
7 APPENDIX

7.1 POWER SYSTEM EXAMPLE

To illustrate system-level partitioning, we examine a power network shown in Figure 7a, whose steady-state
behavior is described by a set of algebraic constraints. A clear partition emerges between the transmission
elements and nonlinear devices, as illustrated in Figure 7b. Linear elements that form the transmission network
are grouped into a single sub-system (whose internal state variables of capacitor voltages and inductor currents
are represented by xtx), while the renewable energy sources and loads constitute separate sub-systems. The
behavior at the boundary between the transmission network (characterized by a conductance matrix, G, and
susceptance matrix, B) and devices adheres to Kirchhoff’s current laws (KCL):
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gkj (yi) = 0, (22)

where yi represents the node-voltage at the boundary, and gi(·) represents the current injection from each
connected device. Each device’s behavior is characterized by internal state variables, xi, and shared variables
from the transmission system, yi, as follows:

fi(xi, yi, u) = 0. (23)
The specific equations for each sub-system and transmission element are provided in Pandey et al. (2023).
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Figure 7: A two-bus power grid is shown in (a) with two renewable energy sources and a load. The
network is partitioned in (b) into four subsystems where the transmission sub-system, outlined in
blue is modeled using physics-based equations and the devices outlined in red are represented by
black-box models. Using the proposed hybrid architecture, the devices are modeled by DNNs shown
in (c). Note, the renewable sources are modeled by an identical DNN model.

The power system in Figure 7a includes edge devices (renewables and loads) that are characterized by hidden
behaviors not captured by first-principles (such as consumption behavior and weather forecasts). As a result, we
model these devices by DNNs, while the linear transmission network, whose properties are well established, is
modeled by physics-based equations. This results in an implicit gray box model shown in Figure 7c, where the
DNNs predicts the device current of the renewables and loads and is then inserted into the appropriate KCL
equations in (22).

One of the benefits of this approach is lower requirements for training data. When training a DNN to model
a renewable energy source shown in Figure 7c, only data for the node-voltage (yi) and output current (gi) are
required. Another benefit is the reusability of DNNs. In a power grid with multiple renewable energy sources, as
shown in Figure 7c, a single trained DNN can be used to model the device at each node.
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7.2 ALGORITHM FOR SOLVING DIFFERENTIAL EQUATIONS WITH HYBRID SIMULATION

Here we outline, shown in Algorithm 3 the full workflow for solving differential equations using the hybrid
simulation of an implicit, DNN-based gray box model. The differential equations are solved using trapezoidal
integration.

Algorithm 3 Solving Differential Equations with Hybrid Simulation Using Trapezoidal Integration
Input: fph(·),gph(·),x(t), y(t),!t,gnn(·), ω, ε

1: xk(t+!t) → x(t)
2: yk(t+!t) → y(t)

3: do while:

∥∥∥∥

[
xk+1(t+!t)↑ xk(t+!t)
yk+1(t+!t)↑ yk(t+!t)

]∥∥∥∥ > ε

4: Evaluate: fph(xk(t+!t), yk(t+!t))
5: Evaluate the sensitivity term: ω

ωxfph(x
k(t+!t), yk(t+!t))

6: Evaluate the sensitivity term: ω
ωyfph(x

k(t+!t), yk(t+!t))

7: Evaluate the sensitivity term: ω
ωxgph(x

k(t+!t), yk(t+!t))
8: Evaluate the sensitivity term: ω

ωy gph(x
k(t+!t), yk(t+!t))

9: Extract Sensitivity Terms from DNN: gnn(yk(t+!t)), ω
ωy gnn → Algorithm 1(gnn(·), yk(t+

!t))
10: Solve NR Step:
11:
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]
=
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]→1

[
xk(t+!t)→x(t)→!t

2 fph(x
k(t+!t),yk(t+!t))→!t

2 fph(x(t),y(t))=0

yk(t+!t)→y(t)→!t
2 [gph(x

k(t+!t),yk(t+!t))+gnn(y
k(t+!t))]→!t

2 [gph(x(t),y(t))+gnn(y(t))]=0

]

12: xk+1(t+!t) → xk(t+!t) +!xk(t+!t)
13: yk+1(t+!t) → yk(t+!t) +!yk(t+!t)
14: return xk(t+!t), yk(t+!t)
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7.3 VALIDATING THE JACOBIAN ENTRIES

The proposed hybrid simulation extracts the sensitivity terms of sub-systems macro-modeled via DNNs using a
backpropagation method. We validated the sensitivity terms using a diode and transistor as examples, shown in
Figure 12.

The approach is further validated for a 90nm NMOS transistor as compared to physics-based BSIM models
Cheng & Hu (2007), as shown in Figure 9.

Figure 8: The drain-to-source voltage, VDS of a 45nm NMOS transistor is varied from 0↑ 1V and
the output current, IDS , and its sensitivity to the VDS is measured. The output sensitivities extracted
by backpropagating through the DNN agrees within 4%.

(a) The gate-to-source voltage, VGS of a 90nm
NMOS transistor is varied from 0 → 1V and the
output current, IDS , and its sensitivity to the VGS is
measured. The output sensitivities extracted by back-
propagating through the DNN agrees within 2%.

(b) The drain-to-source voltage, VDS of a 90nm
NMOS transistor is varied from 0 → 1V and the
output current, IDS , and its sensitivity to the VDS is
measured. The output sensitivities extracted by back-
propagating through the DNN agrees within 2%.

Figure 9
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7.4 DNN MODELS USED IN EXPERIMENTS

7.4.1 DNN MODEL OF DIODE

The diode is macromodeled by a four-layer DNN, shown in Figure 15 that predicts the current, ID , using the
device voltage, VD . The diode model is trained from a simulated dataset collected by solving the ideal diode
equations in Pillage (1998) from a voltage range of VD = [0, 1]. Corresponding training process is depicted in
Figure 11.

Figure 10: The model architecture of the DNN predicts the current (ID) of a diode with device
voltage (VD) input. The architecture is a four-layer neural network with softplus activation function.

Figure 11: A decreasing trend of the loss function over epochs during the training process of the
diode DNN model indicates the model successfully learned the patterns of the ideal diode model.

The trained DNN that models the behavior of a diode is integrated into the circuit in Figure 12a, and the
steady-state currents of the diode is simulated using the proposed hybrid simulation.
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Figure 12: The backpropagation method for extracting Jacobian entries is validated for (a) diode and
(b) NMOS transistor devices. The diode circuit, with resistor R = 600”, in (a) extracts the sensitivity
of the diode current, ID, with respect to the voltage, VD, using the proposed backpropagation through
a trained DNN model of the diode. Similarly, we use a trained DNN model of the NMOS transistor
and extract the sensitivity of the drain-to-source current, IDS , with respect to the gate-to-source, VGS ,
and drain-to-source, VDS , voltages.

7.4.2 DNN MODEL OF NMOS

A three-terminal NMOS transistor is modeled by a four-layer DNN, shown in figure 13, which predicts the
drain-to-source current, IDS , using the two terminal voltages: gate-to-source voltage (VGS) and drain-to-source
voltage (VDS). The transistor model is trained using a simulated dataset from a physics-based BSIM 3 model
Cheng & Hu (2007). The corresponding training processes for learning the physics-based models of the 45nm
and 90nm NMOMS transistors are shown in Figure 14.

Figure 13: The model architecture of the DNN predicts the drain-to-source current (IDS) of an
NMOS transistor with two inputs: gate-to-source voltage (VGS) and drain-to-source voltage (VDS).
The architecture is a four-layer neural network with a softplus activation to model the behavior of
transistors.
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(a) (b)

Figure 14: The DNN models performance in learning BSIM models behaviors during training process
for (a) 45nm and (b) 90nm NMOS transistor across epochs

7.4.3 DNN MODEL TO FORECAST HYPERPARAMETERS FOR SURROGATE PQ MODEL

Figure 15: The DNN model predicts the active power generated by a solar renewable energy source,
Pac, as a function of four inputs: solar radiation of radiation sensor external, ExlSollrr, solar
radiation of radiation sensor integrated (IntSollrr, W/m2), ambient temperature, TmpAmb, and
module temperature, TmpMdul. The DNN architecture is a four-layer neural network with tanh
activation function.

7.4.4 DNN MODEL FOR STEADY-STATE COMPOSITE LOAD

Figure 16: The DNN model is trained to predict the bus voltage magnitudes and angles of the 14-bus
network using the active power generation and loads at each bus. The DNN architecture is of a
four-layer neural network with tanh activation function and is trained to a Mean Squared Error (MSE)
of 1.04e→5.
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(a) A oneline diagram of the 500-bus power grid rep-
resenting the transmission network of South Carolina
Birchfield et al. (2016).

(b) A 9-bus system is used to represent a single distri-
bution network.

Figure 18: Steady-state simulation of a modified 500-bus network, representing the transmission grid
of South Carolina in Figure 18a Birchfield et al. (2016), where loads are replaced by distribution
networks represented by a 9-bus network in Figure 18b.

7.4.5 DNN MODEL FOR EMT INDUCTION MOTOR

Figure 17: The model architecture of the DNN predicts the three phase current (Ia, Ib, Ic) at time t of
an induction motor with inputs: voltage at time t, and current at last time t↑ 1. The architecture is a
three-layer neural network with a square activation function.

8 SCALING HYBRID SIMULATION ENGINE FOR STEADY-STATE SIMULATION
OF POWER GRIDS

We extend the hybrid simulation engine to simulate the steady-state response of a larger 500-bus transmission
grid that models South Carolina transmission network as illustrated in Figure 18a. This grid has been enhanced
to incorporate distribution networks, which are represented using deep neural networks (DNNs). Each DNN
receives the bus voltage at the interconnection point as input and outputs the corresponding current to the
transmission system. In this experiment, each distribution network is modeled as a 9-bus system, depicted in
Figure 18b. By macro-modeling the distribution networks through this approach, we achieve a 12% reduction
in overall runtime and a 16% reduction in state-space, compared to steady-state simulations performed using
MatPower’s power flow tool Zimmerman et al. (1997).
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9 HYBRID SIMULATION OF INTEGRATED CIRCUITS

We demonstrate the effectiveness of our hybrid simulation engine in simulating integrated CMOS circuits. In
these experiments, CMOS transistor devices are macromodeled using deep neural networks (DNNs), which are
seamlessly integrated into larger analog circuit designs. For instance, we employ trained DNNs to model the
current-voltage behavior of 45nm NMOS and PMOS devices. These device models are then incorporated into
analog circuit designs, such as differential amplifiers (Figure 20) and common source amplifier (Figure XX).
Notably, our methodology allows modifications to circuit topology and design parameters (e.g., resistances and
transistor widths) without requiring retraining, underscoring its re-usability and versatility.

The hybrid simulation engine combines the data-fitting capabilities of DNNs with the enforcement of physical
constraints, ensuring Kirchhoff’s current laws are guaranteed. Moreover, it provides explainable outputs, as the
state variables directly correspond to measurable quantities like voltages and currents.

The scalability of the hybrid simulation engine is demonstrated by analyzing a cascaded differential amplifier. In
this simulation, each differential amplifier is macromodeled using a DNN (Figure 20), while the transmission
lines connecting them are modeled using physics-based equations. Our results show that the proposed hybrid
methodology achieves an impressive accuracy within 0.5% error while reducing the overall state-space by 20%
and the number of iterations required by 56%.

(a) Schematic of a common source amplifier com-
posed of a 45nm NMOS device and a pull up resistor.

(b) The common source amplifier is simulated using
a hybrid simulation, with the NMOS modeled by a
DNN. The simulation is performed across a range of
gate voltages,VIN , swept from 0 to 1. The results
are accurate within 0.2% compared against a physics-
based simulation engine (Cadence Virutoso Martin
(2002)).

Figure 19: Simulation of a common source amplifier with a resistive pull-up and 45nm NMOS
transistor. The NMOS transistor is modeled by a DNN, while the voltage sources and resistors are
modeled by physics-based equations.
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(a) CMOS differential amplifier schematic

(b) Comparison of Cadence and Hybrid Simulation Re-
sults with x-axis representing the difference between
VIN2 and VIN1, swept from 0 to 1

Figure 20: Simulation of an CMOS differential amplifier with a resistive load, R. The 45nm NMOS
and PMOS devices are modeled by trained DNNs with an input of gate-to-source voltage, drain-
to-source voltage, and outputs the drain-to-source current. The DNN models are integrated using
the hybrid simulation engine, and accurately captures the DC behavior across multiple set-points as
compared to physics-based simulation by Cadence Virtuoso Martin (2002), shown in (b).

Figure 21: A differential amplifier shown in Figure 20b is macromodeled by a three-layer deep neural
network architecture, shown above.

Figure 22: Schematic of cascaded differential amplifiers cascaded that are connected by transmission
lines. Using the hybrid simulation engine, the behavior of each differential amplifier, shown in Figure
18, is macromodeled by a DNN while the transmission elements are modeled by physical equations.
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Figure 23: The cascaded differential amplifier circuit in Figure 22 is simulated by a physics-based
simulator (Cadence Virtuoso Martin (2002)) and the proposed hybrid simulation across a range of
input voltages, !VIN , swept from 0 to 1.
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