
Supplementary Materials: Correlation-Driven Multi-Modality
Graph Decomposition for Cross-Subject Emotion Recognition

The subsequent sections consist of supplementary materials that of-
fer in-depth insights into the extra analysis, extra implementations,
and extra results, which could not be accommodated in the main
text due to space limitations. The sections in supplementary mate-
rials are arranged in the order of when they are mentioned in the
main manuscript. To distinguish them from the main manuscript,
sections in the main text are denoted by "Section" followed by a
number, whereas sections in this supplementary material are refer-
enced as Appendixfollowed by an alphabet. For clarity, a concise
summary of the supplementary materials is provided below:

(1) Extra Analysis: Initially, these supplementary materials
introduce a more detailed analysis of the proposed CMMGD frame-
work. Appendix A gives the distributions of multi-modality physi-
ological signals across subjects, as the Principal Challenges para-
graphs outlined in Section 1. Subsequently, Appendix B offers a
comprehensive comparison between the proposed MGRT back-
bone and the most recent graph transformer architecture in emo-
tion recognition. Additionally, Appendix D conducts a comparative
analysis between the CMMGD framework and disentanglement-
based methods to demonstrate the novelty and effectiveness of our
approach.

(2) Extra Implementations: We further provide detailed im-
plementations of the CMMGD framework. Appendix C details the
computation process of the divergence loss (Equation (11)) as de-
scribed in Section 4.2. Furthermore, Appendix E delineates the
primary algorithm of CMMGD. Appendix F introduces the adopted
two benchmark datasets, while Appendix G outlines the data pre-
processing steps and hyperparameter configurations. Lastly, Appen-
dix H introduces the descriptions of the baseline methods employed
in the experiments.

(3) Extra Results: Finally, we present additional results. Appen-
dix I offers visualizations of cross-modality correlation, whereas
Appendix J presents brain topographic maps to further validate the
efficacy and interpretability of our CMMGD framework.

A DISTRIBUTION ACROSS SUBJECTS
This section provides a visualization of the distribution of the multi-
modality physiological signals across subjects. As shown in Figure 1,
the distribution of the physiological signals varies across the first
six subjects, highlighting the cross-subject divergence. Additionally,
the distribution of different modalities differs significantly. This
finding further emphasizes the need for a generalizable model that
can simultaneously generalize across subjects and modalities.

B COMPARISON OF BACKBONE
This section delineates the architecture of EmoGTs [7] and MGRT,
providing a graphical comparison as illustrated in Figure 2. EmoGTs
is the latest graph transformer architectures designed for multi-
modal emotion recognition tasks. It captures multimodal features
by integrating the graph transformer with the graph convolutional
network. The enhancements introduced in the MGRT backbone
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Figure 1: Distribution of the multi-modality physiological
signals across subjects.

are two-fold: firstly, the parallel operation of the graph regularizer
(GR) and the multi-modality self-attention (MMSA), and secondly,
the removal of the linear transformer in the GR module.

As depicted in Figure 2, one EmoGTs layer comprises a GCN layer
and a cross-modal attention-based transformer layer. TheGCN layer
is tasked with capturing the local features inherent to eachmodality,
whereas the transformer layer is designed to encapsulate the global
features. These two types of features are processed in a sequential
manner, with the outputs of the GCN layer being inputs to the
transformer layer, and they are iteratively updated. Nonetheless,
given the relatively small scale of graphs derived from EEG and
PPS modalities, there exists a potential for over-smoothing, which
leads to the loss of local representation. This scenario posits the risk
of either the GCN or transformer layer predominating the feature
extraction process, thereby constituting a bottleneck. The parallel
execution of GR and MMSA in MGRT serves to mitigate this risk,
with the GR function acting as a regularizer for the global MMSA,
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Figure 2: Comparison of the backbones of the latest EmoGTs
and the proposed MGRT.

thereby ensuring an equitable amalgamation of local and global
feature sets.

Previous studies have explored the parallel operation of graph
convolutional networks and transformers, focusing on unimodal
graphs [20]. In our work, we have extended an enhanced version of
GraphGPS, denoted as GraphGPS*, for comparative analysis. The
findings, as presented in Table 4, underscore the superior overall
performance of the proposed MGRT backbone, which is attributed
to the second-tier enhancement, in which we remove the linear
transformer within the GR module. This refinement ensures the
MGRT backbone is optimally configured for small-scale graphs, as
typically observed in EEG and PPS modalities, by retaining solely
the graph convolutional operation and eschewing the linear trans-
formation.

C THE DETAILS OF THE DIVERGENCE LOSS
In Section 4.2, we introduce the divergence loss Ldiv to encourage
the model to capture the diverse features of the concordant and
discrepant subgraphs. We realize this by leveraging the distance
correlation (dCor) [24, 31] to quantify the dependencies between
the concordant and discrepant subgraphs. This section provides a
detailed derivation of the divergence loss Ldiv.
The Distance Correlation. The dCor between random vectors
𝑋 and 𝑌 ,denoted by R (𝑋,𝑌 ), satisfies 0 ≤ R (𝑋,𝑌 ) ≤ 1, where
R (𝑋,𝑌 ) = 0 indicates independence, and R (𝑋,𝑌 ) = 1 denotes

perfect dependence. Furthermore, in practice, we concentrate on
the empirical distance correlation R𝑛 (𝑋,𝑌 ) of two random vectors
𝑋 , and 𝑌 :

R2𝑛 (𝑋,𝑌 ) =
{ V2

𝑛 (𝑋,𝑌 )√
V2
𝑚 (𝑋,𝑋 )V2

𝑛 (𝑌,𝑌 )
, ifV𝑛 (𝑋,𝑋 ) V𝑛 (𝑌,𝑌 ) > 0

0, ifV𝑛 (𝑋,𝑋 ) V𝑛 (𝑌,𝑌 ) = 0
,

(1)
whereV2

𝑛 (𝑋,𝑌 ) is the empirical distance covariance, andV2
𝑛 (𝑋,𝑋 )

andV2
𝑛 (𝑌,𝑌 ) are the empirical variances of 𝑋 and 𝑌 , respectively.

These empirical statistics can be further defined by:

𝑎𝑘,𝑙 = ∥𝑋𝑘 − 𝑋𝑙 ∥, 𝑎𝑘,· =
1
𝑛

𝑛∑︁
𝑙=1

𝑎𝑘,𝑙 ,

𝑎 ·,𝑙 =
1
𝑛

𝑛∑︁
𝑘=1

𝑎𝑘,𝑙 , 𝑎 ·,· =
1
𝑛2

𝑛∑︁
𝑘,𝑙=1

𝑎𝑘,𝑙 ,

𝐴𝑘,𝑙 = 𝑎𝑘,𝑙 − 𝑎𝑘,· − 𝑎 ·,𝑙 + 𝑎 ·,· .

(2)

In a similar manner, we can define 𝐵𝑘,𝑙 for 𝑌 , where 𝐵𝑘,𝑙 = 𝑏𝑘,𝑙 −
𝑏𝑘,· − 𝑏 ·,𝑙 + 𝑏 ·,· , and 𝑏𝑘,𝑙 = ∥𝑌𝑘 − 𝑌𝑙 ∥. Then, the empirical distance
covariance and empirical variances can be expressed as:

V2
𝑛 (𝑋,𝑌 ) =

1
𝑛2

𝑛∑︁
𝑘,𝑙=1

𝐴𝑘,𝑙𝐵𝑘,𝑙 . (3)

V2
𝑛 (𝑋,𝑋 ) =

1
𝑛2

𝑛∑︁
𝑘,𝑙=1

𝐴2
𝑘,𝑙
, V2

𝑛 (𝑌,𝑌 ) =
1
𝑛2

𝑛∑︁
𝑘,𝑙=1

𝐵2
𝑘,𝑙

. (4)

The Divergence Loss. We derive the divergence loss Ldiv based
on the dCor. We randomly sample 𝑛𝑠 vertices from the concordant
and discrepant subgraphs, 𝑛𝑠 ≤ min

(
𝑐𝑒 , 𝑐𝑝

)
. The features of these

sampled vertices are denoted as 𝑆con, 𝑆dis ∈ R𝑛𝑠×𝑑 respectively.
The divergence loss Ldiv based on dCor is formulated as:

Ldiv =
V2
𝑛𝑠
(𝑆con, 𝑆dis)√︃

V2
𝑛𝑠 (𝑆con, 𝑆con) V2

𝑛𝑠 (𝑆dis, 𝑆dis) + 𝜖
, (5)

where 𝜖 is a small positive constant employed to prevent division
by zero, and V2

𝑛𝑠
(𝑆con, 𝑆dis) is the empirical distance covariance

following (3),V2
𝑛𝑠
(𝑆con, 𝑆con),V2

𝑛𝑠
(𝑆dis, 𝑆dis) are the empirical vari-

ances following (4).
The divergence loss Ldiv is designed to encourage the model to

capture diverse representations of the concordant and discrepant
subgraphs, thereby enhancing the generalizability of the model.

D COMPARISON OF CMMGD FRAMEWORK
AND DISENTANGLEMENT-BASED
METHODS

This section presents a comparison of the proposed CMMGD frame-
work with disentanglement-based methods to demonstrate its nov-
elty and effectiveness.
Commonalities Towards Generalizability. Previous studies
have utilized disentanglement-based methods to tackle the issue
of generalization [3, 4, 18]. These methods operate under the as-
sumption that humans encode stimuli in a compositional manner,
utilizing a small set of independent and primitive features [18].
This insight is particularly relevant in an emotion recognition task,
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Algorithm 1: The CMMGD framework

Data: The EEG signals 𝑋𝑒 ∈ R𝑐𝑒×𝑇 , the position of each EEG channel under the 10-20 system 𝜔𝑒 ∈ R𝑐𝑒×3, the weight of EEG spatial
encoding 𝜆Ω ; the PPS signals 𝑋𝑝 ∈ R𝑐𝑝×𝑇 ; the number of concordant channels 𝜌 ; the hidden dimension 𝑑 ; the number of
MGRT layers 𝐿𝑑 ; the number of GRT layers 𝐿𝑓 .

Result: The predicted emotional states Ŷ.
1 begin

// 1. Get MGRT backbone embedded features (Section 4.1).
2 𝐻

(𝐿𝑑 )
𝑒 , 𝐴𝑒 , 𝐻

(𝐿𝑑 )
𝑝 , 𝐴𝑝 ← MGRT

(
𝑋𝑒 , 𝜔𝑒 , 𝜆Ω, 𝑋𝑝

)
; // Apply the MGRT backbone, following Algorithm 2.

// 2. Decompose the multi-modality mixed graph to concordant and discrepant subgraphs (Section 4.2).
// 2.1 Learn multi-modality mixed graph, following (7).

3 Calculate 𝑍 ← Γ:,:,0, where every Γ𝑖 𝑗 ← Softmax
(
𝑝𝑖 𝑗+𝑔
𝜏

)
, and 𝑝𝑖 𝑗 ←

[
𝐻
(𝐿𝑑 )
𝑒,𝑖




𝐻 (𝐿𝑑 )𝑝,𝑗

]
𝑊𝑐 + 𝑏𝑐 . ;

4 Get 𝐴mixed by combining 𝐴𝑒 , 𝐴𝑝 , Γ𝑖 𝑗 , and 𝑋mixed ←
[
𝐻
(𝐿𝑑 )
𝑒




𝐻 (𝐿𝑑 )𝑝

]
; // Combine the EEG and PPS graph.

// 2.2 Graph decomposition.
5 idxcon ←

[
argsort(𝜉𝑒 )1:𝜌𝑐𝑒



argsort(𝜉𝑝 )1:𝜌𝑐𝑝 ] ;
6 idxdis ←

[
argsort(𝜉𝑒 )𝜌𝑐𝑒+1:𝑐𝑒



argsort(𝜉𝑝 )𝜌𝑐𝑝+1:𝑐𝑝 ] ; // Ranking, following (9).
7 𝑋con = 𝑋𝑢 [idxcon, :] , 𝐴con = 𝐴𝑢 [idxcon, idxcon];
8 𝑋dis = 𝑋𝑢 [idxdis, :] , 𝐴dis = 𝐴𝑢 [idxdis, idxdis] ; // Decompose the mixed graph, following (10).

// 3. Cross-rebalance fusion (Section 4.3).
// 3.1 Get GRT embedded features for each subgraph.

9 𝐻
(𝐿𝑓 )
con ← GRT (𝑋con, 𝐴con, 𝑋con, 𝐴dis);

10 𝐻
(𝐿𝑓 )
dis ← GRT (𝑋dis, 𝐴dis, 𝑋dis, 𝐴dis) ; // Apply the GRT backbone, following Algorithm 3.

// 3.2 Cross-rebalance mechanism, following (15).

11 Calculate 𝛼 ← 1
2 (𝜓1 +𝜓2), where𝜓1 ← tanh

(
𝑓
𝑔
con (𝑅con)

)
, and𝜓2 ← tanh

(
𝑓
𝑔

dis (𝑅dis)
)
;

12 𝑅con ← 𝜛

(
𝐻
(𝐿𝑓 )
con

)
, and 𝑅dis ← 𝜛

(
𝐻
(𝐿𝑓 )
dis

)
;

13 Ŷ ← Softmax
(
𝛼1 𝑓 𝑐con (𝛼1𝑅con) + 𝛼2 𝑓 𝑐dis (𝛼2𝑅dis)

)
; // Cross-rebalance fusion, following (13).

14 return Ŷ

given that the human brain encompasses both primitive and com-
plex features, which are abstract and high-level. Disentanglement
methods aim to learn representations that capture various factors
of variation in latent subspaces. The learned compositional struc-
ture improves the interpretability and generalizability of the model,
supporting more difficult forms of generalization.
CMMGD vs. Disentanglement-Based Methods. The proposed
CMMGD framework shares commonalities with disentanglement
methods, as it decomposes multimodal signals into concordant and
discrepant subgraphs, enhancing the generalizability of emotion
recognition tasks. However, the CMMGD framework diverges from
disentanglement-based methods in several key aspects.

Firstly, CMMGD is specifically designed for multimodal
scenarios. Disentanglement methods often realize the disentangle-
ment operation based on the unimodal tensor splitting. For example,
let 𝐸 denotes an unimodal embedding, Dong et al. [3] decompose
𝐸 into 𝐸s and 𝐸c, where 𝐸 = [𝐸s |𝐸c]. The 𝐸s is usually called the
modality-shared representation, while 𝐸c is the modality-specific
representation. They adopt an auxiliary loss for forcing 𝐸s to be
consistent across modalities. In contrast, the proposed CMMGD

adopts the correlation-driven decomposition strategy, which de-
termines the decomposition based on the score measuring if one
channel is close to the other. This strategy is naturally designed for
multimodal scenarios involving two or more heterogeneous data
types.

Secondly, CMMGD is specifically designed for emotion
recognition task. As graphs have been widely adopted in ana-
lyzing physiological signals, the proposed framework primarily
focuses on these graph structure data, decomposing the multi-
modality mixed graph to concordant and discrepant subgraphs.
It realizes the vertex-level graph decomposition. In contrast to the
widely utilized graph disentanglement [16, 28], which considers
more on the edge-level disentanglement, the attribute graph in
emotion recognition task through physiological signals has a more
significance on vertex attribute, which is the EEG or PPS features.
In addition, since the human emotion process usually involves a
small set of brain regions [1], the proposed CMMGD assigns each
channel to the concordant or discrepant subgraph based on the
correlation score, which is more interpretable and meaningful in
the emotion recognition task.
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Algorithm 2: The MGRT backbone

Data: EEG signals 𝑋𝑒 ∈ R𝑐𝑒×𝑇 , position of each EEG channel 𝜔𝑒 ∈ R𝑐𝑒×3, the weight of EEG spatial encoding 𝜆Ω ; PPS signals
𝑋𝑝 ∈ R𝑐𝑝×𝑇 ; The number of MGRT layers 𝐿𝑑 .

Result: EEG graph with vertex features 𝐻 (𝐿𝑑 )𝑒 , and adjacent matrix𝐴𝑒 ; PPS graph with vertex features 𝐻 (𝐿𝑑 )𝑝 , and adjacent matrix𝐴𝑝 .

1 begin
// Construct the EEG and PPS prior edges.

2 Calculate Ω𝑒 , where every Ω𝑒,𝑖, 𝑗 ← ∥𝜔𝑒,𝑖 − 𝜔𝑒,𝑗 ∥2 ;
3 Calculate Φ𝑒 , where every Φ𝑒,𝑖, 𝑗 ← MI

(
𝑋𝑖 , 𝑋 𝑗

)
. And the adjacent matrix 𝐴𝑒 ← 𝜆ΩΩ + (1 − 𝜆Ω)Φ𝑒 ; // EEG edges.

4 Calculate Φ𝑝 , where every Φ𝑝,𝑖, 𝑗 ← MI
(
𝑋𝑖 , 𝑋 𝑗

)
. And the adjacent matrix 𝐴𝑝 ← Φ𝑝 ; // PPS edges.

// Temporal embedding.
5 𝐻

(0)
𝑒 = 𝑓 𝑡𝑒 (𝑋𝑒 ), and 𝐻 (0)𝑝 = 𝑓 𝑡𝑒

(
𝑋𝑝

)
; // Apply the one-dimensional convolutional layers.

// MGRT layers.
6 for ℓ ← 1 to 𝐿𝑑 do

// Multi-modality self-attention module.

7 𝐻
(ℓ )
𝑒𝑝,att ←

[
𝐻
(ℓ−1)
𝑒

���𝐻 (ℓ−1)𝑝

]
;

8 𝐻
(ℓ )
𝑒𝑝,att ← Norm

(
𝐻
(ℓ )
𝑒𝑝,att + Self-Attention

(
𝐻
(ℓ−1)
𝑒𝑝,att

))
; // Multi-heads self-attention, following (4).

9 Split 𝐻𝑒,att ←
(
𝐻
(ℓ )
𝑒𝑝,att

)
1:𝑐𝑒

, and 𝐻𝑝,att ←
(
𝐻
(ℓ )
𝑒𝑝,att

)
𝑐𝑒 :𝑐𝑒+𝑐𝑝

;

// EEG and PPS graph regularization modules.

10 𝐻
(ℓ )
𝑒,gr ← Norm

(
GR

(
𝐻
(ℓ−1)
𝑒 , 𝐴𝑒

))
, and 𝐻 (ℓ )𝑝,gr ← Norm

(
GR

(
𝐻
(ℓ−1)
𝑝 , 𝐴𝑝

))
; // Graph regularization, following (5).

// Integrating MMSA and GR.

11 𝐻
(ℓ )
𝑒 ← 𝜎

(
𝑓
Θffn
𝑒

(
𝐻
(ℓ )
𝑒,gr + 𝐻

(ℓ )
𝑒,att

))
, and 𝐻 (ℓ )𝑝 ← 𝜎

(
𝑓
Θffn
𝑝

(
𝐻
(ℓ )
𝑝,gr + 𝐻

(ℓ )
𝑝,att

))
; // Feed-forward, following (6).

12 return 𝐻
(𝐿𝑑 )
𝑒 , 𝐴𝑒 , 𝐻

(𝐿𝑑 )
𝑝 , 𝐴𝑝

E ALGORITHM OF CMMGD FRAMEWORK
This section outlines the algorithm of the proposed CMMGD frame-
work, which is designed to enhance the generalizability of multi-
modal emotion recognition across subjects. The algorithm is de-
tailed in Algorithm 1.

We further provide the details of the MGRT backbone and GRT
modules in Algorithm 2 and Algorithm 3, respectively.

Algorithm 3: The GRT modules

Data: The initial vertex features 𝐻 (0) , and the adjacent
matrix 𝐴; the number of GRT layers 𝐿𝑓 .

Result: The embedded vertex features 𝐻 (𝐿𝑓 ) .

1 begin
2 for ℓ ← 1 to 𝐿𝑓 do

// Self-attention module.

3 𝐻
(ℓ )
att ← Norm

(
𝐻
(ℓ )
att + Self-Attention

(
𝐻
(ℓ−1)
att

))
;

// Graph regularization module.

4 𝐻
(ℓ )
gr ← Norm

(
GR

(
𝐻 (ℓ−1) , 𝐴

))
;

5 𝐻 (ℓ ) ← 𝜎

(
𝑓 Θffn

(
𝐻
(ℓ )
gr + 𝐻

(ℓ )
att

))
;

6 return 𝐻 (𝐿𝑓 )

F THE DETAILS OF DATASETS
This section introduces the two benchmark datasets in this study:
the DEAP [9] and the MAHNOB–HCI [23]. Both of them contain
physiological signals of two modalities. Table 1 briefly describes
the two datasets.
DEAP. The DEAP dataset is a multimodal dataset for analyzing
human affective states [9]. It comprises 32-channel EEG signals and
8-channel PPS, encompassing GSR, blood volume pressure, respira-
tion pattern, skin temperature, EMG (two-channel), and EOG (two-
channel). These signals were recorded from 32 participants while
viewing 40 one-minute-long music video excerpts, each preceded
by an additional 3-second pre-trial baseline signal. Following each
trial, participants report their emotional state regarding arousal,
valence, dominance, and preference, using nine discrete levels for
each dimension.

We employ the official preprocessed data, which involves apply-
ing bandpass frequency filtering, eliminating EOG artifacts, and
downsampling EEG signals and PPS to 128 Hz.
MAHNOB–HCI. The MAHNOB–HCI dataset is created for emo-
tion recognition and implicit tagging research [23]. It contains
32-channel EEG signals and 6-channel PPS, including GSR, ECG
(three-channel), respiration pattern, and skin temperature. The
physiological signals are recorded when participants watch 20 emo-
tional video excerpts between 34.9 and 117 seconds long (the mean
is 81.4 seconds, and the standard deviation is 22.5 seconds).
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The full MAHNOB–HCI dataset contains 30 participants. How-
ever, as instructed by [23], the 9th, 12th, and 15th persons are deleted
since their original data are not intact. The data is collected at 256
Hz, and we downsample the signals to 128 Hz to keep consistency
with the DEAP dataset. The first 30 seconds before the start of each
trial are used as the baseline signal.

G THE DETAILS OF IMPLEMENTATION
Data Preprocessing. We downsample the EEG and PPS signals to
128 Hz to ensure consistency across datasets. For MAHNOB–HCI
dataset, we apply a bandpass filter to the EEG signals within the
range of 0.5-45 Hz, the same as the DEAP dataset. The baselines of
the signals are removed by subtracting the mean value of baselines
from the entire signal [6, 29]. The signals are then normalized to
have zero mean and unit variance. To increase the number of data,
we segment the signals into four-second non-overlapping windows
to encourage the model to capture short-term dynamics. This is
consistent with the approach by Liu et al. [14].
Experimental Setup. We employ the AdamW optimizer [15] with
a learning rate of 1e-4 and a weight decay term of 2e-1. The training
epochs are set to 180 for DEAP and 300 for MAHNOB–HCI. The
batch size is set to 20 for each subject during training, which means
the actual batch size is 20 × (32 − 1) = 620 samples for DEAP,
and 20 × (27 − 1) = 520 samples for MAHNOB–HCI. We use
the PyTorch library to implement the model, and the model can
be run on a single NVIDIA RTX 4090 GPU with 24GB memory.
Regarding the losses, we assign Ldiv, Laln, and Lcross values of
4e-1, 2e-1, and 1e-1, respectively. We incorporate the Leave-One-
Subject-Out (LOSO) cross-validation technique, and the evaluation
metrics include accuracy and F1 score reported on the excluded
subject.

The remaining hyperparameters are determined based on the
sensitivity analysis in Section 5.4. We adopt the two types of basic
data augmentation, including cropping the raw signals and mul-
tiplying the signals by a random factor sampled from a uniform
distribution between 0 and 2. The augmentation ratio in Section 5.4
means the ratio of the augmented channels in each sample.

H THE DETAILS OF BASELINE METHODS
This section provides an introduction to each comparative method
in Section 5.2. These methods include seven unimodal methods
which solely adopt the EEGmodality: LSVM-GSU [26], ACRNN [25],
BiDANN [11], EEGFuseNet [12],Liu et al. [13], TMLP+SRDANN
[10], TSception [2], and CAFNet [32]. We further make a com-
parison with seven multimodal methods that consider both EEG
and PPS modalities. These methods contain RBM [22], MIL [21],
MMResLSTM [17], RDFKM [30], CSDAMER [5], and EmotionKD
[14].
Baseline Methods in Comparison of CMMGD. We present
details of comparison methods in Table 2 and Table 3. The following
are the details of methods solely adopting the EEG modality:

• LSVM-GSU [26]: The linear SVM-GSU (LSVM-GSU) pro-
poses a maximum margin classifier that deals with uncer-
tainty in data input. It conducts a leave-one-trial-out cross-
validation to evaluate the model.

• ACRNN [25]: The ACRNN proposes the attention-based
convolutional recurrent neural network to extract discrimi-
native features from EEG signals. It adopts a channel-wise
attention mechanism to adaptively assign different channels
weights, and a convolutional neural network (CNN) to cap-
ture the spatial information. The temporal information is
captured by the recurrent neural network (RNN).
• BiDANN [11]: The BiDANN introduces a global and two
local domain discriminators that work adversarially to learn
discriminative emotional features for each brain hemisphere.
This model is inspired by the neuroscience findings that the
left and right hemispheres of the human brain are asymmet-
ric.
• EEGFuseNet [12]: The EEGFuseNet proposes a practical hy-
brid unsupervised deep convolutional recurrent generative
adversarial network to learn generic and independent EEG
features.
• Liu et al. [13]: Liu et al. [13] employ coordinate attention
to endow the input signal with relative spatial information
and then maps the EEG signal to higher dimensional space.
A double-layer capsule network is constructed to utilize the
relative location information of EEG.
• TMLP+SRDANN [10]: The TMLP+SRDANN designs the
transposition multi-layer perceptron (TMLP) and sample-
reweighted domain adaptation neural network (SRDANN) in
one learning framework, attempting to learn more domain-
invariant and class-discriminative EEG features.
• TSception [2]: The TSception model proposes to learn the
temporal dynamics and spatial asymmetry of EEG signals
by employing a multi-scale convolutional neural network.
• CAFNet [32]: The CAFNet develops a self-attention-based
multi-channel long-short-term memory (LSTM) network
and a confidence regression network to estimate true class
probability.

The following are the details of methods considering both EEG and
PPS modalities, leveraging multimodal fusion techniques:

• RBM [22]: This method proposes using a restricted Boltz-
mann machine to model the inherent dependencies among
multimodal physiological signals. A support vector machine
is adopted to recognize emotional states.
• MIL [21]: The MIL proposes a multiple instance learning-
based framework to model time intervals by capturing the
presence or absence of relevant states without the need to
label the affective responses continuously, which is a crucial
challenge in real-life applications.
• MMResLSTM [17]: The MMResLSTM introduces a multi-
modal residual LSTM, sharing the weights across the modal-
ities in each LSTM layer to learn the correlation between the
EEG and PPS.
• RDFKM [30]: The RDFKM constructs ensemble dense em-
beddings of multimodal features using kernel matrices and
then utilizes a deep network architecture to learn task-specific
representations of multi-modality signals.
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(a) Averaged correlations on arousal dimension of the DEAP dataset.
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(b) Averaged correlations on valence dimension of the DEAP dataset.
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(c) Averaged correlations on arousal dimension of the MAHNOB–HCI dataset.
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(d) Averaged correlations on valence dimension of the MAHNOB–HCI dataset.

Figure 3: The visualization of averaged cross-modality correlations on the arousal and valence dimensions.

• CSDAMER [5]: The CSDAMER method realizes multimodal
emotion recognition using CNN-SVM and data augmenta-
tion to realize multimodal emotion recognition. The perfor-
mance of this model is borrowed from Liu et al. [14].
• EmotionKD [14]: The EmotionKD conducts cross-modal
knowledge distillation that simultaneously models the het-
erogeneity and interactivity of EEG signals and PPS under a
unified framework.

The comparison between the proposed CMMGD and these meth-
ods is conducted on the DEAP and MAHNOB–HCI datasets in

Section 5.2, and CMMGD has demonstrated superior performance
over these methods.
Baseline Methods in Comparison of MGRT Backbone. We
proceed to introduce the comparative methods in Table 4. In this
experiment, we replace the MGRT backbone with the following
methods and conduct themodel training following the same settings
and data preprocessing as the CMMGD to get a fair comparison. The
following are the details of the two adopted graph convolutional
network-based methods:
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(a) Highly activated edges on arousal
dimension of the DEAP dataset.
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(b) Highly activated edges on valence
dimension of the DEAP dataset.
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(c) Highly activated edges on arousal
dimension of the MAHNOB–HCI
dataset.
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(d) Highly activated edges on va-
lence dimension of the MAHNOB–
HCI dataset.

Figure 4: The visualization of highly activated edges on the arousal and valence dimensions. The wider line indicates the
stronger correlation between the two channels.

• GCN [8]: The GCN layer is a benchmark graph neural net-
work layer realizing the graph convolution operation. It is
widely used in graph-based tasks.
• GraphConv [19]: The GraphConv layer is a powerful gen-
eralization of the graph neural network, taking higher-order
graph structures at multiple scales into account. It has been
demonstrated to be the benchmark in graph-level represen-
tation tasks.

We also replace the MGRT backbone with the Transformer [27],
which is popular in a variety of sequence-based tasks. Subsequently,
as the combination of the Transformer and graph-based methods,
namely the graph transformer, we replace the MGRT backbone
with the following graph transformer variants:
• GraphGPS* [20]: The GraphGPS aims to build a general,
powerful, scalable graph transformer and provides a modu-
lar graph transformer framework. The original GraphGPS
can handle the unimodal graph, and we extend it to the mul-
timodal emotion recognition task by employing different
graph convolutional networks and different feed-forward
networks for EEG and PPS modalities, respectively. We name
the extended model as GraphGPS*.
• EmoGTs [7]: The EmoGTs is the latest graph transformer for
emotion recognition. It builds an elastic graph transformer
network leveraging the Transformer for time series analysis
and graph convolutional networks for topological analysis.

The comparison between the proposed MGRT backbone and these
methods is conducted on the DEAP and MAHNOB–HCI datasets
in Section 5.2, and the MGRT backbone has demonstrated superior
performance over these methods.

I VISUALIZATION OF CROSS-MODALITY
CORRELATION PATTERNS

Cross-Modality Correlation. This section visualizes the cross-
modality correlation on the arousal and valence dimensions of the
DEAP and MAHNOB–HCI dataset, shown in Figure 3, respectively.
We select the first three subjects in both datasets and plot the cross-
modality correlation scheme averaged of the correlation scores
across all samples of the left-out subject. It is observed that the
cross-modality correlation patterns are diverse. For instance, on the

valence dimension of the DEAP dataset, the GSR, Resp, Plet, and
Temp channels of PPS modality from the 3rd subject have grand
connections with EEG channels. However, their connections are
weak considering the 1st and 2nd subjects. This indicates that the
proposed CMMGD framework can adaptively capture the cross-
modality correlation patterns of different subjects. Furthermore,
the cross-modality correlation between the arousal and valence
dimensions of the same subject is diverse. This indicates that the
arousal and valence dimensions are not always positively correlated.
The two dimensions are independent and should be considered
separately in the emotion recognition task.
Highly Activated Correlations. We further visualize the highly
activated cross-modality correlation on the arousal and valence
dimensions of the DEAP and MAHNOB–HCI dataset, shown in
Figure 4, respectively. The highly activated correlation contains the
top 8% correlations across the first three subjects in both datasets.
The line width of the edge represents the strength of the correlation,
which is calculated by the correlation score. The wider line indicates
the stronger correlation between the two channels. Visualizing the
highly activated edges provides insights into the most crucial cross-
modality correlation patterns in the emotion recognition task. These
highly activated edges are inconsistent across different emotion
dimensions, indicating the heterogeneous and complex nature of the
emotion recognition task. The proposed CMMGD framework can
effectively capture the essential cross-modality correlation patterns,
and the subsequent graph decomposition and fusion mechanism
based on the multi-modality correlation can further enhance the
generalizability of emotion recognition across subjects.

J VISUALIZATION OF BRAIN ACTIVATION
This section provides the visualization of brain activation in the
DEAP and MAHNOB–HCI datasets, shown in Figure 5. We visu-
alize the activation of each channel in the EEG signals, and the
activation is averaged on all samples of the left-out subject during
the validation process. The activation value is the average of 𝐻 (𝐿𝑑 )𝑒

across all samples of the left-out subject. The brain activation topo-
graphic map is the interpolation of the activation values across the
32 channels. Each channel is placed at the corresponding position
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(a) Activation on DEAP. (b) Activation on MAHNOB–HCI.

Figure 5: The visualization of brain activation in the DEAP
and MAHNOB–HCI datasets.

on the 10-20 system. The high activation of the brain region is rep-
resented by the red color, while the low activation is represented by
the blue color. The brain activation topographic maps are averaged
on all samples on the left-out subject. The circles represent the
partially found consistent brain regions across subjects.

In Figure 5, we mark partially consistent highly activated brain
regions across subjects with circles, indicating that the proposed
CMMGD framework can effectively capture the brain activation
patterns. Specifically, considering the 1st and 2nd subjects, they
have grand similar activation patterns on the arousal dimension.
On the other hand, the 2nd and 3rd subjects have grand similar
activation patterns on the valence dimension. Moreover, the activa-
tion patterns on the MAHNOB–HCI dataset are consistent across
all three subjects, which indicates the robustness of the proposed
CMMGD framework.
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