
Under review as a conference paper at ICLR 2022

A SETUP DETAILS

A.1 R2D2 DISTRIBUTED SYSTEM SETUP

Following R2D2, the distributed system consists of several parts: actors, a replay buffer, a learner,
and an evaluator. Additionally, we introduce a centralized batched inference process to make more
efficient use of actor resources.

Actors: We use 512 processes to interact with independent copies of the environment, called actors.
They send the following information to a central batch inference process:

• xt: the observation at time t.
• rt�1: the reward at the previous time, initialized with r�1 = 0.
• at�1: the action at the previous time, a�1 is initialized to 0.
• ht�1: recurrent state at the previous time, is initialized with h�1 = 0.

They block until they receive Q(xt, a; ✓). The l-th actor picks at using an ✏l-greedy policy. As R2D2,
the value of ✏l is computed following:

✏l = ✏
1+↵

l
L�1

where ✏ = 0.4 and ↵ = 7. After that is computed, the actors send the experienced transition
information to the replay buffer.

Batch inference process: This central batch inference process receives the inputs mentioned above
from all actors. This process has the same architecture as the learner with weights that are fetched
from the learner every 0.5 seconds. The process blocks until a sufficient amount of actors have sent
inputs, forming a batch. We use a batch size of 64 in our experiments. After a batch is formed, the
neural network of the agent is run to compute Q(xt, a, ✓) for the whole batch, and these values are
sent to their corresponding actors.

Replay buffer: it stores fixed-length sequences of transitions T = (!s)
t+L�1
s=t

along with
their priorities pT , where L is the trace length we use. A transition is of the form !s =
(rs�1, as�1, hs�1, xs, as, hs, rs, xs+1). Concretely, this consists of the following elements:

• rs�1: reward at the previous time.
• as�1: action done by the agent at the previous time.
• hs�1: recurrent state (in our case hidden state of the LSTM) at the previous time.
• xs: observation provided by the environment at the current time.
• as: action done by the agent at the current time.
• hs: recurrent state (in our case hidden state of the LSTM) at the current time.
• rs: reward at the current time.
• xs+1: observation provided by the environment at the next time.

The sequences never cross episode boundaries and they are stored into the buffer in an overlapping
fashion, by an amount which we call the replay period. Finally, concerning the priorities, we followed
the same prioritization scheme proposed by Kapturowski et al. (2018) using a mixture of max and
mean of the TD-errors in the sequence with priority exponent ⌘ = 0.9.

Evaluator: the evaluator shares the same network architecture as the learner, with weights that are
fetched from the learner every episode. Unlike the actors, the experience produced by the evaluator
is not sent to the replay buffer. The evaluator acts in the same way as the actors, except that all
the computation is done within the single CPU process instead of delegating inference to the batch
inference process. At the end of 5 episodes the results of those 5 episodes are average and reported.
In this paper we report the average performance provided by such reports over the last 5% frames (for
example, on Atari this is the average of all the performance reports obtained when the total frames
consumed by actors is between 190M and 200M frames).

14

Under review as a conference paper at ICLR 2022

Learner: The learner contains two identical networks called the online and target networks with
different weights ✓ and ✓

0 respectively (Mnih et al., 2015). The target network’s weights ✓
0 are

updated to ✓ every 400 optimization steps. ✓ is updated by executing the following sequence of
instructions:

• First, the learner samples a batch of size 64 (batch size) of fixed-length sequences of
transitions from the replay buffer, with each transition being of length L: Ti = (!i

s
)t+L�1
s=t

.
• Then, a forward pass is done on the online network and the target with

inputs (xi

s
, r

i

s�1, a
i

s�1, h
i

s�1)
t+H

s=t
in order to obtain the state-action values

{(Q(xi

s
, a; ✓), Q(xi

s
, a; ✓0)}.

• With {(Q(xi

s
, a; ✓), Q(xi

s
, a; ✓0)}, the Q(�) loss is computed.

• The online network is used again to compute the auxiliary contrastive loss.
• Both losses are summed (with by weighting the auxiliary loss by 0.1 as described in C), and

optimized with an Adam optimizer.
• Finally, the priorities are computed for the sampled sequence of transitions and updated in

the replay buffer.

A.2 V-MPO DISTRIBUTED SETUP

For on-policy training, we used a Podracer setup similar to (Hessel et al., 2021) for fast usage of
experience from actors by learners.

TPU learning and acting: As in the Sebulba setup of (Hessel et al., 2021), acting and learning
network computations were co-located on a set of TPU chips, split into a ratio of 3 cores used for
learning for every 1 core used for inference. This ratio then scales with the total number of chips
used.

Environment execution: Due to the size of the recurrent states used by COBERL and stored on the
host CPU, it was not possible to execute the environments locally. To proceed we used 64 remote
environment servers which serve only to step multiple copies of the environment. 1024 concurrent
episodes were processed to balance frames per second, latency between acting and learning, and
memory usage of the agent states on the host CPUs.

A.3 COMPUTATION USED

R2D2 We train the agent with a single TPU v2-based learner, performing approximately 5 network
updates per second (each update on a mini-batch of 64 sequences of length 80 for Atari and 120
for Control). We use 512 actors, using 4 actors per CPU core, with each one performing ⇠ 64
environment steps per second on Atari. Finally for the batch inference process a TPU v2, which
allows all actors to achieve the speed we have described. In particular, we used 8 TPU cores for
learning and 2 for inference.

V-MPO We train the agent with 4 hosts each with 8 TPU v2 cores. Each of the 8 cores per host
was split into 6 for learning and 2 for inference. We separately used 64 remote CPU environment
servers to step 1024 concurrent environment episodes using the actions returned from inference. The
learner updates were made up of a mini-batch of 120 sequences, each of length 95 frames. This setup
enabled 4.6 network updates per second, or 53.4k frames per second.

A.4 COMPLEXITY ANALYSIS

As stated, the agent consists of layers of convolutions, transformer layers, and linear layers. Therefore
the complexity is max{O(n2 ·d), O(k ·n ·d2)}, where k is the kernel size in the case of convolutions,
n is the size of trajectories, and d is the size of hidden layers.

15

Under review as a conference paper at ICLR 2022

B ARCHITECTURE DESCRIPTION

B.1 ENCODER

As shown in Fig. 1, observations Oi are encoded using an encoder. In this work, the encoder we
have used is a ResNet-47 encoder. Those 47 layers are divided in 4 groups which have the following
characteristics:

• An initial stride-2 convolution with filter size 3x3 (1 · 4 layers).

• Number of residual bottleneck blocks (in order): (2, 4, 6, 2). Each block has 3 convolutional
layers with ReLU activations, with filter sizes 1x1, 3x3, and 1x1 respectively ((2+4+6+2)·3
layers).

• Number of channels for the last convolution in each block: (64, 128, 256, 512).

• Number of channels for the non-last convolutions in each block: (16, 32, 64, 128).

• Group norm is applied after each group, with a group size of 8.

After this observation encoding step, a final 2-layer MLP with ReLU activations of sizes (512, 448)
is applied. The previous reward and one-hot encoded action are concatenated and projected with
a linear layer into a 64-dimensional vector. This 64-dimensional vector is concatenated with the
448-dimensional encoded input to have a final 512-dimensional output.

B.2 TRANSFORMER

As described in Section 2, the output of the encoder is fed to a Gated Transformer XL. For Atari and
Control, the transformer has the following characteristics:

• Number of layers: 8.

• Memory size: 64.

• Hidden dimensions: 512.

• Number of heads: 8.

• Attention size: 64.

• Output size: 512.

• Activation function: GeLU.

For DmLab the transformer has the following characteristics:

• Number of layers: 12.

• Memory size: 256 for COBERL and 512 for gTrXL.

• Hidden dimensions: 128.

• Number of heads: 4.

• Attention size: 64.

• Output size: 512.

• Activation function: ReLU.

the GTrXL baseline is identical, but with a Memory size of 512.

B.3 LSTM AND VALUE HEAD

For both R2D2 and V-MPO the outputs of the transformer and encoder are passed through a GRU
transform to obtain a 512-dimensional vector. After that, an LSTM with 512 hidden units is applied.
The the value function is estimated differently depending on the RL algorithm used.

16

Under review as a conference paper at ICLR 2022

R2D2 Following the LSTM, a Linear layer of size 512 is used, followed by a ReLU activation.
Finally, to compute the Q values from that 512 vector a dueling head is used, as in Kapturowski et al.
(2018), a dueling head is is used, which requires a linear projection to the number of actions of the
task, and another projection to a unidimensional vector.

V-MPO Following the LSTM, a 2 layer MLP with size 512 and 30 (i.e. the number of levels in
DMLab) is used. In the MLP we use ReLU activation. As we are interested in the multi-task setting
where a single agent learns a large number of tasks with differing reward scales, we used PopArt (van
Hasselt et al., 2016) for the value function estimation (see Table. 13 for details).

B.4 CRITIC FUNCTION

For DmLab-30 (V-MPO), we used a 2 layer MLP with hidden sizes 512 and 128. For Atari and
Control Suite (R2D2) we used a single layer of size 512.

17

Under review as a conference paper at ICLR 2022

C HYPERPARAMETERS

For the experiments in Atari57 and the DeepMind Control suite, COBERL uses the R2D2 distributed
setup. We use 512 actors for all our experiments. We do not constrain the amount of replay done
for each experience trajectory that actors deposit in the buffer. However, we have found empirical
replay frequency per data point to be close among all our experiments (with an expected value of 1.5
samples per data point). We use a separate evaluator process that shares weights with our learner
in order to measure the performance of our agents. We report scores at the end of training. The
hyperparameters and architecture we choose for these two domains are the same with two exceptions:
i) we use a shorter trace length for Atari (80 instead of 120) as the environment does not require a
long context to inform decisions, and ii) we use a squashing function on Atari and the Control Suite
to transform our Q values (as done in (Kapturowski et al., 2018)) since reward structures vary highly
in magnitude between tasks.

C.1 ATARI AND DMLAB PRE-PROCESSING

We use the commonly used input pre-processing on Atari and DMLab frames, shown on Tab. 8. One
difference with the original work of Mnih et al. (2015), is that we do not use frame stacking, as
we rely on our memory systems to be able to integrate information from the past, as done in Kap-
turowski et al. (2018). ALE is publicly available at https://github.com/mgbellemare/
Arcade-Learning-Environment.

Hyperparameter Value
Max episode length 30min

Num. action repeats 4
Num. stacked frames 1
Zero discount on life loss false

Random noops range 30
Sticky actions false

Frames max pooled 3 and 4
Grayscaled/RGB Grayscaled
Action set Full

Table 7: Atari pre-processing hyperparameters.

C.2 CONTROL SUITE PRE-PROCESSING

As mentioned in 4, we use no pre-processing on the frames received from the control environment.

C.3 DMLAB PRE-PROCESSING

Hyperparameter Value
Num. action repeats 4
Num. stacked frames 1
Grayscaled/RGB RGB
Image width 96
Image height 72
Action set as in Parisotto et al. (2020)

Table 8: DmLab pre-processing hyperparameters.

C.4 CONTROL ENVIRONMENT DISCRETIZATION

As mentioned, we discretize the space assigning two possibilities (1 and -1) to each dimension
and taking the Cartesian product of all dimensions, which results in 2n possible actions. For the
cartpole tasks, we take a diagonal approach, utilizing each unit vector in the action space and

18

Under review as a conference paper at ICLR 2022

then dividing each unit vector into 5 possibilities with the non-zero coordinate ranging from -1 to 1.
The amount of actions this results in is outlined on Tab. 9.

Task Action space size Total amount of actions
Acrobot 1 2
Cartpole 1 5
Cup 2 4
Cheetah 6 64
Finger 2 4
Fish 5 32
Pendulum 1 2
Reacher 2 4
Swimmer 5 32
Walker 6 64

Table 9: Control discretization action spaces.

C.5 HYPERPARAMETERS USED

We list all hyperparameters used here for completeness.

We started by optimizing the hyperparameters of GTrXL highlighted in bold in Tab 10 by doing a
sweep over 10 Atari games: Seaquest, Qbert, Frostbite, Ms Pacman, Space Invaders, Gravitar, Solaris,
Hero, Venture, Montezuma Revenge. Following this, the hyperparameters were kept fixed throughout
all the experiments.

Table 10 reports all the hyperparameters of the R2D2 experiments, both the fixed ones and the
ones with the ranges over which we did the sweep. The fixed hyper-parameters were taken from
Kapturowski et al. (2018). We then choose a set of hyper-paramters (both for the architecture and
the algorithm) to sweep over to maximise the performance of gTrXL in this off-policy setting, given
that there was not prior literature on this. The hyper-paramters over which we did the sweep for the
algorithm were chose in accordance to Kapturowski et al. (2018) and the related sweep. And for
the architecture hyper-parameters we based our choice on Parisotto et al. (2020). We believe that
in this way we ensure to have a properly tuned baseline that enforces a fair comparison. Table 11
reports the chosen hyperparameters that we found to optimize the performance of GTrXL on the 10
Atari games. We then moved to CoBERL. CoBERL, in comparison to the baseline GTrXL has two
extra hyperparamters: ‘Contrastive loss weight’ and ‘Contrastive loss mask rate’. The former was
tuned, whereas the latter we kept equal to 0.15 as done in [11]. Consequently, we re-ran the same
procedure as before, but we fixed all the previous hyperparameters optimized for GTrXL (see Tab. 11
and we perform a grid search over the same 10 Atari games to find the value of ‘Contrastive loss
weight’ that maximized performance. The values over which we did the search are 0.01, 0.1 and 1.
We ended-up picking 1, although the difference between 0.1 and 1 was minimal. Table 12 reports the
2 extra parameters used for COBERL.

For DmLAB we optimized the hyperparameters of GTrXL on all the 30 games. Table 13 reports
both the fixed ones and the ones with the ranges over which. The fixed hyper-parameters were taken
directly from Parisotto et al. (2020) and we sweep over ‘’Epsilon Alpha”, “Target Update Period”
and ’Memory size’ to make sure we maximised performance of this baseline. Table 14 reports the
chosen hyperparameters that we found to optimize the performance of GTrXL on DmLAB. We then
moved to CoBERL. Again, by keeping fixed all the previous hyperparameters optimized for GTrXL
we perform a grid search over all the 30 games to find the value of ‘Contrastive loss weight’ that
maximized performance. The values over which we did the search were 0.1 and 1. We did not
find any significant difference between the two values, so we left it equal to 1 such that the two
losses would have the same effect. Table 15 reports the 2 extra parameters used for CoBERL and
the reduced memory size, in accordance with our hypothesis that the LSTM on top of Transformer
would help reducing the size of the memory especially in last.

19

Under review as a conference paper at ICLR 2022

Hyperparameter Value
Optimizer Adam
Learning rate {0.0001, 0.0003}
Q’s � {0.8, 0.9}
Adam epsilon 10�7

Adam beta1 0.9
Adam beta2 0.999
Adam clip norm 40
Q-value transform (non-DMLab) h(x) = sign(x)(

p
|x|+ 1� 1) + ✏x

Q-value transform (DMLab) h(x) = x
Discount factor 0.997
Batch size 32
Trace length (Atari) 80
Trace length (non-Atari) 120
Replay period (Atari) 40
Replay period (non-Atari) 60
Replay capacity 80000 sequences
Replay priority exponent 0.9
Importance sampling exponent 0.6
Minimum sequences to start replay 5000
Target Q-network update period 400
Evaluation ✏ 0.01
Target ✏ 0.01
Number of layers {6,8,12}
Memory size {64,128}
Number of heads {4,8}
Attention size {64,128}

Table 10: GTrXL Hyperparameters used in all the R2D2 experiments with range
of sweep.

Hyperparameter Value
Optimizer Adam
Learning rate 0.0003
Q’s � 0.8
Adam epsilon 10�7

Adam beta1 0.9
Adam beta2 0.999
Adam clip norm 40
Q-value transform (non-DMLab) h(x) = sign(x)(

p
|x|+ 1� 1) + ✏x

Q-value transform (DMLab) h(x) = x
Discount factor 0.997
Batch size 32
Trace length (Atari) 80
Trace length (non-Atari) 120
Replay period (Atari) 40
Replay period (non-Atari) 60
Replay capacity 80000 sequences
Replay priority exponent 0.9
Importance sampling exponent 0.6
Minimum sequences to start replay 5000
Target Q-network update period 400
Evaluation ✏ 0.01
Target ✏ 0.01
Number of layers 8
Memory size 64
Number of heads 8
Attention size 64
Table 11: GTrXL Hyperparameters choosen for all the R2D2 experiments.

20

Under review as a conference paper at ICLR 2022

Hyperparameter Value
Contrastive loss weight 1.0
Contrastive loss mask rate 0.15

Table 12: Extra hyperparameters for CoBERL for the R2D2 experiments

21

Under review as a conference paper at ICLR 2022

Hyperparameter Value
Batch Size 120
Unroll Length 95
Discount 0.99
Target Update Period {10, 20, 50}
Action Repeat 4
Initial ⌘ 1.0
Initial ↵ 5.0
✏⌘ 0.1
✏↵ {0.001, 0.002}
Popart Step Size 0.001
Memory size {256,512}

Table 13: GTrXL Hyperparameters used in all the VMPO experiments
with range of sweep.

Hyperparameter Value
Batch Size 120
Unroll Length 95
Discount 0.99
Target Update Period 50
Action Repeat 4
Initial ⌘ 1.0
Initial ↵ 5.0
✏⌘ 0.1
✏↵ 0.002
Popart Step Size 0.001
Memory size 512

Table 14: GTrXL Hyperparameters choosen for all the VMPO experi-
ments.

Hyperparameter Value
Contrastive loss weight 1.0
Contrastive loss mask rate 0.15
Memory size 256

Table 15: Extra hyperparameters for CoBERL for the VMPO experiments

22

Under review as a conference paper at ICLR 2022

D ADDITIONAL ABLATIONS

Table 16 shows the results of several gating mechanisms that we have investigated. As we can observe
the GRU gate is a clear improvement especially on DMLab, only being harmful in median on the
reduced ablation set of Atari games.

COBERL ’Sum’ gate ’Concat’ gate w/o Gate

DMLab Mean 113.39%± 3.64% 108.70%± 3.23% 106.31%± 5.37% 84.07%± 5.71%
Median 112.02% 108.95% 108.54% 104.33%

Atari Mean 698.0%± 53.84% 548.66%±11.16% 653.20%±59.13% 591.33%±91.25%
Median 276.6% 437.85% 325.96% 320.09%

Table 16: Gate ablations. Human normalized scores on Atari-57 ablation tasks and DMLab tasks.
For the mean we include standard error over seeds.

DM Suite COBERL R2D2-GTrXL R2D2 D4PG-Pixels CURL Dreamer Pixel SAC
acrobot swingup 359.75 ± 3.47 215.39 ± 122.82 327.16 ± 5.35 81.7 ± 4.4 - - -

fish swim 624.40 ± 54.91 91.32 ± 277.15 345.63 ± 227.44 72.2 ± 3.0 - - -
fish upright 942.33 ± 6.12 849.52 ± 23.01 936.09 ± 11.58 405.7 ± 19.6 - - -

pendulum swingup 836.63 ± 9.77 743.65 ± 52.44 831.86 ± 61.54 680.9 ± 41.9 - - -
swimmer swimmer6 447.60 ± 51.51 225.97 ± 60.67 329.61 ± 26.77 194.7 ± 15.9 - - -

finger spin 985.05 ± 1.58 977.41 ± 8.91 980.85 ± 0.67 985.7 ± 0.6 926 ± 45 796 ± 183 179 ± 166
reacher easy 983.05 ± 2.47 981.64 ± 1.99 982.28 ± 9.30 967.4 ± 4.1 929 ± 44 793 ± 164 145 ± 30
cheetah run 525.06 ± 44.59 115.15 ± 133.95 365.45 ± 50.40 523.8 ± 6.8 518 ± 28 570 ± 253 197 ± 15
walker walk 780.54 ± 26.48 595.96 ± 77.59 687.18 ± 18.15 968.3 ± 1.8 902 ± 43 897 ± 49 42 ± 12

ball in cup catch 978.28 ± 6.56 975.21 ± 1.77 980.54 ± 1.94 980.5 ± 0.5 959 ± 27 879 ± 87 312 ± 63
cartpole swingup 798.66 ± 7.72 837.31 ± 4.15 816.23 ± 2.93 862.0 ± 1.1 841 ± 45 762 ± 27 419 ± 40

cartpole swingup sparse 732.51 ± 18.60 747.94 ± 8.61 762.57 ± 6.71 482.0 ± 56.6 - - -

Table 17: Results on tasks in the DeepMind Control Suite. CoBERL, R2D2-GTrXL, R2D2, and D4PG-Pixels
are trained on 100M frames, while CURL, Dreamer, and Pixel SAC are trained on 500k frames. We show these
three other approaches as reference and not as a directly comparable baseline.

23

Under review as a conference paper at ICLR 2022

E GAME SCORES

Atari (ablation games) COBERL R2D2-gTrXL R2D2 COBERL-auxiliary loss
beam rider 22246.68 ± 7078.73 61478.38 ± 27336.64 34708.13 ± 11513.28 16318.78 ± 12438.73

enduro 2312.58 ± 35.59 2173.92 ± 135.85 2346.15 ± 12.69 2300.61 ± 75.25
breakout 421.88 ± 1.50 393.88 ± 31.14 336.19 ± 119.23 420.72 ± 9.86

pong 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00
qbert 36932.00 ± 5498.71 21616.94 ± 3377.11 25129.37 ± 7139.03 50362.28 ± 14109.22

seaquest 167183.79 ± 112932.87 326714.40 ± 51904.47 124417.45 ± 128759.58 174867.68 ± 123876.30
space invaders 34112.19 ± 10216.42 21669.97 ± 6219.26 3712.64 ± 82.30 20192.85 ± 20815.81

Atari (ablation games) COBERL COBERL with LSTM before COBERL w/o LSTM
beam rider 22246.68 ± 7078.73 19233.70 ± 9849.79 54345.65 ± 8111.23

enduro 2312.58 ± 35.59 2304.59 ± 47.39 2227.61 ± 110.91
breakout 421.88 ± 1.50 424.05 ± 6.83 422.69 ± 7.58

pong 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00
qbert 36932.00 ± 5498.71 34773.82 ± 8972.64 33854.14 ± 5762.10

seaquest 167183.79 ± 112932.87 94254.91 ± 57966.74 151011.38 ± 93597.94
space invaders 34112.19 ± 10216.42 16980.01 ± 18410.59 4098.37 ± 938.44

Atari (ablation games) COBERL No Skip Conn. Sum gate Concat
beam rider 22246.68 ± 7078.73 53379.23 ± 6229.05 72882.42 ± 21239.63 51371.38 ± 12560.94

enduro 2312.58 ± 35.59 2083.99 ± 382.91 2247.23 ± 82.22 2288.13 ± 58.59
breakout 421.88 ± 1.50 285.54 ± 181.62 403.36 ± 53.69 357.52 ± 72.63

pong 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00
qbert 36932.00 ± 5498.71 31786.70 ± 5012.64 33807.00 ± 4294.93 43487.35 ± 14518.46

seaquest 167183.79 ± 112932.87 180119.87 ± 56159.52 294976.55 ± 41827.55 399817.75 ± 36729.78
space invaders 34112.19 ± 10216.42 27620.20 ± 17966.22 10387.59 ± 2858.63 20933.98 ± 13072.95

24

Under review as a conference paper at ICLR 2022

Atari (ablation games) COBERL with CURL COBERL with SimCLR
beam rider 25998.99 ± 18557.89 27631.98 ± 31908.43

enduro 2331.72 ± 36.46 2344.57 ± 6.37
breakout 328.38 ± 48.22 381.42 ± 46.31

pong 19.31 ± 2.38 21.00 ± 0.00
qbert 16073.04 ± 321.56 18531.50 ± 3906.27

seaquest 145340.79 ± 31778.00 233181.04 ± 146617.39
space invaders 21621.09 ± 15373.01 28785.96 ± 18516.74

Control Suite COBERL gTrXL R2D2
acrobot swingup 359.75 ± 3.47 215.39 ± 122.82 327.16 ± 5.35

fish swim 624.40 ± 54.91 91.32 ± 277.15 345.63 ± 227.44
fish upright 942.33 ± 6.12 849.52 ± 23.01 936.09 ± 11.58

pendulum swingup 836.63 ± 9.77 743.65 ± 52.44 831.86 ± 61.54
swimmer swimmer6 447.60 ± 51.51 225.97 ± 60.67 329.61 ± 26.77

finger spin 985.05 ± 1.58 977.41 ± 8.91 980.85 ± 0.67
reacher easy 983.05 ± 2.47 981.64 ± 1.99 982.28 ± 9.30
cheetah run 525.06 ± 44.59 115.15 ± 133.95 365.45 ± 50.40
walker walk 780.54 ± 26.48 595.96 ± 77.59 687.18 ± 18.15

ball in cup catch 978.28 ± 6.56 975.21 ± 1.77 980.54 ± 1.94
cartpole swingup 798.66 ± 7.72 837.31 ± 4.15 816.23 ± 2.93

cartpole swingup sparse 732.51 ± 18.60 747.94 ± 8.61 762.57 ± 6.71

25

Under review as a conference paper at ICLR 2022

Atari-57 COBERL R2D2-gTrXL R2D2
alien 10229.89 ± 7932.26 9655.65 ± 1819.53 10718.62 ± 4599.62

amidar 2656.00 ± 966.37 3883.37 ± 640.23 2142.70 ± 241.96
assault 5469.38 ± 2607.77 10242.96 ± 4234.94 13817.82 ± 1503.31
asterix 980283.74 ± 25765.32 666449.34 ± 173208.21 724279.78 ± 195506.02

asteroids 108985.96 ± 66922.29 104932.39 ± 26450.55 74148.67 ± 49306.65
atlantis 1091347.38 ± 37782.18 979337.34 ± 8121.73 983110.27 ± 41978.78

bank heist 1117.91 ± 790.60 1318.51 ± 48.90 1328.12 ± 456.18
battle zone 77501.43 ± 39229.60 98554.44 ± 43709.86 94385.32 ± 13045.67
beam rider 22246.68 ± 7078.73 61478.38 ± 27336.64 34708.13 ± 11513.28

berzerk 1756.21 ± 278.30 626.60 ± 156.19 1466.54 ± 422.70
bowling 184.32 ± 44.08 42.33 ± 59.86 96.33 ± 30.66
boxing 100.00 ± 0.00 100.00 ± 0.00 99.71 ± 0.40

breakout 421.88 ± 1.50 393.88 ± 31.14 336.19 ± 119.23
centipede 66669.74 ± 6479.47 76325.85 ± 16594.15 74513.40 ± 12696.62

chopper command 506146.56 ± 303260.36 36993.73 ± 35157.10 33945.00 ± 13504.01
crazy climber 120806.63 ± 57107.29 120684.30 ± 6872.59 157946.90 ± 42953.93

defender 410044.34 ± 8847.63 293804.22 ± 72002.55 462135.87 ± 12678.03
demon attack 137934.41 ± 5473.26 131514.55 ± 9979.81 117580.02 ± 21157.45
double dunk 24.00 ± 0.00 19.93 ± 2.89 24.00 ± 0.00

enduro 2312.58 ± 35.59 2173.92 ± 135.85 2346.15 ± 12.69
fishing derby 52.89 ± 2.89 42.41 ± 11.36 49.92 ± 6.79

freeway 34.00 ± 0.00 34.00 ± 0.00 33.67 ± 0.47
frostbite 8723.86 ± 1321.24 7323.81 ± 2407.78 6909.40 ± 747.58
gopher 90684.67 ± 10244.87 104482.57 ± 5853.11 100203.22 ± 20908.66
gravitar 6315.32 ± 223.45 4282.56 ± 1705.21 5643.37 ± 631.75

hero 20786.34 ± 139.43 14010.16 ± 173.98 17996.97 ± 2841.71
ice hockey 19.82 ± 21.47 17.74 ± 11.55 22.90 ± 10.41
jamesbond 5576.58 ± 2595.65 7962.54 ± 873.51 7727.43 ± 2489.21
kangaroo 12173.70 ± 3129.91 13520.79 ± 2068.49 14436.53 ± 116.90

krull 37813.60 ± 18826.63 58459.18 ± 38117.13 12285.18 ± 572.14
kung fu master 126648.43 ± 5685.80 70772.67 ± 28598.85 102387.20 ± 17781.04

montezuma revenge 833.33 ± 1178.51 0.00 ± 0.00 133.33 ± 188.56
ms pacman 11295.44 ± 4623.95 11146.67 ± 902.33 9893.29 ± 1172.58

name this game 25044.23 ± 6659.51 26944.23 ± 1315.96 24348.53 ± 1917.48
phoenix 514890.69 ± 169407.85 322625.85 ± 92449.70 194688.45 ± 178633.63
pitfall 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
pong 21.00 ± 0.00 21.00 ± 0.00 21.00 ± 0.00

private eye 10520.09 ± 4986.07 15057.95 ± 42.35 4988.65 ± 6938.00
qbert 36932.00 ± 5498.71 21616.94 ± 3377.11 25129.37 ± 7139.03

riverraid 24894.12 ± 3079.76 23368.64 ± 2389.28 28057.87 ± 576.75
road runner 279422.07 ± 223362.40 518566.46 ± 62912.72 0.00 ± 0.00

robotank 82.36 ± 8.68 50.70 ± 33.29 67.41 ± 21.91
seaquest 167183.79 ± 112932.87 326714.40 ± 51904.47 124417.45 ± 128759.58
skiing -29958.52 ± 2.39 -22984.50 ± 9882.73 -29963.55 ± 1.82
solaris 4931.47 ± 2344.05 1661.77 ± 1032.29 2610.71 ± 1573.21

space invaders 34112.19 ± 10216.42 21669.97 ± 6219.26 3712.64 ± 82.30
star gunner 106292.95 ± 29670.23 104395.14 ± 16821.38 93412.15 ± 10284.46
surround 9.30 ± 0.50 9.25 ± 0.54 8.78 ± 0.50

tennis 15.61 ± 11.17 8.00 ± 11.31 0.00 ± 0.00
time pilot 39261.92 ± 7400.70 14303.91 ± 1695.58 23611.05 ± 3357.51
tutankham 38.79 ± 49.73 23.11 ± 16.91 84.30 ± 46.88
up n down 397836.59 ± 111520.35 289177.29 ± 135467.48 422332.40 ± 41201.70

venture 1873.20 ± 30.56 1782.00 ± 83.88 1640.10 ± 141.12
video pinball 276228.36 ± 133392.82 58865.88 ± 51845.02 206756.24 ± 72958.76
wizard of wor 18707.03 ± 21128.79 14862.25 ± 8267.18 16548.31 ± 10862.27
yars revenge 322255.03 ± 171716.17 201576.03 ± 23183.30 316415.89 ± 176059.44

zaxxon 14420.27 ± 10309.48 20132.38 ± 3941.10 31116.74 ± 1966.53

26

Under review as a conference paper at ICLR 2022

DmLab Levels coberl gtrxl
rooms collect good objects test 9.75± 0.12 9.67± 0.22

rooms exploit deferred effects test 56.56± 4.01 54.87± 0.87
rooms select nonmatching object 64.04± 10.51 58.54± 4.07

rooms watermaze 58.35± 1.65 50.27± 3.37
rooms keys doors puzzle 32.74± 5.62 34.42± 8.53

language select described object 627.55± 0.72 624.50± 14.14
language select located object 614.88± 3.14 578.00± 2.82
language execute random task 226.23± 27.81 191.70± 15.61

language answer quantitative question 330.66± 5.03 293.00± 9.89
lasertag one opponent large 14.16± 4.48 10.50± 4.24

lasertag three opponents large 31.39± 4.48 28.83± 5.89
lasertag one opponent small 29.83± 1.52 27.75± 3.88

lasertag three opponents small 46.0± 1.40 35.0± 0.01
natlab fixed large map 44.66± 7.28 42.66± 13.85

natlab varying map regrowth 28.33± 6.93 25.39± 8.39
natlab varying map randomized 45.88± 9.02 32.08± 12.31

platforms hard 57.53± 7.17 35.00± 25.92
platforms random 86.03± 0.45 73.45± 2.64

psychlab continuous recognition 57.38± 4.14 53.73± 5.42
psychlab arbitrary visuomotor mapping 51.36± 1.94 58.02± 0.71

psychlab sequential comparison 31.43± 1.42 31.83± 0.94
psychlab visual search 79.91± 0.14 79.58± 0.58

explore object locations small 83.71± 6.87 74.10± 7.10
explore object locations large 64.72± 3.84 61.12± 2.65
explore obstructed goals small 260.37± 6.97 234.16± 10.60
explore obstructed goals large 114.44± 2.45 76.25± 8.83
explore goal locations small 370.00± 2.50 339.10± 3.43
explore goal locations large 142.50± 9.34 127.50± 14.14
explore object rewards few 76.93± 13.61 70.23± 0.61

explore object rewards many 105.80± 3.37 95.50± 3.53

27

Under review as a conference paper at ICLR 2022

F LEARNING CURVES

F.1 ATARI LEARNING CURVES

Environment steps

H
um

an
 N

or
m

al
ise

d
Sc

or
e

Figure 5: Learning Curves for Atari. The x-axis represents number of environment steps in millions. The y-axis
represent the Human Normalised score. The error represents the 95% confidence interval. Red is COBERL,
BLUE is GTrXL

28

Under review as a conference paper at ICLR 2022

F.2 DMCONTROL LEARNING CURVES

Environment steps

Ep
iso

de
 R

et
ur

n

Figure 6: Learning Curves for DMControl. The x-axis represents number of environment steps in millions. The
y-axis represent the Episode return. The error represents the 95% confidence interval. Red is COBERL, BLUE
is GTrXL

29

Under review as a conference paper at ICLR 2022

F.3 DMLAB LEARNING CURVES

Figure 7: Learning Curves for DMLab. The x-axis represents number of environment steps in billions. The y-
axis represent the Human Normalised score. The error represents the 95% confidence interval. Red is COBERL,
BLUE is GTrXL

30

Under review as a conference paper at ICLR 2022

G LICENSES

The The Arcade Learning Environment Bellemare et al. (2013) is released as free, open-source
software under the terms of the GNU General Public License. The latest version of the source code is
publicly available at: http://arcadelearningenvironment.org

DeepMind Control Suite Tassa et al. (2018) is released as free, open-source software un-
der the terms of Apache-2.0 License. The latest version of the source code is pub-
licly available at: https://github.com/deepmind/dm_control/blob/master/dm_
control/suite/README.md

DmLab Beattie et al. (2016) is released as free, open-source software under the terms of Apache-2.0
License. The latest version of the source code is publicly available at: https://github.com/
deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

H PSEUDO-CODE

Algorithm 1 Pseudo-code for CoBERL
training_iterations 0
initialise_weights(VisualEncoder, TransformerStack, Gate, ValueNetwork)
while training_iterations  max_training_iterations do

sampled_batch sample_experience()
encoded_images VisualEncoder(sampled_batch)
encoded_actions OneHotActionEncoder(sampled_batch)
combined_inputs concat(encoded_images, previous_rewards, encoded_actions)
transformer_inputs, transformer_targets, mask create_masks_targets(combined_inputs)
output_transformer_contrastive TransformerStack(transformer_inputs, causal_mask=False)
contrastive_loss compute_aux_loss(output_transformer_contrastive, transformer_targets,

mask)
output_transformer_RL TransformerStack(transformer_inputs, causal_mask=True)
gated_output Gate(combined_inputs, output_transformer_RL)
lstm_output LSTM(gated_output)
combined_inputs_for_value_net concat(lstm_output, combined_inputs)
value_estimation ValueNetwork(combined_inputs_for_value_net)
rl_loss compute_rl_loss(value_estimation, extra_args)
total_loss rl_loss + contrastive_loss

end while

31

Under review as a conference paper at ICLR 2022

Pseudo-code for the auxiliary loss calculation
1 def compute_aux_loss(input1, input2, mask_ext):
2

3 batch_size, seq_dim, feat_dim = input1.shape
4 input1 = reshape(input1, [-1, feat_dim])
5 input2 = reshape(input2, [-1, feat_dim])
6

7 input1 = l2_normalize(input1, axis=-1)
8 input2 = l2_normalize(input2, axis=-1)
9

10 # Compute labels index
11 labels_idx = arange(input1.shape[0])
12 labels_idx = labels_idx.astype(jnp.int32)
13 # Compute pseudo-labels for contrastive loss.
14 labels = one_hot(labels_idx, input1.shape[0] * 2)
15 # Mask out the same image pair.
16 mask = one_hot(labels_idx, input1.shape[0])
17 # Compute logits.
18 logits_11 = matmul(input1, jnp.transpose(input1))
19 logits_22 = matmul(input2, jnp.transpose(input2))
20 logits_12 = matmul(input1, jnp.transpose(input2))
21 logits_21 = matmul(input2, jnp.transpose(input1))
22 # Calculate invariance penalty.
23 inv_penalty = kl_with_logits(# [B * T]
24 stop_gradient(logits_11), logits_22, axis=-1)
25 inv_penalty += kl_with_logits(
26 stop_gradient(logits_12), logits_22, axis=-1)
27 inv_penalty += kl_with_logits(
28 stop_gradient(logits_21), logits_11, axis=-1)
29 inv_penalty += kl_with_logits(
30 stop_gradient(logits_12), logits_21, axis=-1)
31 inv_penalty = inv_penalty / 4. # [B * T]
32

33 logits_11 = logits_11 - mask * 1e9
34 logits_22 = logits_22 - mask * 1e9
35

36 logits_1211 = concatenate([logits_12, logits_11], axis=-1)
37 logits_2122 = concatenate([logits_21, logits_22], axis=-1)
38

39 loss_12 = -sum(labels * log_softmax(logits_1211), axis=-1)
40 loss_21 = -sum(labels * log_softmax(logits_2122), axis=-1)
41

42 loss = reshape(loss_12 + loss_21, [batch_size, seq_dim]) * mask_ext
43 inv_penalty = reshape(inv_penalty, [batch_size, seq_dim]) * mask_ext
44

45 loss = mean(loss + inv_penalty)
46

47 return loss

I AREA UNDER THE CURVE

For all the levels we calculated the AUC by integrating composite Simpson’s rule with a delta(x) of 5
steps. We use the intergate package from scipy (Virtanen et al., 2020).

J LIMITATIONS AND FUTURE WORK

A limitation of our method is that it relies on single time step information to compute its auxiliary
objective. Such objective could naturally be adapted to operate on temporally-extended patches,
and/or action-conditioned inputs. Also, as done in the original BERT (Devlin et al., 2019), it could be
possible to add a CLS token at the beginning of each sequence sent to the Transformer and then train
the CLS token with RL gradients. In this way it would be possible to directly use the embeddings

32

Under review as a conference paper at ICLR 2022

of the CLS token as a sequence summary and hence provide more context to the policy estimation
network. We regard those ideas as promising future research avenues.

33

