
Revitalizing CNN Attention via Transformers in
Self-Supervised Visual Representation Learning

<Supplementary Material>

Anonymous Author(s)
Affiliation
Address
email

In this supplementary material, we show the pseudo code and more numerical comparisons to the1

state-of-the-art approaches. The Python source code is provided as well.2

Algorithm 1: Pseudocode of CARE
Inputs :
D, T , T ′ set of images and distributions of transformations
θ, Cθ, Tθ net parameters in the first branch, C-stream and T-stream in the first branch
ξ, Cξ, Tξ net parameters in the second branch, C-stream and T-stream in the second branch
t0, τbase, ηbase warmup steps, base network updating coefficient, base learning rate
T , N total optimization steps, batch size

1 for t = 1 to T do
2 I ← {x(i) ∼ D}Ni=1 // sample a batch of N images
3 for x(i) ∈ I do
4 x1 = aug(x(i)), where aug ∼ T // random transformation
5 x2 = aug′(x(i)), where aug′ ∼ T ′ // random transformation
6 f1 ← Cθ(x1) , f1′ ← Cθ(x2) // output C-stream vectors in the first branch
7 f2 ← Cξ(x2) , f2′ ← Cξ(x1) // output C-stream vectors in the second branch
8 f3 ← Tθ(x1) , f3′ ← Tθ(x2) // output T-stream vectors in the first branch
9 f4 ← Tξ(x2) , f4′ ← Tθ(x1) // output T-stream vectors in the second branch

10 Lc := −〈f1, f2〉 − 〈f1′, f2′〉 // compute SSL loss for the C-stream
11 Lt := −〈f3, f4〉 − 〈f3′, f4′〉 // compute SSL loss for the T-stream
12 Latt := ‖f1 − f3‖2 + ‖f1′ − f3′‖2 // compute attention supervision loss

13 L(i)
total := Lc + Lt + λLatt // sum up the total loss for x(i)

14 end
15 ∇θ ← 1

N

∑N
i=1 ∂θL

(i)
total // compute the total loss gradient w.r.t. θ

16 if t < t0 then
17 η ← ηbase · t/t0 // warmup learning rate
18 else
19 η ← ηbase · (cos(π(t− t0)/(T − t0)) + 1)/2 // cosine decay learning rate
20 end
21 θ ← optimizer(θ,∇θ, η) // update parameters in the first branch
22 τ ← 1− (1− τbase) · (cos(πt/T) + 1)/2 // update momentum
23 ξ ← τξ + (1− τ)θ // update parameters in the second branch
24 end

Output :encoder Cθ

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

1 Revisiting the algorithms3

In Algorithms 1, we first present the overall training procedure of our proposed CARE, which details4

the training process and configurations of C-stream and T-steam. We also illustrate how to set the5

learning rate and network update momentum during training. To make the training process clearer,6

we also provide the pseudo-code of CARE in a PyTorch-like style in Algorithms 2.7

Algorithm 2: Pseudocode of CARE in PyTorch-like style.

C_theta, C_xi: the first and second branches on C-stream
T_theta, T_xi: the first and second branches on T-stream
aug1, aug2: two random augmentations

initialize
C_xi.params = C_theta.params
T_xi.params = T_theta.params

for x in loader: # load a minibatch x with N samples
generate two randomly augmented views of x
x_1, x_2 = aug1(x), aug2(x)

compute the output the first branches of of C- and T-stream
c_q1, c_q2 = C_theta(x_1), C_theta(x_2)
t_q1, t_q2 = T_theta(x_1), T_theta(x_2)

stop gradient for the second branches of C- and T-stream
with torch.no_grad():

c_k1, c_k2 = C_xi(x_2), C_xi(x_1)
t_k1, t_k2 = T_xi(x_2), T_xi(x_1)

compute the loss for C-stream
l_c = (4 - 2 * ((c_q1 * c_k1).sum(dim=1) + (c_q2 * c_k2).sum(dim=1))).mean()
compute the loss for T-stream
l_t = (4 - 2 * ((t_q1 * t_k1).sum(dim=1) + (t_q2 * t_k2).sum(dim=1))).mean()
compute the supervision loss of C- and T-stream
l_att = l2_loss(c_q1 - t_q1) + l2_loss(t_q1 - t_q2)
L = l_c + l_t + lambda * l_att # sum up the loss

L.backward() # back-propagation

get the learning rate from the learning rate scheduler
lr = lr_scheduler()

SGD update on the first branches of C- and T-stream
optimizer(C_theta, lr)
optimizer(T_theta, lr)

get the momentum from the momentum scheduler
m = momentum_scheduler()

momentum update of the second branches of C- and T-stream
C_xi.params = m * C_xi.params + (1-m) * C_theta.params
T_xi.params = m * T_xi.params + (1-m) * T_theta.params

l2 loss function
def l2_loss(x):

return x.square().sum(dim=1).mean()

2 Numerical evaluations8

In this section, we provide more results compared to the state-of-the-art approaches under different9

downstream recognition scenarios including self-supervised and semi-supervised image classifica-10

tions, object detection, and semantic segmentation.11

2

Self-supervised learning on image classifications. We first evaluate the image classifications based12

on the standard linear classification protocol as introduced in Section 4.2. Table 1 shows more13

results. Our CARE method consistently outperforms other methods under different training epochs.14

Specifically, our method helps ResNet-50 encoder achieve 74.7% top-1 accuracy under 400 training15

epochs, which is even higher than the encoder trained with BYOL under 800 epochs. We also notice16

that CARE performs consistently well on the stronger backbone (e.g., ResNet-101). For example,17

we achieve 75.4% top-1 accuracy with ResNet-101 encoder trained with 200 epochs. This indicates18

that CARE is generally beneficial to the performance boost of CNN encoders on image classification19

tasks.20

Table 1: Classification accuracy via different CNN and Transformer encoders.
Method Arch. Param. Epoch GFlops Top-1

BYOL [7] ResNet-50 25M 800 4.1 74.2
SimSiam [4] ResNet-50 25M 400 4.1 69.6
SimCLR [2] ResNet-50 25M 1000 4.1 70.8
Jigsaw [12] ResNet-50(2×) 69M - 11.4 44.6
RelativePosition [6] ResNet-50(2×) 69M - 11.4 51.4
MoCo [8] ResNet-50(2×) 69M - 11.4 65.4
BYOL [7] ResNet-50(2×) 69M 100 11.4 71.9
CMC [13] ResNet-50(2×) 69M - 11.4 70.6
SimCLR [2] ResNet-50(2×) 69M 1000 11.4 74.2
BYOL [7] ResNet-101 45M 100 7.8 72.3
CPC v2 [9] ResNet-101 45M 800 7.8 48.7
BYOL [7] ResNet-152 60M 100 11.6 73.3
BYOL [7] ViT-S 22M 300 4.6 71.0
BYOL [7] ViT-B 86M 300 17.7 73.9
MoCo v3 [5] ViT-S 22M 300 4.6 72.5

CARE (ours) ResNet-50 25M 200 4.1 73.8
CARE (ours) ResNet-50 25M 400 4.1 74.7
CARE (ours) ResNet-50(2×) 69M 100 11.4 73.5
CARE (ours) ResNet-50(2×) 69M 200 11.4 75.0
CARE (ours) ResNet-101 45M 100 7.8 73.5
CARE (ours) ResNet-152 60M 100 11.6 74.9
CARE (ours) ResNet-101 69M 200 7.8 75.4

Semi-supervised learning on image classifications. We also conduct more experiments by using a21

semi-supervised training configuration on the ImageNet dataset. The semi-supervised protocol is22

introduced in Section 4.2. The evaluation results of CNN encoders that are trained by using more23

epochs are provided in Table 2. The results show that our CARE method achieves higher top-124

and top-5 accuracy than the other SSL methods under different configurations (e.g., backbones and25

training epochs). We also notice that our CARE method takes consistent advantages (at least +1.5%)26

over other SSL methods under different training epochs.27

Transfer learning to object detection and semantic segmentation. Here, we provide more experi-28

mental results using the same setting in Section 4.2 in the main text and report the results in Table 3.29

Besides, we further evaluate CARE’s representation on the COCO dataset using a more powerful30

detector, the feature pyramid network [10], and report the results in Table 4. We follow the same31

evaluation protocol as in Section 4.2 in our main text. Specifically, we extract the parameters of the32

ResNet-50 encoder from the pretrained model and use them to initialize the corresponding parameters33

in Mask R-CNN R50-FPN detector from Detectron2 [14]. We train the detector using 1× schedule34

(90k iterations) on the COCO training set and evaluate its performance on the COCO test set.35

Again, CARE trained for 200/400 epochs outperforms other state-of-the-art SSL methods trained36

for 800/1000 epochs on object detection and semantic segmentation on the COCO dataset, which37

suggests that the CNN encoder in CARE is empowered by the attention mechanism of the transformer38

which supervises the CNN encoder in the pretraining (note that we use no transformers (or multi-head39

self-attention modules) in our transferred detectors).40

3

Table 2: Classification accuracy by using other CNN encoders.
Method Arch. Epoch Top-1 Top-5

1% 10% 1% 10%

BYOL [7] ResNet-50 1000 53.2 68.8 78.4 89.0
MoCov2 [3] ResNet-50 800 42.3 63.8 70.1 86.2
SWAV [1] ResNet-50 1000 53.9 70.2 78.5 89.9
Barlow Twins [15] ResNet-50 1000 55.0 69.7 79.2 89.3
BYOL [7] ResNet-50(2×) 100 55.6 66.7 77.5 87.7
BYOL [7] ResNet-50(2×) 200 59.5 68.0 82.4 88.3
BYOL [7] ResNet-101 100 55.8 65.8 79.5 87.4
BYOL [7] ResNet-101 200 60.3 69.1 82.7 89.3
BYOL [7] ResNet-152 100 56.8 67.2 79.3 88.1
CARE (ours) ResNet-50 400 60.0 69.6 81.3 89.3
CARE (ours) ResNet-50(2×) 100 57.4 67.5 79.8 88.3
CARE (ours) ResNet-50(2×) 200 61.2 69.6 82.3 89.5
CARE (ours) ResNet-101 100 57.1 67.1 80.8 88.2
CARE (ours) ResNet-101 200 62.2 70.4 85.0 89.8
CARE (ours) ResNet-152 100 59.4 69.0 82.3 89.0

Table 3: Transfer learning to object detection and instance segmentation (some of the results are also
shown in Table 3 in the main text). The best two results in each column are in bold.

COCO det. COCO instance seg. VOC07+12 det.

Method Epoch APbb APbb
50 APbb

75 APmk APmk
50 APmk

75 AP AP50 AP75

Rand Init - 26.4 44.0 27.8 29.3 46.9 30.8 33.8 60.2 33.1
Supervised 90 38.2 58.2 41.2 33.3 54.7 35.2 53.5 81.3 58.8

PIRL[11] 200 37.4 56.5 40.2 32.7 53.4 34.7 55.5 81.0 61.3
MoCo[8] 200 38.5 58.3 41.6 33.6 54.8 35.6 55.9 81.5 62.6
MoCo-v2[3] 200 38.9 58.4 42.0 34.2 55.2 36.5 57.0 82.4 63.6
MoCo-v2[3] 800 39.3 58.9 42.5 34.4 55.8 36.5 57.4 82.5 64.0
SwAV[1] 800 38.4 58.6 41.3 33.8 55.2 35.9 56.1 82.6 62.7
BYOL [7] 800 39.0 58.6 42.1 34.1 55.3 36.4 57.3 82.5 64.0
Barlow Twins[15] 1000 39.2 59.0 42.5 34.3 56.0 36.5 56.8 82.6 63.4
CARE (Ours) 200 39.4 59.2 42.6 34.6 56.1 36.8 57.7 83.0 64.5
CARE (Ours) 400 39.6 59.4 42.9 34.7 56.1 36.9 57.9 83.0 64.7

Table 4: Transfer learning to object detection and instance segmentation with Mask R-CNN R50-FPN
detector. The best two results in each column are in bold. Our method achieves favorable detection
and segmentation performance by using limited training epochs.

COCO det. COCO instance seg.

Method Epoch APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Rand Init - 31.0 49.5 33.2 28.5 46.8 30.4
Supervised 90 38.9 59.6 42.7 35.4 56.5 38.1

PIRL[11] 200 37.5 57.6 41.0 34.0 54.6 36.2
MoCo[8] 200 38.5 58.9 42.0 35.1 55.9 37.7
MoCo-v2[3] 200 38.9 59.4 42.4 35.5 56.5 38.1
MoCo-v2[3] 800 39.4 59.9 43.0 35.8 56.9 38.4
SwAV[1] 200 38.5 60.4 41.4 35.4 57.0 37.7
BYOL [7] 200 39.1 59.5 42.7 35.6 56.5 38.2
BYOL [7] 400 39.2 59.6 42.9 35.6 56.7 38.2
BYOL [7] 800 39.4 59.9 43.0 35.8 56.8 38.5
Barlow Twins[15] 1000 36.9 58.5 39.7 34.3 55.4 36.5
CARE (Ours) 200 39.5 60.2 43.1 35.9 57.2 38.5
CARE (Ours) 400 39.8 60.5 43.5 36.2 57.4 38.8

4

References41

[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsuper-42

vised learning of visual features by contrasting cluster assignments. In Advances in Neural Information43

Processing Systems, 2020.44

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for45

contrastive learning of visual representations. In International Conference on Machine Learning, 2020.46

[3] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved baselines with momentum47

contrastive learning. CoRR, abs/2003.04297, 2020.48

[4] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In IEEE/CVF Conference49

on Computer Vision and Pattern Recognition, 2021.50

[5] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised visual51

transformers. arXiv preprint arXiv:2104.02057, 2021.52

[6] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by context53

prediction. In IEEE/CVF International Conference on Computer Vision, 2015.54

[7] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya,55

Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap56

your own latent: A new approach to self-supervised learning. In Advances in Neural Information Processing57

Systems, 2020.58

[8] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised59

visual representation learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,60

2020.61

[9] Olivier Henaff. Data-efficient image recognition with contrastive predictive coding. In International62

Conference on Machine Learning, 2020.63

[10] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature64

pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and65

pattern recognition, pages 2117–2125, 2017.66

[11] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations. In67

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6707–6717,68

2020.69

[12] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw70

puzzles. In European Conference on Computer Vision, 2016.71

[13] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European Conference72

on Computer Vision, 2020.73

[14] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https:74

//github.com/facebookresearch/detectron2, 2019.75

[15] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised76

learning via redundancy reduction. In International Conference on Machine Learning, 2021.77

5

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

