
Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 PROOF OF THEOREM 1

Since ZL ∈ ẐL it trivially holds that

min
z∈ẐL

max{c>y,iz, c>a,iz} ≤ min
z∈ZL

max{c>y,iz, c>a,iz} (20)

The lower bound is now a convex minimization, which can be rewritten as

min
z∈ẐL

max{c>y,iz, c>a,iz} = min
τ,z∈ẐL

τ s. t. c>y,iz ≤ τ , c>a,iz ≤ τ.

Defining the slack variables ηa ≥ 0 and ηy ≥ 0 for the inequality constraints, the Lagrangian can be
written as

L(τ, z, ηa, ηy) = τ + ηa(c>a,iz− τ) + ηy(c>y,iz− τ)

and minimizing L(τ, z, ηa, ηy) with respect to the primal variable τ , yields ηa + ηy = 1. Defining
η := ηa = 1− ηy , and using the fact that the dual maximization always serves as a lower bound on
the primal we get

max
0≤η≤1

min
z∈ẐL

(
η ca,i + (1− η) cy,i

)>
z ≤ min

z∈ZL
max{c>y,iz, c>a,iz}.�

A.2 PROOF OF THEOREM 2

Following on the statement of Theorem 1 and by substituting z = W>
LzL−1 + bL, we get

max
0≤η≤1

min
zL−1∈ẐL−1

(
η ca,i+(1−η) cy,i

)>(
W>

LzL−1+bL

)
≤ min

z∈ẐL
max{c>y,iz, c>a,iz} (21)

which can be reordered as

max
0≤η≤1

min
zL−1≤zL−1≤z̄L−1

(ω1 + ηω2)>zL−1 (22)

where ω1 := WLcy,i and ω2 := WL(ca,i − cy,i) , which then equals

max
0≤η≤1

(ω1 + ηω2)>ẑL−1 (23)

where minimization w.r.t. zL−1 is solved by the (this is under the setting for most networks with
positive activations, and thus lower bound zl is always non-negative)

[ẑL−1]j =

{
[z̄L−1]j if [ω1 + ηω2]j ≤ 0

[zL−1]j if [ω1 + ηω2]j ≥ 0
(24)

and can be rewritten as

max
0≤η≤1

nL−1∑
j=1

[
ω1 + ηω2

]
j

(
1
{η≤−

ω1,j

ω2,j
}
[z̄L−1]j + 1

{η≥−
ω1,j

ω2,j
}
[zL−1]j

)
(25)

and can be rewritten as

max
0≤η≤1

nL−1∑
j=1

(
1
{η≤−

ω1,j

ω2,j
}
[ω1 ◦ z̄L−1 + ηω2 ◦ z̄L−1]j + 1

{η≥−
ω1,j

ω2,j
}
[ω1 ◦ zL−1 +ω2 ◦ zL−1]j

)
(26)

where “◦” denotes the elementwise multiplication. Thus, due to the concavity of the dual, optimal
η can be found by evaluationg the objective in between the break points which are given by ζ :=
[ζ1, ..., ζnL] := −ω1/ω2 with element-wise division.

To do this, let us use s to denote the nL-ary tuple of indices that sorts ζ. That is

ζ̃ = [ζ̃1, ..., ζ̃nL] := Πs(ζ) := [ζs1 , ..., ζsnL] s.t. ζs1 ≤ ... ≤ ζsnL

12

Under review as a conference paper at ICLR 2021

with operator Πs(.) denoting the permutation of its arguments according to s, such that ζ̃i = ζsi∀i,
and ζ̃ is sorted in the increasing order .

We can also rewrite the problem by summing over the indices in the sorting set s instead, as

max
0≤η≤1

nL−1∑
j=1

(
1
{η≤−

ω1,sj

ω2,sj

}
[ω1◦z̄L−1+ηω2◦z̄L−1]sj+1

{η≥−
ω1,sj

ω2,sj

}
[ω1◦zL−1+ω2◦zL−1]sj

)
.

(27)

Now let us define u1 := Πs(ω1 ◦ zL−1) , ū1 := Πs(ω1 ◦ z̄L−1), u2 := Πs(ω2 ◦ zL−1) , ū2 :=
Πs(ω2 ◦ z̄L−1), we get

max
0≤η≤1

nL−1∑
j=1

(
1{η≤ζ̃j} (ū1,j + ηū2,j) + 1{η≥ζ̃j}

(
u1,j + ηu2,j

))
. (28)

By breaking the objective of maximization into piece-wise terms, and by imposing the feasible set
0 ≤ η ≤ 1 by finding indices

m = min
ζsν≥0

ν and M = max
ζsν≤1

ν

we can reduce the problem down to piece-wise maximizations for m ≤ ν ≤M − 1 as

max
ζ̃ν≤η≤ζ̃ν+1

ν∑
j=1

(
u1,j + ηu2,j

)
+

nL−1∑
j=ν+1

(ū1,j + ηū2,j) (29)

which will be maximized with lower bound of η = ζ̃ν if the coefficient of η is negative, and with
the upper bound η = ζ̃ν+1 otherwise.

So, the overall maximization boils down to obtaining αν + βν for ν = m, ...,M where

αν :=

ν∑
i=1

u1,i +

nL−1∑
i=ν+1

ū1,i = αν−1 + u1,ν − ū1,ν

and

qν =

ν∑
i=1

u2,i +

nL−1∑
i=ν+1

ū2,i = qν−1 + u2,ν − ū2,ν

and
βν =

(
ζ̃ν1{qν≤0} + ζ̃ν+11{qν>0}

)
× qν .

Values αν+βν can be efficiently computed by a forward cumulative sum of u1 and u2, and forward-
backward cumulative sum of ū1 and ū2, thus imposing the overall complexity which is dominated
by the sorting at O(nL−1 log(nL−1)). .�

A.3 DESCRIPTION OF ALGORITHM 1

Here is a step-by-step walk-through for Algorithm 1, with insight on how these steps are performed
and why.

It is important to notice that the optimization in Theorem 2 could also be solved alternatively via
bi-section which maybe simpler, however Alg. 1 solves it analytically.

1. Form vectors ω1 and ω2, which are the last layer values as ω1 = WLcy,i and ω2 =
WL(ca,i − cy,i)

2. Define ζ = [ζ1, ..., ζnL] := −ω1/ω2 and get the vector of indices s that sorts it, i.e.,
ζs1 ≤ · · · ≤ ζsnL−1

13

Under review as a conference paper at ICLR 2021

3. Form the element-wise product of (ω1, ω2) with (zL−1, z̄L−1)), and sort them according
to the index set s.
u1 = Πs(ω1 ◦zL−1) , ū1 = Πs(ω1 ◦ z̄L−1), u2 := Πs(ω2 ◦zL−1) , ū2 := Πs(ω2 ◦ z̄L−1).

4. Get the lowest and highest indexes (m,M) such that the sorted ζ vector value at those indices
are between 0 and 1.

5. Now, at this point the goal is to iterate over the index ν = m, ...,M , and evaluate the
objective (which can be expressed as αν + βν) for each ν, and select the optimal value.
However, this can be done in an intelligent way to save computation. To this end initialize
these values at

αm =

m∑
i=1

u1,i +

nL−1∑
i=m+1

ū1,i

qm =

m∑
i=1

u2,i +

nL−1∑
i=m+1

ū2,i

βm =
(
ζ̃ν1{qν≤0} + ζ̃ν+11{qν>0}

)
× qν

6. Iterate over ν = m+ 1, ...,M and set

αν = αν−1 + u1,ν − ū1,ν

qν = qν−1 + u2,ν − ū2,ν

βν = qν

(
ζsν1{qν≤0} + ζsν+11{qν>0},

)
7. Return the maximum value of αν + βν over ν = m, ...,M − 1

A.4 PROOF OF THEOREM 3

Let us start by splitting the feasible set into disjoint sets of

ẐaL−1 := {zL−1 | zL−1,a ≥ zL−1,y}, and ẐyL−1 := {zL−1 | zL−1,a < zL−1,y}
where

ẐL−1 = ẐyL−1 ∪ Ẑ
a
L−1, and ẐyL−1 ∩ Ẑ

a
L−1 = ∅.

Proof is carried out by considering z ∈ ẐyL−1 and z ∈ ẐaL−1, separately.

Restricting z ∈ ẐyL−1 we have `xent\a(fθ(x + δ), y) ≤ `xent\y(fθ(x + δ), a) which leads to

Labstain
robust (x, y; θ) = max

δ∈∆
min

{
`xent\a(fθ(x + δ), y), `xent\y(fθ(x + δ), a)

}
(30)

≤ max
zL−1∈ẐyL−1

`xent\a(zL, y) s.t. zL = W>
LzL−1 + bL (31)

Loss function `xent\a is the cross entropy loss defined on the K-dimensional vector [zL,1, · · · , zL,K]
and class y, and thus following Wong & Kolter (2018) given its transnational invariance equals

max
zL−1∈ẐyL−1

`xent\a(zL, y) = max
zL−1∈ẐyL−1

`xent\a(zL − zL,y1, y) s.t. zL = W>
LzL−1 + bL (32)

with 1 denoting the (K + 1)-dimensional vector of all ones. Given the invariance of `xent\a with
respect to zL,a, it can finally be upperbounded by taking the upperbound for all i indices where
i = 1, ...,K, i 6= a, y and lowerbound at index i = y. Note that for i = y, value [zL − zL,y1]i = 0,
and a lower bound on other entries i = 1, ...,K, i 6= a, y can be obtained by

zL,i − zL,y =−max{zL,y − zL,i, zL,a − zL,i} = −max{c>y,iz, c>a,iz} (33)

≤ − min
zL∈ZL

max{c>y,iz, c>a,iz} ≤ −Ji(x, y) ≤ −Jη,η̄i (x, y) (34)

14

Under review as a conference paper at ICLR 2021

where the first equality holds since ẐyL−1 := {zL−1 | zL−1,a < zL−1,y} for z ∈ ẐyL−1, second
inequality is due to Theorem 2, and third inequality is given by Eq. 15.

Thus, for z ∈ ẐyL−1 the loss term is now upperbounded by

Labstain
robust (x, y; θ) ≤ `xent\a(−Jε,θ(x, y), y)

where

[Jε,θ(x, y)]i =

{
0 if i = a, y

J
η,η̄

i (x, y) otherwise.
(35)

Similarly, it can be shown that for Thus, for z ∈ ẐaL−1 the loss term is now upperbounded by

Labstain
robust (x, y; θ) ≤ `xent\y(−Jε,θ(x, y), a).

The equality of `xent\y(−Jε,θ(x, y), a) = `xent\a(−Jε,θ(x, y), y) trivially follows from the fact
that [Jε,θ(x, y)]i = 0 for i = a, y.

Thus, since ẐL−1 = ẐyL−1 ∪ ẐaL−1, the proof is complete. .�

B APPENDIX: EXPERIMENT SET UP

Training parameters and schedules are similar to (Gowal et al., 2018) and (Zhang et al., 2020), and
outlined in detail here. For training the classifier network with architecture given in Table 2, for
both datasets, Adam optimizer with learning rate of 5 × 10−4 is used. Unless stated differently, κ
is scheduled by a linear ramp-down process, starting at 1, which after a warm-up perio,d is ramped
down to value κend = 0.5. Value of ε during the training is also simultaneously scheduled by a linear
ramp-up, starting at 0, and ramped up to the final value of εtrain, reported in Tabel 1, and networks
are trained with a single NVIDIA Tesla V100S GPU.

• For MNIST, the network is trained in 100 epochs with batchsize of 100 (total of 60K steps).
A warm up period of 3 epochs (2K steps) is used (normal classification training with no
robust loss), followed up by a ramp-up duration of 18 epochs (10K steps), and the learning
rate is decayed ×10 at epochs 25 and 42. No data augmentation is used. Furthermore,
fixed selection of η̄ = 0.9 and η = 0.1 during training is used for this dataset with no
ramp-down. Reported numbers in Table 1 corresponds to λ1 = 1 and λ2 = 2 for ε = 0.3,
and λ1 = 0.6 and λ2 = 1 for ε = 0.4 respectively.

• For CIFAR10, the network is trained in 3200 epochs with batchsize of 1600 (total of 100K
steps). A warm up period of 320 epochs (10K steps) is used (normal classification training
with no robust loss), followed up by a ramp-up duration of 1600 epochs (50K steps), and
the learning rate is decayed ×10 at epochs 2600 and 3040 (60k and 90K steps). Random
translations and flips, and normalization of each image channel (using the channel statistics
from the train set) is used during training. Furthermore, during training for all ε values we
have selected η̄start = 1.0 and η̄end = 0.9. Additionally, η

end
= 0.1 is used during training,

with η
start

= 0.1 for ε = 2/255 (no ramp down), η
start

= 0.3 for ε = 8/255, η
start

= 0.4

for ε = 12/255, and η
start

= 0.5 for ε = 16/255. The intuition behind these parameters
selection lies in Remark 2, as large η values promote the abstain option more, so for large
ε, we start with larger η

start
as well. Reported numbers in Tabel 1 correspond to λ1 = 1

for all ε values, and λ2 = 3.0 for ε = 2/255, λ2 = 2.9 for ε = 8/255, and λ2 = 3.1 for
ε = 16/255 to insure similar natural accuracy for fair comparison against other methods.

B.1 EMPIRICAL ATTACK SUCCESS RATE USING PGD ATTACKS

In order to obtain empirical attack success on the trained networks, adversarial perturbations are
sought by solving

max
δ∈∆ε

(
max
i6=a,y

zL,i −max{zL,y, zL,a}
)

(36)

15

Under review as a conference paper at ICLR 2021

Network layers
Conv 64 3× 3 + 1
Conv 64 3× 3 + 1
Conv 128 3× 3 + 2
Conv 128 3× 3 + 1
Conv 128 3× 3 + 1
Fully Conn. 512
hidden 230K
params. 17M

Table 2: Network architecture. Similar to the Large network used in (Gowal et al., 2018)

This attack is indeed an adaptive attack as it aims at circumventing the detection while trying to cause
misclassification (Tramer et al., 2020). Perturbations are sought by maximizing this objective using
PGD with 200-steps for mnist and 500-steps for CIFAR-10 Madry et al. (2017), with 10 random
restarts. It is interesting to note that the achieved attack success rate in Table 1 is well below the
verified robust error, further implying the effectiveness of incorporation of the detection mechanism
as the true robustness of the system against practical adaptive PGD attacks are considerably stronger
in comparison to robust classification without detection.

16

