with a noticeable gap between EEG and
PPS. However, within each modality, it is not possible to distinctly
separate the concordant and discrepant channels. In contrast, the
decomposed features, depicted in Figure 4 (b), exhibit a clearly dis-
persed distribution with the concordant and discrepant channels
distinctly separated, highlighting that the CMMGD can learn con-
cordant and discrepant representations.

In Figure 5, we visualize the activation of each channel in the
EEG signals averaged on all samples of the left-out subject dur-
ing the validation process. The red regions indicate the highly ac-
tivated brain regions, while the blue regions are less activated. We
mark partially consistent highly activated brain regions across sub-
jects with circles, indicating that the proposed CMMGD frame-
work can effectively capture robustness brain activation patterns.
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(b) Sensitivity of GRT layer for both
concordant and discrepant subgraphs.
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Figure 3: Sensitivity analysis of hyperparameters.
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Table 4: Comparison of the proposed MGRT backbone with graph-based networks, transformer, and graph transformers.

DEAP MAHNOB–HCI

Type Backbone Arousal Valence Overall
Metrics

Arousal Valence Overall
MetricsAccuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Single
Architecture

GCN [17] 63.37/10.67 70.11/17.11 62.48/5.90 70.87/7.91 66.71 64.37/8.77 61.31/22.19 61.14/6.61 70.14/8.51 61.74
GraphConv [40] 62.19/11.11 70.53/16.57 63.14/6.84 71.41/7.60 66.82 63.34/10.11 62.04/21.64 61.42/5.77 70.02/8.51 64.21
Transformer [59] 61.82/11.29 71.04/14.67 63.04/7.35 71.43/7.50 66.83 62.16/9.90 59.76/21.96 61.47/6.37 70.07/9.17 63.37

Graph
Transformer

GraphGPS [44] 63.02/10.92 71.21/15.30 61.05/7.54 70.95/7.44 66.56 64.61/11.63 62.60/21.56 57.03/8.51 70.07/9.48 63.58
EmoGTs [14] 63.62/10.31 70.41/16.52 64.44/6.64 72.16/6.87 67.66 65.47/10.54 62.24/21.30 63.02/5.13 70.24/9.06 65.24
CMMGD (Ours) 64.18/10.15 70.75/16.25 66.89/6.34 72.55/6.81 68.59 66.41/11.00 62.61/23.19 65.86/7.15 72.65/6.77 66.88

Table 5: Ablation study of dropping discrepant features.

Dataset Add Gdis
Arousal Valence Overall

MetricsAccuracy F1 Score Accuracy F1 Score

D
EA

P 61.48/12.37 71.63/14.08 63.18/7.19 71.23/7.73 66.88
✓ 64.18/10.15 70.75/16.25 66.89/6.34 72.55/6.81 68.59

M
A
H

-N
O
B 62.96/9.79 60.71/23.56 60.40/6.52 70.98/7.73 63.76

✓ 66.41/11.00 62.61/23.19 65.86/7.15 72.65/6.77 66.88

Table 6: Ablation study of varying fusion methods.

Dataset Fusion
Method

Arousal Valence Overall
MetricsAccuracy F1 Score Accuracy F1 Score

D
EA

P Sum 59.88/14.71 71.27/14.19 60.16/7.78 70.94/7.76 65.56
Concat 60.46/13.34 71.34/14.34 60.39/8.56 71.27/7.98 65.87
Max 61.96/11.79 70.67/15.62 61.68/8.82 71.94/7.47 66.61
Ours 64.18/10.15 70.75/16.25 66.89/6.34 72.55/6.81 68.59

M
A
H
N
O
B Sum 64.67/10.26 63.83/18.86 59.39/9.19 69.76/8.63 64.41

Concat 63.39/11.19 60.51/23.91 58.48/8.74 69.17/10.52 62.89
Max 64.23/10.91 62.28/21.35 57.79/8.78 69.42/9.38 63.39
Ours 66.41/11.00 62.61/23.19 65.86/7.15 72.65/6.77 66.88

6 Conclusions
This study proposes the CMMGD framework to effectively con-
fronts the challenges posed by multi-modality heterogeneity and
cross-subject divergence in cross-subjectmultimodal emotion recog-
nition and offers a unified framework that simultaneously miti-
gates these issues. By decomposing multimodal signals into con-
cordant and discrepant representations, the CMMGD facilitates a
comprehensive analysis of the data. A cross-rebalance fusionmech-
anism is introduced to adaptively fuse each subgraph in a balanced
manner. Additionally, CMMGDcontains a specifically devisedMGRT

Table 7: Ablation study of the adopted auxiliary loss.

Dataset
Auxiliary Loss Arousal Valence Overall

MetricsLdiv Laln Accuracy F1 Score Accuracy F1 Score

D
EA

P 62.47/10.27 69.56/16.20 63.97/7.79 71.06/8.25 66.77
✓ 62.21/10.14 70.40/14.31 63.70/7.93 71.78/7.05 67.02

✓ 63.47/10.19 70.01/17.66 65.50/6.39 72.19/7.69 67.79
✓ ✓ 64.18/10.15 70.75/16.25 66.89/6.34 72.55/6.81 68.59

M
A
H
N
O
B 61.97/13.38 56.32/24.32 62.06/5.65 70.44/8.70 62.70

✓ 60.66/13.27 56.33/23.39 62.17/5.91 70.00/9.11 62.29
✓ 64.52/10.37 60.11/21.98 61.67/6.24 70.15/9.56 64.11
✓ ✓ 66.41/11.00 62.61/23.19 65.86/7.15 72.65/6.77 66.88
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(a) Temporal features.
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(b) Decomposed features.

Figure 4: Channel distribution of features.

(a) Activation on DEAP. (b) Activation on MAHNOB–HCI.

Figure 5: The visualization of brain activation in the DEAP
and MAHNOB–HCI datasets.

backbone that can capture both local and global information in
multimodal physiological signals.

Our work presents a promising step towards solving the critical
challenge of cross-subject generalization for multimodal contents.
One limitation remains the requirement of complete data for each
modality. Future work will explore the potential of interpolating
missing data, or dealing with noisy data, to enhance the robustness
of the CMMGD framework. Moreover, we will investigate the po-
tential of the CMMGD framework in other multimodal tasks.
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